Improved Electrochemical Properties of LiMn2O4-Based Cathode Material Co-Modified by Mg-Doping and Octahedral Morphology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, D.; Wang, Y.; Li, F.; Wang, G.; Wu, T.; Wang, Z.; Li, Y.; Su, J. Sol-gel synthesis of silicon-doped lithium manganese oxide with enhanced reversible capacity and cycling stability. Materials 2018, 11, 1455. [Google Scholar] [CrossRef] [PubMed]
- Normakhmedov, O.O.; Brylev, O.A.; Petukhov, D.I.; Kurilenko, K.A.; Kulova, T.L.; Tuseeva, E.K.; Skundin, A.M. Cryochemically processed Li1+yMn1.95Ni0.025Co0.025O4 (y = 0, 0.1) cathode materials for Li-ion batteries. Materials 2018, 11, 1162. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, G.; Luo, C.; Xu, Y.; Xu, Y.; Eckstein, B.J.; Chen, Y.; Wang, B.; Huang, J.; Kang, Y.; et al. Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries. Nano Energy 2019, 64, 103936. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, C.; Liu, Z.; Lee, K.S.; Lu, L. LiMn2O4 cathode materials with large porous structure and radial interior channels for lithium ion batteries. Electrochim. Acta 2016, 212, 553–560. [Google Scholar] [CrossRef]
- Hou, Y.; Chang, K.; Tang, H.; Li, B.; Hou, Y.; Chang, Z. Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping. Electrochim. Acta 2019, 319, 587–595. [Google Scholar] [CrossRef]
- Han, C.G.; Zhu, C.; Saito, G.; Akiyama, T. Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries. Electrochim. Acta 2016, 209, 225–234. [Google Scholar] [CrossRef]
- Pyun, M.H.; Park, Y.J. Graphene/LiMn2O4 nanocomposites for enhanced lithium ion batteries with high rate capability. J. Alloys Compd. 2015, 643, 90–94. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, X.; Li, Y.; Ran, Q.; Fu, C.; Feng, Y.; Liu, J.; Liu, X.; Su, J. Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material. Ceram. Int. 2019, 45, 17591–17597. [Google Scholar] [CrossRef]
- Zhao, H.; Li, F.; Bai, X.; Wu, T.; Wang, Z.; Li, Y.; Su, J. Enhanced cycling stability of LiCuxMn1.95−xSi0.05O4 cathode material obtained by solid-state method. Materials 2018, 11, 1302. [Google Scholar] [CrossRef]
- Zhang, C.; Su, J.; Wang, T.; Yuan, K.; Chen, C.; Liu, S.; Huang, T.; Wu, J.; Lu, H.; Yu, A. Significant improvement on electrochemical performance of LiMn2O4 at elevated temperature by atomic layer deposition of TiO2 nanocoating. ACS Sustain. Chem. Eng. 2018, 6, 7890–7901. [Google Scholar] [CrossRef]
- Wang, H.Q.; Lai, F.Y.; Li, Y.; Zhang, X.H.; Huang, Y.G.; Hu, S.J.; Li, Q.Y. Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim. Acta 2015, 177, 290–297. [Google Scholar] [CrossRef]
- Rodríguez, R.A.; Pérez–Cappe, E.L.; Laffita, Y.M.; Ardanza, A.C.; Salazar, J.S.; Santos, M.Á.; Aguilar Frutis, M.A.; Mohalem, N.D.S.; Alves, O.L. Structural defects in LiMn2O4 induced by gamma radiation and its influence on the Jahn-Teller effect. Solid State Ion. 2018, 324, 77–86. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhou, Z.; Chen, Z.; Du, S.; Cheng, Q.; Zhai, H.; Fritz, N.J.; Du, Q.; Yang, Y. Visualizing ion diffusion in battery systems by fluorescence microscopy: A case study on the dissolution of LiMn2O4. Nano Energy 2018, 45, 68–74. [Google Scholar] [CrossRef]
- Kasnatscheew, J.; Wagner, R.; Winter, M.; Cekic–Laskovic, I. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry; Springer: Cham, Switzerland, 2018; Volume 376, p. 16. [Google Scholar]
- Tao, S.; Zhao, H.; Wu, C.; Xie, H.; Cui, P.; Xiang, T.; Chen, S.; Zhang, L.; Fang, Y.; Wang, Z.; et al. Enhanced electrochemical performance of MoO3-coated LiMn2O4 cathode for rechargeable lithium-ion batteries. Mater. Chem. Phys. 2017, 199, 203–208. [Google Scholar] [CrossRef]
- Mao, Y.; Xiao, S.; Liu, J. Nanoparticle-assembled LiMn2O4 hollow microspheres as high-performance lithium-ion battery cathode. Mater. Res. Bull. 2017, 96, 437–442. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, S.; Wang, Z.; Cai, Y.; Tan, M.; Liu, X. Enhanced elevated-temperature performance of LiAlxSi0.05Mg0.05Mn1.90−xO4 (0 ≤ x ≤ 0.08) cathode materials for high-performance lithium-ion batteries. Electrochim. Acta 2016, 199, 18–26. [Google Scholar] [CrossRef]
- Tron, A.; Park, Y.D.; Mun, J. AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability. J. Power Sources 2016, 325, 360–364. [Google Scholar] [CrossRef]
- Michalska, M.; Ziółkowska, D.A.; Jasiński, J.B.; Lee, P.H.; Ławniczak, P.; Andrzejewski, B.; Ostrowski, A.; Bednarski, W.; Wu, S.H.; Lin, J.Y. Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochim. Acta 2018, 276, 37–46. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, C.; Zhang, J.; Wang, L.; Ma, X.; Xu, X. Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium–ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 19567–19572. [Google Scholar] [CrossRef]
- Sheth, J.; Karan, N.K.; Abraham, D.P.; Nguyen, C.C.; Lucht, B.L.; Sheldon, B.W.; Guduru, P.R. In situ stress evolution in Li1+xMn2O4 thin films during electrochemical cycling in Li-ion cells. J. Electrochem. Soc. 2016, 163, 2524–2530. [Google Scholar] [CrossRef]
- Huang, J.; Yang, F.; Guo, Y.; Peng, C.; Bai, H.; Peng, J.; Guo, J. LiMgxMn2−xO4 (x ≤ 0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature. Ceram. Int. 2015, 41, 9662–9667. [Google Scholar] [CrossRef]
- Peng, C.; Huang, J.; Guo, Y.; Li, Q.; Bai, H.; He, Y.; Su, C.; Guo, J. Electrochemical performance of spinel LiAlxMn2−xO4 prepared rapidly by glucose-assisted solid-state combustion synthesis. Vacuum 2015, 120, 121–126. [Google Scholar] [CrossRef]
- Song, H.; Zhao, Y.; Niu, Y.; Wu, Z.; Hou, H. Applications of LiCrxMn2−xO4 cathode material with high capacity and high rate in high-temperature battery. Solid State Ion. 2018, 325, 67–73. [Google Scholar] [CrossRef]
- Wagner, R.; Streipert, B.; Kraft, V.; Reyes Jiménez, A.; Röser, S.; Kasnatscheew, J.; Gallus, D.R.; Börner, M.; Mayer, C.; Arlinghaus, H.F.; et al. Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries. Adv. Mater. Interfaces 2016, 3, 1600096. [Google Scholar] [CrossRef]
- Wagner, R.; Kraft, V.; Streipert, B.; Kasnatscheew, J.; Gallus, D.R.; Amereller, M.; Korth, M.; Cekic–Laskovic, I.; Winter, M. Magnesium-based additives for the cathode slurry to enable high voltage application of lithium–ion batteries. Electrochim. Acta 2018, 228, 9–17. [Google Scholar] [CrossRef]
- Guo, J.; Hu, L.; Su, C.; Wang, R.; Liu, X.; Peng, J.G. Effect of temperature on electrochemical performance of LiMg0.06Mn1.94O4 prepared by a molten-salt combustion method. Int. J. Electrochem. Sci. 2016, 11, 4771–4778. [Google Scholar] [CrossRef]
- Jin, G.; Qiao, H.; Xie, H.; Wang, H.; He, K.; Liu, P.; Chen, J.; Tang, Y.; Liu, S.; Huang, C. Synthesis of single-crystalline octahedral LiMn2O4 as high performance cathode for Li-ion battery. Electrochim. Acta 2014, 150, 1–7. [Google Scholar] [CrossRef]
- Zhao, H.; Nie, Y.; Li, Y.; Wu, T.; Zhao, E.; Song, J.; Komarneni, S. Low-cost and eco-friendly synthesis of octahedral LiMn2O4 cathode material with excellent electrochemical performance. Ceram. Int. 2019, 45, 17183–17191. [Google Scholar] [CrossRef]
- Zhao, H.; Li, F.; Liu, X.; Xiong, W.; Chen, B.; Shao, H.; Que, D.; Zhang, Z.; Wu, Y. A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for lithium-ion batteries. Electrochim. Acta 2015, 166, 124–133. [Google Scholar] [CrossRef]
- Li, G.; Yu, Y.; liu, J.; Feng, T.; Shao, M.; Su, C.; Guo, J. Study on electrochemical performance of LiMg0.06Mn1.94O4 synthesized by solid–state combustion method. Int. J. Electrochem. Sci. 2018, 13, 1495–1504. [Google Scholar] [CrossRef]
- Xiang, M.; Su, C.W.; Feng, L.; Yuan, M.; Guo, J. Rapid synthesis of high-cycling performance LiMgxMn2−xO4 (x ≤ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim. Acta 2014, 125, 524–529. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, H.; Tan, M.; Hu, Y.; Shu, X.; Zhang, M.; Chen, B.; Liu, X. Er-doped LiNi0.5Mn1.5O4 cathode material with enhanced cycling stability for lithium–ion batteries. Materials 2017, 10, 859. [Google Scholar] [CrossRef]
- Chand, P.; Bansal, V.; Sukriti; Singh, V. Investigations of spinel LiZnxMn2−xO4 (x ≤ 0.03) cathode materials for a lithium ion battery application. Mater. Sci. Eng. B Adv. 2018, 238, 93–99. [Google Scholar] [CrossRef]
- Feng, T.; Xu, W.; Liu, X.; Shao, M.; Guo, J.; Su, C. Effect of calcination time on lithium ion diffusion coefficient of LiMg0.04Mn1.96O4 prepared by a solid-state combustion method. Int. J. Electrochem. Sci. 2018, 13, 1027–1041. [Google Scholar] [CrossRef]
- Xiong, L.; Xu, Y.; Zhang, C.; Zhang, Z.; Li, J. Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4. J. Solid State Electr. 2010, 15, 1263–1269. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Liu, D.; Zhang, X.; Zhao, C. Structure and performance of dual-doped LiMn2O4 cathode materials prepared via microwave synthesis method. Electrochim. Acta 2014, 125, 225–231. [Google Scholar] [CrossRef]
- Wen, W.; Ju, B.; Wang, X.; Wu, C.; Shu, H.; Yang, X. Effects of magnesium and fluorine co-doping on the structural and electrochemical performance of the spinel LiMn2O4 cathode materials. Electrochim. Acta 2014, 147, 271–278. [Google Scholar] [CrossRef]
- Liu, H.; Tian, R.; Jiang, Y.; Tan, X.; Chen, J.; Zhang, L.; Guo, Y.; Wang, H.S.; Chu, W. On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route. Electrochim. Acta 2015, 180, 138–146. [Google Scholar] [CrossRef]
- Shang, Y.; Lin, X.; Lu, X.; Huang, T.; Yu, A. Nano-TiO2 coated LiMn2O4 as cathode materials for lithium–ion batteries at elevated temperatures. Electrochim. Acta 2015, 156, 121–126. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Yu, Y.; Bai, H.; Shao, M.; Guo, J.; Su, C.; Liu, X.; Bai, W. Synthesis and electrochemical performance evaluations of polyhedra spinel LiAlxMn2−xO4 (x ≤ 0.20) cathode materials prepared by a solution combustion technique. J. Alloys Compd. 2017, 728, 1315–1328. [Google Scholar] [CrossRef]
- Xiong, L.; Xu, Y.; Tao, T.; Goodenough, J.B. Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J. Power Sources 2012, 199, 214–219. [Google Scholar] [CrossRef]
- Lai, F.; Zhang, X.; Wang, H.; Hu, S.; Wu, X.; Wu, Q.; Huang, Y.; He, Z.; Li, Q. Three-dimension hierarchical Al2O3 nanosheets wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 21656–21665. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Rodriguez, J.R.; Pol, V.G.; Sen, A. Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery. Appl. Surf. Sci. 2019, 463, 132–140. [Google Scholar] [CrossRef]
Sample | Space | a (nm) | V (nm3) |
---|---|---|---|
LMO | Fd-3m | 0.82392 | 0.55931 |
LMMO | Fd-3m | 0.82287 | 0.55718 |
LMMOO | Fd-3m | 0.82253 | 0.55649 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Nie, Y.; Que, D.; Hu, Y.; Li, Y. Improved Electrochemical Properties of LiMn2O4-Based Cathode Material Co-Modified by Mg-Doping and Octahedral Morphology. Materials 2019, 12, 2807. https://doi.org/10.3390/ma12172807
Zhao H, Nie Y, Que D, Hu Y, Li Y. Improved Electrochemical Properties of LiMn2O4-Based Cathode Material Co-Modified by Mg-Doping and Octahedral Morphology. Materials. 2019; 12(17):2807. https://doi.org/10.3390/ma12172807
Chicago/Turabian StyleZhao, Hongyuan, Yongfang Nie, Dongyang Que, Youzuo Hu, and Yongfeng Li. 2019. "Improved Electrochemical Properties of LiMn2O4-Based Cathode Material Co-Modified by Mg-Doping and Octahedral Morphology" Materials 12, no. 17: 2807. https://doi.org/10.3390/ma12172807
APA StyleZhao, H., Nie, Y., Que, D., Hu, Y., & Li, Y. (2019). Improved Electrochemical Properties of LiMn2O4-Based Cathode Material Co-Modified by Mg-Doping and Octahedral Morphology. Materials, 12(17), 2807. https://doi.org/10.3390/ma12172807