Ultra-Light Reduced Graphene Oxide Based Aerogel/Foam Absorber of Microwave Radiation
Abstract
:1. Introduction
2. Sample Preparation
2.1. Materials
2.2. Preparation of GO and GO/CS Solution
2.3. Preparation of PUFs and rGO-Coated PUFs
2.4. Preparation of Graphene-Based Chitosan Aerogel/PUF Composites by Bidirectional Freeze-Drying
3. Experimental
4. Results and Discussion
4.1. Structural Characterization
4.2. Microwave Probing
4.3. Anisotropy Study
4.4. Mechanical Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Shen, Z.; Hao, Z. Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core. Carbon 2004, 42, 1882–1885. [Google Scholar] [CrossRef]
- Fang, Z.; Cao, X.; Li, C.; Zhang, H.; Zhang, J.; Zhang, H. Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation. Carbon 2006, 44, 3368–3370. [Google Scholar] [CrossRef]
- Fang, Z.; Li, C.; Sun, J.; Zhang, H.; Zhang, J. The electromagnetic characteristics of carbon foams. Carbon 2007, 45, 2873–2879. [Google Scholar] [CrossRef]
- Moglie, F.; Micheli, D.; Laurenzi, S.; Marchetti, M.; Primiani, V.M. Electromagnetic shielding performance of carbon foams. Carbon 2012, 50, 1972–1980. [Google Scholar] [CrossRef]
- Micheli, D. Mitigation of Human Exposure to Electromagnetic Fields Using Carbon Foam and Carbon Nanotubes. Engineering 2012, 4, 928–943. [Google Scholar] [CrossRef]
- Kuzhir, P.P.; Paddubskaya, A.G.; Shuba, M.V.; Maksimenko, S.A.; Celzard, A.; Fierro, V.; Amaral-Labat, G.; Pizzi, A.; Valušis, G.; Macutkevic, J.; et al. Electromagnetic shielding efficiency in Ka-band: Carbon foam versus epoxy/carbon nanotube composites. J. Nanophotonics 2012, 6, 061715. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.-M. Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2013, 25, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Albano, M.; Micheli, D.; Gradoni, G.; Morles, R.B.; Marchetti, M.; Moglie, F.; Primiani, V.M. Electromagnetic shielding of thermal protection system for hypersonic vehicles. Acta Astronaut. 2013, 87, 30–39. [Google Scholar] [CrossRef]
- Micheli, D.; Morles, R.B.; Marchetti, M.; Moglie, F.; Primiani, V.M. Broadband electromagnetic characterization of carbon foam to metal contact. Carbon 2014, 68, 149–158. [Google Scholar] [CrossRef]
- Letellier, M.; Macutkevic, J.; Paddubskaya, A.; Plyushch, A.; Kuzhir, P.; Ivanov, M.; Banys, J.; Pizzi, A.; Fierro, V.; Macutkevic, J.; et al. Tannin-Based Carbon Foams for Electromagnetic Applications. IEEE Trans. Electromagn. Compat. 2015, 57, 989–995. [Google Scholar] [CrossRef]
- Bychanok, D.; Plyushch, A.; Piasotski, K.; Paddubskaya, A.; Voronovich, S.; Kuzhir, P.; Baturkin, S.; Klochkov, A.; Korovin, E.; Letellier, M.; et al. Electromagnetic properties of polyurethane template-based carbon foams in Ka-band. Phys. Scr. 2015, 90, 094019. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y. Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Adv. Mater. 2015, 27, 2049–2053. [Google Scholar] [CrossRef] [PubMed]
- Letellier, M.; Macutkevic, J.; Kuzhir, P.; Banys, J.; Fierro, V.; Celzard, A. Electromagnetic properties of model vitreous carbon foams. Carbon 2017, 122, 217–227. [Google Scholar] [CrossRef]
- Bauer, S.; Bauer-Gogonea, S.; Ploss, B. The physics of pyroelectric infrared devices. Appl. Phys. B 1992, 54, 544–551. [Google Scholar] [CrossRef]
- Min Woo, J.; Kim, M.S.; Woong Kim, H.; Jang, J.H. Graphene based salisbury screen for terahertz absorber. Appl. Phys. Lett. 2014, 104, 081106. [Google Scholar] [CrossRef]
- Li, W.; Jin, H.; Zeng, Z.; Zhang, L.; Zhang, H.; Zhang, Z. Flexible and easy-to-tune broadband electromagnetic wave absorber based on carbon resistive film sandwiched by silicon rubber/multi-walled carbon nanotube composites. Carbon 2017, 121, 544–551. [Google Scholar] [CrossRef]
- Paddubskaya, A.; Valynets, N.; Kuzhir, P.; Batrakov, K.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; et al. Electromagnetic and Thermal properties of 3D Printed Multilayered Nano-carbon/Poly(lactic) Acid Structures. J. Appl. Phys. 2016, 119, 135102. [Google Scholar] [CrossRef]
- Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Paddubskaya, A.; Voronovich, S.; Lambin, P.; Kaplas, T.; SvirkoEnhanced, Y. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 2014, 4, 7191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Volynets, N.; Voronovich, S.; Paddubskaya, A.; Valusis, G.; Kaplas, T.; Svirko, Y.; Lambin, P. Enhanced microwave-to-terahertz absorption in graphene. Appl. Phys. Lett. 2016, 108, 123101. [Google Scholar] [CrossRef]
- Kuzhir, P.; Padabskaya, A.; Volynets, N.; Batrakov, K.G.; Kaplas, T.; Lamberti, P.; Kotsilkova, R.; Lambin, P. The main principles of passive devices based on graphene and carbon films in microwave–THz frequency range. J. Nanophotonics 2017, 11, 032504. [Google Scholar] [CrossRef]
- Lobet, M.; Majerus, B.; Henrard, L.; Lambin, P. Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials. Phys. Rev. B 2016, 93, 235424. [Google Scholar] [CrossRef]
- Kuzhir, P.; Paddubskaya, A.; Macutkevic, J.; Kuzhir, P.; Paddubskaya, A.; Macutkevic, J. Electromagnetics of carbon: Nanovs. micro. In Carbon-Based Nanoelectromagnetics; Maffucci, A., Maksimenko, S., Svirko, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 8; ISBN 9780081023938. in print. [Google Scholar]
- Zhan, Y.H.; Wu, J.K.; Xia, H.S.; Yan, N.; Fei, G.; Yuan, G. Dispersion and Exfoliation of Graphene in Rubber by an Ultrasonically-Assisted Latex Mixing and in situ Reduction Process. Macromol. Mater. Eng. 2011, 296, 590. [Google Scholar] [CrossRef]
- Zhai, T.; Verdolotti, L.; Kaciulis, S. High Piezo-Resistive Performances of an Anisotropic Composite Realized by EmbeddingrGO-based Chitosan Aerogel in Open Cell Polyurethane Foams. 2019, in press. [Google Scholar]
- Gao, H.L.; Zhu, Y.B.; Mao, L.B.; Wang, F.C.; Luo, X.S.; Liu, Y.Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Long, J.; Zhao, W.; Wang, L.; Chen, G. pH-Responsive Chitosan-Mediated Graphene Dispersions. Langmuir 2010, 26, 16771–16774. [Google Scholar] [CrossRef] [PubMed]
- Justin, R.; Chen, B.Q. Strong and conductive chitosan-reduced graphene oxide nanocomposites for transdermal drug delivery. J. Mater. Chem. B 2014, 2, 3759–3770. [Google Scholar]
- Song, W.L.; Guan, X.T.; Fan, L.Z.; Cao, W.Q.; Wang, C.Y.; Cao, M.S. Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 2015, 93, 151–160. [Google Scholar] [CrossRef]
- Wan, Y.J.; Zhu, P.L.; Yu, S.H.; Sun, R.; Wong, C.P.; Liao, W.H. Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 2017, 115, 629–639. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plyushch, A.; Zhai, T.; Xia, H.; Santillo, C.; Verdolotti, L.; Lavorgna, M.; Kuzhir, P. Ultra-Light Reduced Graphene Oxide Based Aerogel/Foam Absorber of Microwave Radiation. Materials 2019, 12, 213. https://doi.org/10.3390/ma12020213
Plyushch A, Zhai T, Xia H, Santillo C, Verdolotti L, Lavorgna M, Kuzhir P. Ultra-Light Reduced Graphene Oxide Based Aerogel/Foam Absorber of Microwave Radiation. Materials. 2019; 12(2):213. https://doi.org/10.3390/ma12020213
Chicago/Turabian StylePlyushch, Artyom, Tianliang Zhai, Hesheng Xia, Chiara Santillo, Letizia Verdolotti, Marino Lavorgna, and Polina Kuzhir. 2019. "Ultra-Light Reduced Graphene Oxide Based Aerogel/Foam Absorber of Microwave Radiation" Materials 12, no. 2: 213. https://doi.org/10.3390/ma12020213
APA StylePlyushch, A., Zhai, T., Xia, H., Santillo, C., Verdolotti, L., Lavorgna, M., & Kuzhir, P. (2019). Ultra-Light Reduced Graphene Oxide Based Aerogel/Foam Absorber of Microwave Radiation. Materials, 12(2), 213. https://doi.org/10.3390/ma12020213