Super-Efficient Synthesis of Mesh-like Superhydrophobic Nano-Aluminum/Iron (III) Oxide Energetic Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of the Superhydrophobic Nano-Al/Fe2O3 Films (SAFFs)
2.3. Characterization
3. Results and Discussion
3.1. Characterization of the Product—SAFFs
3.2. Wettability
3.3. Thermal Analysis
3.4. Stability Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Sun, C.G.; Hu, B.C.; Yu, C.M.; Lu, M. Synthesis and characterization of the pentazolate anion cyclo-N5- in (N5)6(H3O)3(NH4)4Cl. Science 2017, 355, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.G.; Wang, Q.; Shen, C.; Lin, Q.H.; Wang, P.C.; Lu, M. A series of energetic metal pentazolate hydrates. Nature 2017, 549, 78–81. [Google Scholar] [CrossRef]
- Liu, J.; Shao, S.Y.; Fang, G.; Meng, B.; Xie, Z.Y.; Wang, L.X. High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer. Adv. Mater. 2012, 24, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, C.L.; Wang, Z.C.; Luo, P.G. Experimental study on reaction characteristics of PTFE/Ti/W energetic materials under explosive loading. Materials 2016, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Severac, F.; Alphonse, P.; Estève, A.; Bancaud, A.; Rossi, C. High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv. Funct. Mater. 2012, 22, 323–329. [Google Scholar] [CrossRef]
- Williams, R.A.; Patel, J.V.; Ermoline, A.; Schoenitz, M.; Dreizin, E.L. Correlation of optical emission and pressure generated upon ignition of fully-dense nanocomposite thermite powders. Combust. Flame 2013, 160, 734–741. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, X.P.; Qian, T.M.; Xu, K.; Sun, Q.F.; Jin, C.D. Fabrication of superhydrophobic Mg/Al layered double hydroxide (LDH) coatings on medium density fiberboards (MDFs) with flame fetardancy. Materials 2018, 11, 1113. [Google Scholar] [CrossRef]
- Jian, G.Q.; Feng, J.Y.; Jacob, R.J.; Egan, G.C.; Zachariah, M.R. Super-reactive nanoenergetic gas generators based on periodate salts. Angew. Chem. Int. Ed. 2013, 52, 9743–9746. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.G.; Li, X.M.; Lai, C.; Jiang, X.; Li, X.L.; Shu, Y.J. Facile approach to the green synthesis of novel ternary composites with excellent superhydrophobic and thermal stability property: An expanding horizon. Chem. Eng. J. 2017, 309, 240–248. [Google Scholar] [CrossRef]
- Li, P.; Moon, S.Y.; Guelta, M.A.; Harvey, S.P.; Hupp, J.T.; Farha, O.K. Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal–organic framework engenders thermal and long-term stability. J. Am. Chem. Soc. 2016, 138, 8052–8055. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.L.; Hng, H.H.; Ng, H.Y.; Soon, P.C.; Lee, Y.W. Synthesis and characterization of self-assembled nanoenergetic Al–Fe2O3 thermite system. J. Phys. Chem. Solids 2010, 71, 90–94. [Google Scholar] [CrossRef]
- Zhao, N.N.; He, C.C.; Liu, J.B.; Gong, H.J.; An, T.; Xu, H.X.; Zhao, F.Q.; Hu, R.Z.; Ma, H.X.; Zhang, J.Z. Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions. J. Solid State Chem. 2014, 219, 67–73. [Google Scholar] [CrossRef]
- Fan, R.H.; Lü, H.L.; Sun, K.N.; Wang, W.X.; Yi, X.B. Kinetics of thermite reaction in Al-Fe2O3 system. Thermochim. Acta 2006, 440, 129–131. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, D.R.; Dong, Y.C.; Wang, L.; Chen, X.G.; Zhang, J.X.; He, J.N.; Li, X. In situ nanostructured ceramic matrix composite coating prepared by reactive plasma spraying micro-sized Al–Fe2O3 composite powders. J. Alloy. Compd. 2011, 509, L90–L94. [Google Scholar] [CrossRef]
- Schoenitz, M.; Ward, T.S.; Dreizin, E.L. Fully dense nano-composite energetic powders prepared by arrested reactive milling. P. Combust. Inst. 2005, 30, 2071–2078. [Google Scholar] [CrossRef]
- Li, R.; Xu, H.M.; Hu, H.L.; Yang, G.C.; Wang, J.; Shen, J.P. Microstructured Al/Fe2O3/nitrocellulose energetic fibers realized by electrospinning. J. Energ. Mater. 2014, 32, 50–59. [Google Scholar] [CrossRef]
- Menon, L.; Patibandla, S.; Ram, K.B.; Shkuratov, S.I.; Aurongzeb, D.; Holtz, M.; Yun, B.; Temkin, H. Ignition studies of Al/Fe2O3 energetic nanocomposites. Appl. Phys. Lett. 2004, 84, 4735–4737. [Google Scholar] [CrossRef]
- Zhang, T.F.; Wang, Z.; Li, G.P.; Luo, Y.J. Tuning the reactivity of Al/Fe2O3 nanoenergetic materials via an approach combining soft template self-assembly with sol–gel process process. J. Solid State Chem. 2015, 230, 1–7. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Hao, L. In situ formation of particle reinforced Al matrix composite by selective laser melting of Al/Fe2O3 powder mixture. Adv. Eng. Mater. 2012, 14, 45–48. [Google Scholar] [CrossRef]
- Cheng, J.L.; Hng, H.H.; Lee, Y.W.; Du, S.W.; Thadhani, N.N. Kinetic study of thermal-and impact-initiated reactions in Al–Fe2O3 nanothermite. Combust. Flame 2010, 157, 2241–2249. [Google Scholar] [CrossRef]
- Gao, K.; Li, G.P.; Luo, Y.J.; Wang, L.; Shen, L.H.; Wang, G. Preparation and characterization of the AP/Al/Fe2O3 ternary nano-thermites. J. Therm. Anal. Calorim. 2014, 118, 43–49. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, D.G.; Yang, G.C.; Zhang, Q.B.; Shen, J.P.; Lu, J.; Zhang, K.L. Highly exothermic and superhydrophobic Mg/Fluorocarbon core/shell nanoenergetic arrays. ACS Appl. Mater. Interfaces 2014, 6, 10497–10505. [Google Scholar] [CrossRef] [PubMed]
- Collins, E.; Pantoya, M.; Vijayasai, A.; Dallas, T. Comparison of engineered nanocoatings on the combustion of aluminum and copper oxide nanothermites. Surf. Coat. Technol. 2013, 215, 476–484. [Google Scholar] [CrossRef]
- Xu, Y.H.; Li, J.; Huang, W.X. Porous graphene oxide prepared on nickel foam by electrophoretic deposition and thermal reduction as high-performance supercapacitor electrodes. Materials 2017, 10, 936. [Google Scholar]
- Guo, X.G.; Li, X.M.; Li, H.R.; Zhang, D.X.; Lai, C.; Li, W.L. A comprehensive investigation on the electrophoretic deposition (EPD) of nano-Al/Ni energetic composite coatings for the combustion application. Surf. Coat. Technol. 2015, 265, 83–91. [Google Scholar] [CrossRef]
- He, W.; Liu, P.J.; He, G.Q.; Gozin, M.; Yan, Q.L. Highly reactive metastable intermixed composites (MICs): Preparation and characterization. Adv. Mater. 2018, 1706293. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.G.; Lai, C.; Jiang, X.; Mi, W.H.; Yin, Y.J.; Li, X.M.; Shu, Y.J. Remarkably facile fabrication of extremely superhydrophobic high-energy binary composite with ultralong lifespan. Chem. Eng. J. 2018, 335, 843–854. [Google Scholar] [CrossRef]
- Guo, X.G.; Yuan, B.F.; Lin, Y.H.; Cui, X.; Gao, F.; Mi, W.H.; Lu, C.-H.; Rager, M.; Li, X.M. Facile preparation of superhydrophobic nano-aluminum/copper (II) oxide composite films with their exposure and heat-release stability. Mater. Lett. 2018, 213, 294–297. [Google Scholar] [CrossRef]
- Sullivan, K.T.; Worsley, M.A.; Kuntz, J.D.; Gash, A.E. Electrophoretic deposition of binary energetic composites. Combust. Flame 2012, 159, 2210–2218. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Butt, H.-J.; Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335, 67–70. [Google Scholar] [CrossRef]
- Lu, Y.; Sathasivam, S.; Song, J.L.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.L.; Feng, Y.J.; Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 2015, 54, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.C.; Dhiman, R.; Kwon, H.-M.; Varanasi, K.K. Reducing the contact time of a bouncing drop. Nature 2013, 503, 385. [Google Scholar] [CrossRef] [PubMed]
- Vakarelski, I.U.; Patankar, N.A.; Marston, J.O.; Chan, D.Y.; Thoroddsen, S.T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 2012, 489, 274. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Clanet, C.; Quéré, D. Surface phenomena: Contact time of a bouncing drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef] [PubMed]
- Larmour, I.A.; Bell, S.E.; Saunders, G.C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew. Chem. Int. Ed. 2007, 46, 1710–1712. [Google Scholar] [CrossRef]
- Yin, Y.J.; Li, X.M.; Shu, Y.J.; Guo, X.G.; Zhu, Y.H.; Huang, X.Y.; Bao, H.B.; Xu, K. Highly-reactive Al/CuO nanoenergetic materials with a tubular structure. Mater. Des. 2017, 117, 104–110. [Google Scholar] [CrossRef]
Parallel Experiments | Contact Angle/° | Rolling Angle/° |
---|---|---|
I | 170.1 ± 1 | 1.0 ± 1 |
II | 169.4 ± 1 | 0.9 ± 1 |
III | 160.0 ± 1 | 0.9 ± 1 |
IV | 168.9 ± 1 | 1.1 ± 1 |
V | 169.1 ± 1 | 1.1 ± 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liang, T. Super-Efficient Synthesis of Mesh-like Superhydrophobic Nano-Aluminum/Iron (III) Oxide Energetic Films. Materials 2019, 12, 234. https://doi.org/10.3390/ma12020234
Guo X, Liang T. Super-Efficient Synthesis of Mesh-like Superhydrophobic Nano-Aluminum/Iron (III) Oxide Energetic Films. Materials. 2019; 12(2):234. https://doi.org/10.3390/ma12020234
Chicago/Turabian StyleGuo, Xiaogang, and Taotao Liang. 2019. "Super-Efficient Synthesis of Mesh-like Superhydrophobic Nano-Aluminum/Iron (III) Oxide Energetic Films" Materials 12, no. 2: 234. https://doi.org/10.3390/ma12020234
APA StyleGuo, X., & Liang, T. (2019). Super-Efficient Synthesis of Mesh-like Superhydrophobic Nano-Aluminum/Iron (III) Oxide Energetic Films. Materials, 12(2), 234. https://doi.org/10.3390/ma12020234