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Abstract: Shot peening is one of the most famous mechanical surface treatments to improve fatigue
performance of metallic components, which is attributed to high amplitude compressive residual
stresses. A numerical approach is developed to analyze the residual stresses in 301LN metastable
austenitic stainless steel by shot peening. The material behavior is described by a proposed
constitutive model in which strain-induced martensitic transformation, isotropic hardening and
kinematic hardening effects are taken into account properly. Both single shot and random multiple
shots peening were simulated and analyzed. A numerical method is presented with the Python
programming language to make the multiple shots follow a random probability distribution. Results
demonstrate that the simulated equivalent plastic strains and martensitic volume fractions agree well
with the experimental ones, which verify the validity of the constitutive model. Besides, the numerical
method is effective at achieving a realistic surface coverage. The maximum compressive residual
stress by the Johnson–Cook model is 12% higher than that of the proposed model. Additionally, each
hardening effect has an effect on the simulated residual stress. The developed numerical approach
can provide a feasible simulation of the shot-peening process and makes an accurate prediction of the
residual stress field in 301LN steel.

Keywords: shot peening; constitutive model; residual stress; martensitic transformation;
numerical approach

1. Introduction

Poor surface performance is the main cause of fatigue failure of most metal components. Therefore,
improving the surface performance can improve the service life and comprehensive performance of
metal components [1]. Shot peening is one of the most famous mechanical surface strengthening
treatments due to microstructure improvement and high amplitude compressive residual stresses [2,3].
The strengthening effect depends on multi-factors such as the dynamic mechanical properties of
materials and shot-peening process parameters [4]. Therefore, compared with the experimental
researches, numerical simulation of the shot-peening process is not only convenient and fast, but also
can easily study the individual influence of these factors.

The constitutive model used to describe the target material behavior is an important aspect to carry
out reliable numerical simulations of the shot-peening process. For metastable austenitic stainless steels,
the severe plastic deformation on the surface by shot peening will cause the strain-induced martensitic
transformation [5]. On the one hand, the process of the martensitic transformation is accompanied by
an increase in volume, which is called the transformation-induced plasticity (TRIP) phenomenon [6,7].
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Two mechanisms are commonly proposed to explain the phenomenon: Greenwood–Johnson [8] and
Magee [9]. On the other hand, the combined hardening effects on the surface of material during
shot-peening process should be taken into consideration in the constitutive model. Firstly, high-speed
impact will cause strain hardening and strain rate hardening on the surface layer, which can be described
by isotropic hardening law. The widely used isotropic constitutive models are Johnson–Cook [10]
and Cowper–Symonds [11]. Secondly, as the shot-peening process involves the action of repeated
loads, the cyclic response of the target material should be assessed. Kinematic hardening law which
assumes the yield surface is displaced from its original position in the principal stress space should
be applied. The representative models are Armstrong–Frederick [12] and Chaboche [13]. Thirdly, as
the yield strength of martensite is usually higher than that of the austensite [14], the strengthening
effect on the yield surface due to strain-induced martensitic transformation should be included into
the constitutive model.

So far, there are two types of constitutive models developed for metastable austenitic steels:
micromechanics-based model and phenomenological macroscopic model. The micromechanics-based
model adopts independent constitutive equations for each phase and describes the change of phase
volume fraction by an evolution law; the effective behavior of the multiphase material is calculated
by homogenization [14–16]. In phenomenological macroscopic model, the constitutive equations are
established directly on the macroscopic level instead of being given for individual phases. Beese
and Mohr [17] have developed an isothermal rate-independent phenomenological macroscopic
finite strain plasticity model to exhibit strain-induced austenite-to-martensite transformation. The
macroscopic strain hardening is composed of nonlinear kinematic hardening as well as isotropic
hardening. Santacreu [18] has proposed a stress-state-independent transformation kinetics model,
which introduced the correlation between martensite saturation and stress triaxiality. Sanjurjo [19]
has analyzed the influence of different material constitutive models on the numerical simulation
of a shot-peening process. It has been found that results by a nonlinear kinematic-isotopic model
which considered both effects of isotropic hardening and kinematic hardening were the best compared
with other traditional models. Recently, Guiheux [20] has proposed a semi-phenomenological model
coupling the martensitic phase transformation and the elastoplastic behavior of austenite and martensite,
and studied a single spherical normal shot on strain-induced martensitic transformation in 301LN steel.
In this work, the phase transformation, the coupling between plasticity and transformation-induced
plasticity, and the mixed hardening effects induced by shot peening will increase the complexity of
constructing the constitutive model of the 301LN steel. Although the significance of the target material
behavior in the shot-peening simulations has been highlighted, few researchers have taken all these
effects into account in the constitutive model.

In addition to the constitutive models, another important aspect in the simulation of a shot-peening
process is the finite element model. With the development of finite element method and computational
power, six type models have been proposed and widely applied in the simulation of the shot-peening
process: 2D axisymmetric model [21], periodic symmetry model with a square contact surface [22], 3D
model with three symmetry surfaces [23], 3D model with two symmetry model [24], 3D model with
one symmetry surface [25] and 3D model without symmetry boundary condition [26]. In all the above
models, the locations of the shots have been pre-defined, which are far from the real shot-peening
process. In order to develop a model that can better simulate the shot-peening process, Miao [27]
has developed a 3D random finite model with a Matlab program combined with ANSYS APDL;
Gangaraj [28] has constructed a 3D random model using a Matlab program and ABAQUS Explicit.
Results showed that the random models were superior to the previous models in the simulation
of actual surface coverage, surface roughness and residual stress field. However, in these recently
developed random models, it is equiprobable for all the entering shots to hit any position on the
target surface. Actually, due to the factors such as the nozzle size, touching or impacting between
entering shots and rebound shots, it is impossible for the entering shots to hit any position on the target



Materials 2019, 12, 3338 3 of 17

surface with equal probability. Therefore, it is necessary to make the impact dimples follow a random
probability distribution.

The objective of the present study is to develop a numerical approach to analyze the shot-peening
process and obtain an accurate prediction of the residual stress field in metastable austenitic stainless
steel 301LN. The material behavior is described by a proposed constitutive model in which the
strain-induced martensitic transformation, isotropic hardening and kinematic hardening effects are
taken into account properly, and implemented into ABAQUS by developing a user subroutine.
Both single shot and random multiple shots peening were simulated and analyzed. The random
multiple shots model with the dimples following a random probability distribution was generated
with the Python programming language. The simulated equivalent plastic strains and martensitic
volume fractions by a single shot were compared with the experimental results in published literature.
Additionally, the relationship between the shot velocities and the dimple diameters was analyzed.
Furthermore, the surface coverage, martensitic transformation and residual stresses induced by
multiple shots peening were obtained and discussed. In addition, the residual stress field obtained
with the proposed constitutive model was compared with that by other constitutive models.

2. Proposed Constitutive Model

A constitutive model is proposed based on the previous works [17,18]. In the following, the
constitutive equations which include the mechanical behavior law, yield surface, kinematic hardening
law, isotropic hardening law and martensitic transformation kinetics law, are outlined.

2.1. Mechanical Behavior Law

The total strain increment tensor dε of the 301LN steel which is impacted by shot peening is
decomposed into four parts:

dε = dεe + dεp + dεtr + dεtp, (1)

where dεe, dεp denote respectively the elastic strain increment tensor and plastic strain increment tensor;
dεtr, dεtp are respectively the volume strain increment tensor between martensitic and austenite phases
due to density difference and the plasticity strain increment tensor induced by phase transformation.

It is assumed that the stress–strain relationship of elasticity conforms to isotropic Hooke’s law,
and the calculation formula is as follows:

dεe =
1 + v

E
dσ −

v
E

dσkδ, (2)

where E is the elasticity modulus, which is a homogenization of elasticity modulus according to the
volume fraction of martensitic and austenite phases; v is the Poisson’s ratio; dσ is the total stress
increment tensor; σk is the mean stress increment tensor; δ is the Kronecker symbol tensor.

Plastic strain increment is calculated using the plastic flow criterion:

dεp =
3S
2σe

√
3
2

dεp : dεp, (3)

where S is the deviatoric stress tensor; σe denotes the equivalent stress.
The strain due to phase volume change, dεtr, is defined as [29]:

dεtr =
(∑

2wβxdXx
)
δ, (4)

where βx denotes the phase transformation parameter; dXx is the volume fraction increment of each
phase; x = 1, 2 denotes the martensitic and austenite phases respectively; w = 2 is the number of
the phases.
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According to the Greenwood–Johnson model, the plasticity strain increment tensor due to phase
transformation dεtp is defined as:

dεtp = 3M(1− f )d f S, (5)

where M is the parameter of transformation plasticity; f is the martensite volume fraction; d f is the
martensite volume fraction increment.

2.2. Yield Surface

The initial yield function F of the 301LN steel is given by:

F = σe −K =

√
3
2
(S−α) : (S−α) −K, (6)

where α is the back stress tensor; K denotes the yield stress, which is defined in the following.

2.3. Kinematic Hardening Law

The nonlinear kinematic hardening rule proposed by Armstrong–Frederick [12] is adopted. The
evolution of the back stress is written as:

dα =
2
3

rθdεp
− θαdp, (7)

where dα denotes the increment of back stress tensor; r,θ are material parameters; dp defines the
increment of equivalent plastic strain.

2.4. Isotropic Hardening Law

In addition to the kinematic hardening law, an isotropic hardening law is used to describe the
evolution of the yield stress during shot-peening process. The widely used isotropic hardening model
is the Johnson–Cook model, which takes the strain hardening and strain rate hardening into account:

σ = (A + Bpn)
[
1 + C ln

( .
p/

.
ε0

)]
, (8)

where σ denotes the yield stress in this model; A, B, C and n are the model parameters;
.
p is the

equivalent plastic strain rate;
.
ε0 is the reference plastic strain rate.

In this work, yield stress K depends on the equivalent plastic strain, the equivalent plastic strain
rate and the martensitic volume fraction. Based on the Johnson–Cook model, an isotropic hardening
law is proposed as follows:

K =
(
kε + k f

)[
1 + C ln

( .
p/

.
ε0

)]
, (9)

kε = σ0 + hε[1− exp(−ap)], (10)

k f = h f f n, (11)

where kε denotes the strain hardening effect which is expressed as an exponential function of the
equivalent plastic strain; k f denotes the martensite transformation hardening effect which is an function
of the martensite volume fraction; σ0 is the initial yield stress of 301LN steel; hε, a and n are the material
parameters; h f denotes the martensitic transformation hardening modulus.

2.5. Martensitic Transformation Kinetics Law

According to the transformation kinetics law by Santacreu [18], the incremental equation of the
martensitic volume fraction, df, is given as:

d f = ( fmax − f )mD(Dp)m−1dp, (12)
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D = D0 + D1ϕ, (13)

where fmax denotes the maximum of martensitic volume in the 301LN steel during shot peening process;
D, D0, D1 and m are the material parameters; ϕ denotes the stress triaxiality.

2.6. Identification of the Constitutive Model Parameters

The data from the published literature [17] which correspond to the parameters of the proposed
constitutive model in this work are listed in Table 1. These parameters associated with the isotropic
hardening, kinematic hardening and transformation kinetics have been calibrated respectively based
on the experiments. The parameters of the proposed model in this work are identified though
numerical optimizations, which are carried out on a single cubic element. The parameters in Table 1
are determined as the initial parameters. Other parameters which are included in the proposed model
but not listed in Table 1 are estimated. The constitutive model has been implemented in the finite
element software ABAQUS by developing a user subroutine. Because we are going to compare the
simulated results of the shot peening with that in the literature [20], the material mechanical behaviors
from tensile tests in Reference [20] are taken as the targets of the optimizations.

Table 1. Data from the published research [17].

r/MPa θ σ0/MPa hε/MPa a hf/MPa D0 D1 fmax m

2 767 963 103 5.6 396 6.0 3.0 1.0 1.5

Table 2 shows the final values of the proposed model parameters. Figure 1 presents the simulated
behavior curves. It can be seen that the yield stress and the martensitic volume fraction agrees well
with the experimental results from the literature [20]. The martensitic transformation starts at the strain
of about 12% and increases to 0.6 of the volume fraction at the strain of 0.25. As the yield strength of
martensite is higher than that of the austenite, the yield stress starts form 350 MPa and increases up to
900 MPa with the martensitic volume fraction.

Table 2. Parameters of the proposed constitutive model.

r/MPa θ σ0/MPa hε/MPa C a hf/MPa

2.5 300 350 301 0.013 8.37 470
n D0 D1 fmax m βx M

0.97 2.62 0.6 0.99 2.22 1.0 5.9 × 10−11
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3. Finite Element Modelling

As the shot peening is a high-speed dynamic process, an explicit solver in the ABAQUS is adopted
in this work. Both axisymmetric single shot and random multiple shots models were developed. For
comparison, the simulated conditions of the axisymmetric single shot model were according to the
experimental ones [20]. The target specimen was modelled as a rectangle with a width of 35 mm and
25 mm in height. The degrees of the bottom edges were restricted. The diameter of shot was set as
10 mm.

To simulate the real shot-peening process, a 3D random multiple shots model was developed
with the Python programming language. The initial location of the shot centers was generated using
the random function, Random. Uniform ( ). The three dimensional coordinates of the shot center, r,
θ, z, were all limited within a space. To avoid the overlap of the created shots, the distance between
the centers of any two shots was set to be greater than the shot diameter. Due to factors such as the
touching or impacting between entering shots and rebound shots, it was impossible for the entering
shots to hit any position on the target surface with equal probability. Therefore, to make the dimples by
impacting follow a random probability distribution, the Avrami equation [30] was applied to evaluate
the relative position relationship between the two dimples:

P(l) = 100%(1− exp(−ε ∗ l/∅)), (14)

where P(l) denotes the probability that the distance between two dimples is l; ∅ is the diameter of
the dimple; ε is a constant. The P(l) must not be less than a random value which is produced by
the random function, Random. Uniform (0, 1). Otherwise, the shot creation will be rejected and the
location of a new shot will be generated until all the criteria are met.

The 3D target specimen was modelled as a cylinder with a radius of 5 mm and 3 mm in height.
The treated rectangular area on the target specimen surface was determined as 3 mm × 3 mm. The
degrees of freedom at the bottom face were constrained. To get close to the actual shot-peening
process, the diameter of the shots was set as 2.0 mm in the multiple shots model. In both models, each
shot was modelled as a rigid solid with the density of 7800 kg/m3, and defined by a reference point
corresponding to its center. In this work, the contacts between shots were ignored for simplicity. Only
the contacts between the shots and the target surface were defined with the coefficient of friction of 0.2.
The impact angle was 90◦ in order to maximize the impact energy transferred to the surface.

The single shot model was meshed using quadrilateral elements with reduced integration CAX4R.
Infinite elements (CINAX4) were employed to cover the lateral and bottom edges to eliminate the
size effect and the reflections of the elastic wave. The 3D multiple shots model was meshed using
8-node continuum elements with reduced integration and hourglass control (C3D8R). Infinite elements
(CIN3D8) were employed to cover the lateral faces.

In Explicit finite element simulation, the minimum element size is of great significance for
calculation accuracy and efficiency. A few studies on mesh convergence have been carried out.
Frija [31] has conducted a sensitivity study to optimize the dimensions of the element in refined
zone by comparison of the analytical solutions of the elastic Hertz contact problem. Klemenz [32]
has used the size of elements equal to one-tenth of the dimple diameter in the multiple shots model.
Bagherifard [33] has chosen the size of element in the impact zone equal to one–twentieth of the dimple
diameter. Obviously, the accuracy of the results mainly depends on the ratio of the element size and
the dimple diameter. Define the parameter ρ for the ratio of element size to the dimple diameter. A
single shot impact was simulated to determine the suitable element size of the target material. Firstly,
the diameter of the dimple on the surface was estimated. After that, a mesh convergence study with
different values of ρ was carried out. The effect of ρ on residual stress σr along the depth is shown
in Figure 2. It represents that the residual stress distributions for ρ = 1/20 and ρ = 1/30 are almost
identical. So it can be inferred that stopping the refinement of the mesh at ρ = 1/20 does not result in
excessive variation of residual stress. Eventually, a finer mesh was used on the impact zone with a
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minimum element size of 0.15 mm for the single shot-peening simulation, and 0.03 mm for the random
multiple shot-peening simulation. The developed single shot and 3D random multiple shot models
are shown in Figure 3a,b respectively. The calculations were running on a computer with 4-core CPU
(Central Processing Unit) at 3.4 GHz.
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4. Results and Discussions

4.1. Single Shot-Peening Simulation

Figure 4a,b show the distributions of the simulated equivalent plastic strain (PEEQ), the martensitic
volume fraction (f ) and the radial residual stress σr of 301LN steel after being impacted by a single shot
of 10 mm in diameter at velocity of 35 m/s. It can be seen that the PEEQ is maximum at the surface and
decreases gradually along the depth. However, the martensitic volume fraction appears only in the
dimple where the strain is higher than 0.12. Guiheux [20] has investigated a single shot with the same
diameter as in this work on the 301LN steel by simulations and experiments. Our results agrees well
with Guiheux’s work.
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As we know, the experimental measurement of the shot velocities has high complexity [34,35].
However, the size of dimple by impact can be easily obtained by measuring. Therefore, it is feasible to
relate the shot velocities and the dimple sizes in order to evaluate the shot velocities. The first thing to
do is to obtain the dimple diameter. Figure 5 shows the normal displacement (Uz) and the PEEQ along
the path which is defined across the center axis of dimple. In this work, the nodes with the Uz be equal
to zero on the surface within the pile-up are defined as the boundary of the dimple. Therefore, the
dimple diameter Ø, the dimple depth δ and the height of the pile-up H can be obtained. From Figure 5,
the PEEQ at the boundary is 0.19. According to Miao’s definition [27], the points on the surface with
the PEEQ larger than 0.19 can be considered as the impacted material. This definition will be applied
in the following coverage simulation.
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In single shot-peening simulations, the dimple diameters as a function of shot velocities are
obtained. Figure 6a accordingly shows the plots of three different shot diameters: 2, 5, and 10 mm.
Experimental results from Reference [20] are also be plotted in the figure. Additionally, the dimple
depth δ and the height of the pile-up H are plotted and compared with the experimental data, as shown
in Figure 6b. It can be seen that the simulated results are in good agreement with the experimental
results. As expected, an increase in velocity causes an increase in the dimensions of the dimple, and
an increase in shot diameter also causes an increase in the dimensions of the dimple. Besides, just
by knowing the dimple diameter which are easily obtained experimentally, the shot velocity can be
deduced by simply referring to the right shot diameter curve.
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4.2. Surface Coverage by Random Multiple Shots Simulation

Surface coverage, which indicates the amount of target area treated by shot peening, is an
important parameter to evaluate the shot-peening process [28,36]. The relationship between coverage
and number of shots (or shot-peening time) is an urgent issue needed to be solved. Most studies
have been carried out based on experiments and theoretical models [37,38]. Only few studies have
related the coverage to the number of shots by numerical simulation. Recently, Avrami equation has
been applied to calculate the number of shots needed to achieve full coverage in simulation [39]. The
equation is given by:

C% = 100(1− exp(−A∅)), (15)

where C% is the theoretical coverage percentage; A∅ is the ratio of total dimple area to the target area.
In this work, the coverage is defined as the ratio of the number of nodes with PEEQ larger than

that at the boundary of the dimple, to the total number of nodes in the target area according to Miao’s
work [27]. For practical purposes, 98% is considered to be full coverage level [39]. Figure 7 shows the
variation of the coverage with the number of shots of 2 mm in diameter at velocity of 35 m/s. It can
be seen that at first stage the coverage increases quickly with the number of shots increasing. Then
with the probability of overlap increasing, the increase rate slows down and the coverage approaches
a full level. The development of the coverage by Avrami equation is also superimposed in Figure 7.
The simulated results accords basically with the calculated results by Avrami equation within low
coverage. However, the results by Avrami equation overestimates the required number of shots needed
to achieve the full coverage. The number calculated by Avrami equation is 68. However, the full
coverage can be acquired after 55 impacts in the random shot-peening simulation. The reason may be
that the size of the treated area in the simulation is not very appropriate for the application of Avrami
equation. Other research has reported that the treated area was at least 100 times of the single dimple
area [28]. In this work, the area is only about 32 times of the single dimple area. Therefore, random
multiple shots model is a reliable method to achieve a realistic surface coverage. Moreover, when
applying the Avrami equation to evaluate the number of shots needed to achieve the full coverage,
dimension of the treated area needs to be calculated considering the effects of the shot diameter, the
shot velocity and the target material.
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Figure 8 shows the final appearance of the target material after being impacted at full coverage.
As a result of the random probability distribution of multiple impacts, the target surface does not show
a completely uniform distribution of vertical displacements.
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4.3. Residual Stress Field by Random Multiple Shots Simulation

One of the most important results for shot-peening simulation to obtain is the residual stress
field, which is a key factor to improve fatigue resistance of metallic components. Figure 9 shows the
distributions of residual stresses in directions of r, θ and z respectively after being impacted by 55
shots of 2 mm in diameter at velocity of 35 m/s. It can be seen that the curves of σr and σθ along the
depth are nearly overlap which indicates that the stresses are independent of the measuring direction
and therefore the model is reliable. The compressive stress σr (σθ) is of −240 MPa at the surface and
increases until a maximum compressive stress of nearly −1000 MPa at 0.3 mm. It indicates that the
material hardening is obvious, especially between 0 and 1mm. The energy provided by shot peening is
mostly used in the plastic deformation of deeper layers. The residual stress σz is relatively uniform
along the depth. The maximum value is −300 MPa, which is much less than the residual stresses in
other directions.
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by shot peening. The variables 𝑘ఌ and 𝑘 in the proposed constitutive model (Equations (10) and 
(11)) which denote the plastic strain hardening effect and the martensite transformation hardening 
effect have been obtained in the simulations and plotted in Figure 11b respectively. Both variables 
are maximum at the surface and decrease along the depth. It is interesting to note that the depth of 
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work-harden layer is about 1.65 mm. With the depth increases, the effects of martensitic 
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Figure 9. Distributions of the residual stresses along the depth in three directions.

Figure 10a,b show the simulated equivalent plastic strain (PEEQ) and the martensitic volume
fraction (f ) of 301LN steel after multiple shots peening. It can be seen that both the PEEQ and f
are maximum at the surface. Distributions of the PEEQ and f along the depth are both plotted in
Figure 11a. PEEQ is of 1.139 at surface and decreases until zero at 1.65 mm, while f is of 0.99 at surface
and decreases until zero at 1.1mm. It means that the austenite phase has been completely transformed
into martensitic phase on the surface, while no martensitic transformation occurs under the depth of
1.1 mm.

Materials 2019, 12, x FOR PEER REVIEW 11 of 17 

 

 

Figure 9. Distributions of the residual stresses along the depth in three directions. 

Figure 10a,b show the simulated equivalent plastic strain (PEEQ) and the martensitic volume 
fraction (f) of 301LN steel after multiple shots peening. It can be seen that both the PEEQ and f are 
maximum at the surface. Distributions of the PEEQ and f along the depth are both plotted in Figure 
11a. PEEQ is of 1.139 at surface and decreases until zero at 1.65 mm, while f is of 0.99 at surface and 
decreases until zero at 1.1mm. It means that the austenite phase has been completely transformed 
into martensitic phase on the surface, while no martensitic transformation occurs under the depth of 
1.1 mm.  

 
(a) 

 
(b) 

Figure 10. Distributions of (a) equivalent plastic strain, PEEQ; (b) the martensitic volume fraction, f. 

The maximum compressive residual stress in Figure 9 is much higher than the initial yield 
stress 𝜎, which is attributed to the increase of the yield stress because of hardening effects induced 
by shot peening. The variables 𝑘ఌ and 𝑘 in the proposed constitutive model (Equations (10) and 
(11)) which denote the plastic strain hardening effect and the martensite transformation hardening 
effect have been obtained in the simulations and plotted in Figure 11b respectively. Both variables 
are maximum at the surface and decrease along the depth. It is interesting to note that the depth of 
enhancement layer because of martensite phase transition is within 1.1 mm, and the thickness of the 
work-harden layer is about 1.65 mm. With the depth increases, the effects of martensitic 
transformation and isotropic hardening on the residual stresses gradually weaken. 

Figure 10. Distributions of (a) equivalent plastic strain, PEEQ; (b) the martensitic volume fraction, f.

Materials 2019, 12, x FOR PEER REVIEW 12 of 17 

 

 

(a)  (b) 

Figure 11. Distributions of variables along the depth by multiple shots peening: (a) PEEQ and f; (b) 𝑘ఌ and 𝑘. 

Distributions of the residual stress σr simulated with the Johnson–Cook model and the proposed 
model are compared, as shown in Figure 12. The Johnson–Cook model describes the evolution of the 
hardening plastic surface in terms of the plastic strain and the equivalent plastic strain (Equation (8)). 
The parameters of the Johnson–Cook model as listed in Table 3 are determined by numerical 
optimization, the goal of which is to fit the curve of yield stress–strain in Figure 1 as well as possible. 
As Figure 12 shows, the result differences between these models are significant in the surface layer 
within 1.0 mm. Additionally, the difference is reduced in greater depth where the response of the 
target material behavior to shot-peening process is weakening. This result corresponds to that 
obtained in Figure 11. Moreover, it can be seen that the variation trends of the residual stresses and 
the locations of the maximum values are almost the same. However, the values of maximum 
compressive residual stress predicted by the constitutive models vary greatly. The value by the 
Johnson–Cook model is about 12% higher than that by the proposed model. The results are almost 
consistent with Sanjurjo’s work [19], in which they found that the numerical prediction by the 
Johnson–Cook model overestimated the residual stress. Results confirm that both the effects of TRIP, 
isotropic hardening and kinematic hardening have to be properly taken into consideration in the 
constitutive model of 301LN steel in order to make an accurate prediction of the residual stress field 
by shot peening. 

Table 3. Parameters of the Johnson–Cook model. 

A /MPa B/MPa C n 
350 420 0.015 0.5 

Figure 11. Distributions of variables along the depth by multiple shots peening: (a) PEEQ and f ; (b) kε
and kf.



Materials 2019, 12, 3338 12 of 17

The maximum compressive residual stress in Figure 9 is much higher than the initial yield stress
σ0, which is attributed to the increase of the yield stress because of hardening effects induced by shot
peening. The variables kε and k f in the proposed constitutive model (Equations (10) and (11)) which
denote the plastic strain hardening effect and the martensite transformation hardening effect have been
obtained in the simulations and plotted in Figure 11b respectively. Both variables are maximum at the
surface and decrease along the depth. It is interesting to note that the depth of enhancement layer
because of martensite phase transition is within 1.1 mm, and the thickness of the work-harden layer
is about 1.65 mm. With the depth increases, the effects of martensitic transformation and isotropic
hardening on the residual stresses gradually weaken.

Distributions of the residual stress σr simulated with the Johnson–Cook model and the proposed
model are compared, as shown in Figure 12. The Johnson–Cook model describes the evolution of
the hardening plastic surface in terms of the plastic strain and the equivalent plastic strain (Equation
(8)). The parameters of the Johnson–Cook model as listed in Table 3 are determined by numerical
optimization, the goal of which is to fit the curve of yield stress–strain in Figure 1 as well as possible.
As Figure 12 shows, the result differences between these models are significant in the surface layer
within 1.0 mm. Additionally, the difference is reduced in greater depth where the response of the target
material behavior to shot-peening process is weakening. This result corresponds to that obtained
in Figure 11. Moreover, it can be seen that the variation trends of the residual stresses and the
locations of the maximum values are almost the same. However, the values of maximum compressive
residual stress predicted by the constitutive models vary greatly. The value by the Johnson–Cook
model is about 12% higher than that by the proposed model. The results are almost consistent with
Sanjurjo’s work [19], in which they found that the numerical prediction by the Johnson–Cook model
overestimated the residual stress. Results confirm that both the effects of TRIP, isotropic hardening and
kinematic hardening have to be properly taken into consideration in the constitutive model of 301LN
steel in order to make an accurate prediction of the residual stress field by shot peening.Materials 2019, 12, x FOR PEER REVIEW 13 of 17 
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5. Conclusions

(1) A constitutive model considering the effects of strain-induced martensitic transformation,
isotropic hardening and kinematic hardening of 301LN steel induced by shot peening is proposed, and
implemented into ABAQUS. The validity of the constitutive model was verified by comparison with
the experimental models in other published literature.

(2) A numerical method was developed with the Python programming language to make the
shots follow a random probability distribution. The Avrami equation was applied to evaluate the
relative position relationship between the two impact dimples. The result shows that it is an effective
method to achieve a realistic surface coverage by shot peening.

(3) The maximum compressive residual stress predicted by the Johnson–Cook model is 12% higher
than that of the proposed model, the value by Johnson–Cook model is 12% higher. Each hardening
effect considered in the model has an effect on the residual stress distribution.

Results indicate that the developed numerical approach can provide a feasible simulation of the
shot-peening process and make an accurate prediction of the residual stress field in 301LN steel.
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Funding: The authors gratefully acknowledge the support provided by National Natural Science Foundation
of China (No.51905544), Fundamental Research Funds for the Central Universities (No.18CX02147A), Natural
Science Foundation of Shandong Province (No. ZR2019BEE061) and China Postdoctoral Science Foundations
(No.2018M642722, No. 2019T120614).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A. Computational Model

The incremental integration of the constitutive model is regarded as a strain-driven process, where
the strain tensor increment is given at a certain time and both stresses and state variables (strain, stress,
back stress tensor, martensitic volume fraction, equivalent plastic strain and yield surface) should be
updated. Therefore, the return mapping algorithm is applied to solve equations. In all the equations
below, the subscript n + 1 denotes the value of the variables at the time of n + 1, while the subscript n
denotes the value of the variables at the time of n.

The total stress tensor is written as:

σtotal
n+1 = σtrial

n+1 + σ
tr
n+1 + σ

tp
n+1, (A1)

where σtrial
n+1 is the trial stress tensor; σtr

n+1 is the stress tensor due to volume strain increment; σtp
n+1

denotes the stress tensor due to the plasticity strain increment induced by phase transformation.
Assume that the strain increment is elastic, and calculate the stress tensor increment according to

the generalized Hooke’s law. The trial stress tensor σtrial
n+1 is given by:

σtrial
n+1 = σn + ∆σn+1 = σn + En+1 : ∆εn+1, (A2)

where σn is the stress tensor at the end of time n; ∆σn+1 is the increment of the trial stress tensor; En+1

is a homogenization of elasticity modulus according to the volume fraction of martensitic and austenite
phases; ∆εn+1 is the increment of total strain tensor.

σtr
n+1 and σtp

n+1 are respectively given by:

σtr
n+1 = −En+1 : ∆εtr

n+1, (A3)

σtp
n+1 = −En+1 : ∆ε

tp
n+1, (A4)
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With

∆εtr
n+1 =

∑
x

2wβx∆Xx
n+1

δ, (A5)

∆ε
tp
n+1 = 3M(1− fn+1)∆ fn+1Sn+1, (A6)

where
∑

is the summation notation. βx denotes the phase transformation parameter; ∆Xx
n+1 denotes

the volume fraction increment of each phase; x = 1, 2 denotes the martensitic and austenite phases
respectively; w = 2 is the number of the phases.

The volume fraction increment of the martensitic phase is given by:

fn+1 = fn + ∆ fn+1 = fn + ( fmax − fn+1)mD(Dpn+1)
m−1∆pn+1. (A7)

The yield function Fn+1 is defined by:

Fn+1 = σe −Kn+1 =

√
3
2
(Sn+1 −αn+1) : (Sn+1 −αn+1) −Kn+1. (A8)

The back stress tensor is defined as:

αn+1 = αn +
2
3

rθ∆εp
n+1 − θαn+1∆pn+1, (A9)

where αn is the back stress tensor at time n; ∆εp
n+1 is the increment of plastic strain tensor; ∆pn+1 is the

equivalent plastic strain increment.
When Fn+1 < 0, the new stress is set equal to the trial stress. When Fn+1 ≥ 0, the material reaches a

yield state. The total strain increment includes both elastic strain increment and plastic strain increment.
Therefore, the trial stress is not equal to the true new stress. The trial stress tensor can also be written as:

σtrial
n+1 = σn + λtr(∆εn+1)I + 2G∆εn+1, (A10)

where tr() is the trace function; I is the unit matrix; λ and G are the Lames constants for the material;
∆εn+1 denotes the total strain increment tensor. The new stress σn+1 is obtained by subtracting the
component of plastic strain increment from the total strain increment, as follows:

σn+1 = σn + λtr
(
∆εn+1 − ∆εp

n+1

)
I + 2G

(
∆εn+1 − ∆εp

n+1

)
. (A11)

Considering tr
(
∆εp

n+1

)
= 0, then:

σn+1 = σn + λtr(∆εn+1)I + 2G∆εn+1 − 2G∆εp
n+1 = σtrial

n+1 − 2G∆εp
n+1. (A12)

When the new stress is expressed in terms of deviatoric stress and mean stress, the Equation (A12)
can be rewritten as:

Sn+1 +
1
3

tr(σn+1)I = σtrial
n+1 − 2G∆εp

n+1. (A13)

By sorting out the Equation (A13), we get

Sn+1 + 2G∆εp
n+1 = σtrial

n+1 −
1
3

tr(σn+1)I = S∗n+1. (A14)

where S∗n+1 denotes the deviatoric stress tensor of the trial stress σtrial
n+1.

Therefore, the deviatoric stress tensor Sn+1 is given by:

Sn+1 = S∗n+1 − 2G∆εp
n+1. (A15)
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Based on the plastic flow law associated with the yield law, it can be drawn that

.
ε

p
n+1 =

.
λ
∂Fn+1

∂σn+1
=

.
λNn+1, (A16)

where
.
ε

p
n+1 denotes the rate of the plastic strain tensor;

.
λ is a scalar multiplier; Nn+1 denotes the normal

direction outside the yield surface, it can be expressed as:

Nn+1 =

√
3
2

Sn+1 − αn+1

Kn+1
. (A17)

When the incremental step is small, Equation (A16) can be rewritten as:

∆εp
n+1 =

3
2

∆pn+1
Sn+1 −αn+1

Kn+1
. (A18)

Using Equations (A9), (A15) and (A18), we obtain:

Sn+1 −αn+1 =
Kn+1

(
S∗n+1 −

αn
(1+θ∆pn+1)

)
Kn+1 +

(
3G + rθ

(1+θ∆pn+1)

)
∆pn+1

. (A19)

Substitute Equation (A19) into the yield function Fn+1 = 0, we obtain:√
3
2

(
S∗n+1 − µ

)
:
(
S∗n+1 − µ

)
− (3G + ϕ)∆pn+1 −Kn+1 = 0, (A20)

where µ = αn
(1+θ∆pn+1)

; ϕ = rθ
(1+θ∆pn+1)

; Kn+1 =
(
σ0 + hε[1− exp(−apn+1)] + h f f n

n+1

)[
1 + C ln

( .
pn+1

.
ε0

)]
.

The equivalent plastic strain increment ∆pn+1 is obtained by solving Equation (A13) with the
Newton iteration method:

∆pn+1 = ∆pi = ∆pi−1 −
F0(∆pi−1)

F′0(∆pi−1)
, (A21)

where i and i − 1 denote the number of iterations; ∆pi is the equivalent plastic strain increment after
the i iteration; ∆pi−1 is the equivalent plastic strain increment after the i − 1 iteration. The iterative
procedure is continued until the criterion for accuracy requirement is met.
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