Influence of Granulometry on Thermal and Mechanical Properties of Cement Mortars Containing Expanded Perlite as a Lightweight Aggregate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characterization
2.2. Mix Proportion and Mixtures
2.3. Test Procedures
3. Results
3.1. Density and Fineness Modulus
3.2. Compressive Strength
3.3. Absorption
3.4. Thermal Conductivuty
3.5. SEM Analysis of Expanded Perlite and Cement Interface
4. Discussion
5. Conclusions
- The variation of the EP’s granulometry, when this is used as a unique lightweight aggregate in the preparation of mortar, has a noticeable influence on the density of the resulting product, its thermal conductivity, its compressive strength, and its degree of water absorption.
- The results suggest linear relations among several of the variables studied, which is corroborated by results of similar studies; likewise, the R2 coefficients are acceptable for several of the correlations analyzed. Although these results are promising, it is also true that the number of samples is low, and this is one of the main limitations of this study. Therefore, in the future, it would be desirable to test a higher number of samples to be able to validate these findings.
- The SEM images indicate that the particle size, amount of water, use of fluidifier additives, and the mixing and compacting time play a fundamental role in the thermal behavior of this type of mortar, given that a greater fluidity and a higher mixing and compacting time can cause a higher saturation of the crystalline structure of the aggregate, improving the penetration of the cement grouting in the porous structure. However, this must be studied in detail in future research.
- According to the images, it can be concluded that the initial particle size is essential, and that even within the common limits established by construction standards, enormous differences can be found. It might be the case that the use of larger particle sizes offers a higher number of closed pores which are not silted by the cement grouting, providing better thermal and water benefits. Besides, a higher amount of water, the use of fluidifying additives and a longer mixing and compacting time can cause a higher saturation of the aggregate’s crystalline structure, improving the penetration of the cement grouting in the porous structure.
- However, it remains unclear how smaller particle size is related to a higher water absorption. The explanation hereby provided is based on an educated guess, considering the results from all the tests: Cement and water fill the space between particles, giving a mixture with higher density and higher thermal conductivity. However, further research should be conducted to clarify how this void space is filled with both cement and water; the capillary network of the cement might offer an explanation, but, as stated before, research should be conducted to prove this hypothesis.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Real, S.; Bogas, J.A.; Gomes, M.D.; Ferrer, B. Thermal conductivity of structural lightweight aggregate concrete. Mag. Concr. Res. 2016, 68, 798–808. [Google Scholar] [CrossRef]
- Davraz, M.; Koru, M.; Akdağ, A.E. The Effect of Physical Properties on Thermal Conductivity of Lightweight Aggregate. Procedia Earth Planet. Sci. 2015, 15, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 2011, 43, 671–676. [Google Scholar] [CrossRef]
- Kockal, N.U. Investigation about the effect of different fine aggregates on physical, mechanical and thermal properties of mortars. Constr. Build. Mater. 2016, 124, 816–825. [Google Scholar] [CrossRef]
- Kidalova, L.; Stevulova, N.; Terpakova, E.; Sicakova, A. Utilization of alternative materials in lightweight composites. J. Clean. Prod. 2012, 34, 116–119. [Google Scholar] [CrossRef]
- Schackow, A.; Güths, S.; Mendes, G.A.; Effting, C.; Folgueras, M.V. Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Constr. Build. Mater. 2014, 57, 190–197. [Google Scholar] [CrossRef]
- Tasdemir, C.; Sengul, O.; Tasdemir, M.A. A comparative study on the thermal conductivities and mechanical properties of lightweight concretes. Energy Build. 2017, 151, 469–475. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.Y.; Monteiro, P.J.M.; Zhang, M.H. Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Constr. Build. Mater. 2015, 87, 100–112. [Google Scholar] [CrossRef]
- Demir, I.; Baspinar, M.S. Effect of silica fume and expanded perlite addition on the technical properties of the fly ash-lime-gypsum mixture. Constr. Build. Mater. 2008, 22, 1299–1304. [Google Scholar] [CrossRef]
- Liu, N.; Chen, B. Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete. Constr. Build. Mater. 2014, 68, 227–232. [Google Scholar]
- Demirboǧa, R.; Gül, R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 2003, 33, 723–727. [Google Scholar] [CrossRef]
- Ünal, O.; Uygunoǧlu, T.; Yildiz, A. Investigation of properties of low-strength lightweight concrete for thermal insulation. Build. Environ. 2007, 42, 584–590. [Google Scholar] [CrossRef]
- Topçu, İ.B.; Işıkdağ, B. Effect of expanded perlite aggregate on the properties of lightweight concrete. J. Mater. Process. Technol. 2008, 204, 34–38. [Google Scholar] [CrossRef]
- Gandage, A.S.; Rao, V.R.V.; Sivakumar, M.V.N.; Vasan, A.; Venu, M.; Yaswanth, A.B. Effect of Perlite on Thermal Conductivity of Self Compacting Concrete. Procedia-Soc. Behav. Sci. 2013, 104, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Siwińska, A.; Garbalińska, H. Thermal conductivity coefficient of cement-based mortars as air relative humidity function. Heat Mass Transf. 2011, 47, 1077–1087. [Google Scholar] [CrossRef]
- Kramar, D.; Bindiganavile, V. Impact response of lightweight mortars containing expanded perlite. Cem. Concr. Compos. 2013, 37, 205–214. [Google Scholar] [CrossRef]
- Lanzón, M.; García-Ruiz, P.A. Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr. Build. Mater. 2008, 22, 1798–1806. [Google Scholar] [CrossRef]
- Oktay, H.; Yumrutaş, R.; Akpolat, A. Mechanical and thermophysical properties of lightweight aggregate concretes. Constr. Build. Mater. 2015, 96, 217–225. [Google Scholar] [CrossRef]
- Jedidi, M.; Benjeddou, O.; Soussi, C. Effect of expanded perlite aggregate dosage on properties of lightweight concrete. Jordan J. Civ. Eng. 2015, 9, 278–291. [Google Scholar] [CrossRef]
- Polat, R.; Demirboğa, R.; Khushefati, W.H. Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite aggregate on the autogenous shrinkage of mortar. Constr. Build. Mater. 2015, 81, 268–275. [Google Scholar] [CrossRef]
- Işıkdağ, B. Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Constr. Build. Mater. 2015, 81, 15–23. [Google Scholar] [CrossRef]
- Demirboǧa, R.; Gül, R. Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures. Energy Build. 2003, 35, 1155–1159. [Google Scholar] [CrossRef]
- Różycka, A.; Pichór, W. Effect of perlite waste addition on the properties of autoclaved aerated concrete. Constr. Build. Mater. 2016, 120, 65–71. [Google Scholar] [CrossRef]
- Gündüz, L.; Kalkan, Ş.O. A technical evaluation on the determination of thermal comfort parametric properties of different originated expanded and exfoliated aggregates. Arab. J. Geosci. 2019, 12, 2017–2020. [Google Scholar] [CrossRef]
- Jia, G.; Li, Z.; Liu, P.; Jing, Q. Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material. J. Non-Cryst. Solids 2018, 482, 192–202. [Google Scholar] [CrossRef]
- Celik, A.G.; Kilic, A.M.; Cakal, G.O. Expanded Perlite Aggregate Characterization for Use As a Lightweight. Physicochem. Probl. Miner. Process. 2013, 49, 689–700. [Google Scholar]
- Topçu, I.B.; Işikdaǧ, B. Manufacture of high heat conductivity resistant clay bricks containing perlite. Build. Environ. 2007, 42, 3540–3546. [Google Scholar] [CrossRef]
- Gürsoy, M.; Karaman, M. Improvement of wetting properties of expanded perlite particles by an organic conformal coating. Prog. Org. Coat. 2018, 120, 190–197. [Google Scholar] [CrossRef]
- Yilmazer, S.; Ozdeniz, M.B. The effect of moisture content on sound absorption of expanded perlite plates. Build. Environ. 2005, 40, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Shastri, D.; Kim, H.S. A new consolidation process for expanded perlite particles. Constr. Build. Mater. 2014, 60, 1–7. [Google Scholar] [CrossRef]
- Dubé, W.P.; Sparks, L.L.; Slifka, A.J. Thermal conductivity of evacuated perlite at low temperatures as a function of load and load history. Constr. Build. Mater. 1992, 6, 19–22. [Google Scholar] [CrossRef]
- Tajra, F.; Elrahman, M.A.; Lehmann, C.; Stephan, D. Properties of lightweight concrete made with core-shell structured lightweight aggregate. Constr. Build. Mater. 2019, 205, 39–51. [Google Scholar] [CrossRef]
- Wang, L.; Liu, P.; Jing, Q.; Liu, Y.; Wang, W.; Zhang, Y.; Li, Z. Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Constr. Build. Mater. 2018, 188, 747–757. [Google Scholar] [CrossRef]
- Gürsoy, M.; Karaman, M. Hydrophobic coating of expanded perlite particles by plasma polymerization. Chem. Eng. J. 2016, 284, 343–350. [Google Scholar] [CrossRef]
- Rashad, A.M. A synopsis about perlite as building material—A best practice guide for Civil Engineer. Constr. Build. Mater. 2016, 121, 338–353. [Google Scholar] [CrossRef]
- Budaiwi, I.; Abdou, A.; Al-Homoud, M. Variations of Thermal Conductivity of Insulation Materials Under Different Operating Temperatures: Impact on Envelope-Induced Cooling Load. J. Archit. Eng. 2002, 8, 125–132. [Google Scholar] [CrossRef]
- INN Instituto Nacional de Normalización. NCh 116.2008. Aridos Para Morteros y Hormigones-Determinación De La Densidad Aparente. 2008, p. 11. Available online: www.inn.cl (accessed on 2 November 2019).
- ASTM International. ASTM C29/C29M-17a Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. 2017, p. 5. Available online: www.astm.org (accessed on 26 June 2019).
- INN Instituto Nacional de Normalización. NCh 1239:2009. Aridos para morteros y hormigones-Determinación de las densidades real y neta y de la absorción de agua de las arenas. 2009, p. 11. Available online: www.inn.cl (accessed on 2 November 2019).
- ASTM International. ASTM C128-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. 2015, p. 6. Available online: www.astm.org (accessed on 26 June 2019).
- ASTM C332-17. Standard Specification for Lightweight Aggregates for Insulating Concrete; West Conshohocken, PA, USA, 2017; Available online: www.astm.org (accessed on 2 November 2019).
- EN 197-1:2011. Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cement; NSAI standards: Dublin, Ireland, 2011. [Google Scholar]
- ASTM C 595. Standard Specification for Blended Hydraulic Cements; West Conshohocken, PA, USA, 2003; Available online: www.astm.org (accessed on 2 November 2019).
- ASTM C136/C136M-14. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM: West Conshohocken, PA, USA, 2014. [Google Scholar] [CrossRef]
- Demirboǧa, R. Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. 2003, 35, 189–192. [Google Scholar] [CrossRef]
- Videla, C.; Lopez, M. Dosificación De Hormigones Livianos. Revista Ingeniería de Construcción 2012, 19, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Señas, L.; Valea, J.; Maiza, P.; Marfil, S. Expanded perlite light weight concrete durability. Rev. Cienc. e Ing. 2004, 25, 162–170. [Google Scholar]
- INN Instituto Nacional de Normalización. NCh 170:2016. Hormigón-Requisitos Generales. 2016, p. 37. Available online: www.inn.cl (accessed on 2 November 2019).
- INN Instituto Nacional de Normalización. NCh 850:1983. Aislación Térmica. Método Para La Determinación De La Conductividad Térmica En Estado Estacionario Por El Método Del Anillo De Guarda. 1983, p. 15. Available online: www.inn.cl (accessed on 2 November 2019).
- ASTM International. ASTM C177-19. Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. 2019, p. 23. Available online: www.astm.org (accessed on 2 November 2019).
- ASTM International. ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. 2013, p. 3. Available online: www.astm.org (accessed on 27 June 2019).
- INN Instituto Nacional de Normalización. NCh 158:1967. Cementos-Ensayo de flexión y compresión de morteros de cemento. 1967, p. 13. Available online: www.inn.cl (accessed on 2 November 2019).
- ASTM International. ASTM C109/C109M-16a. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). 2016, p. 10. Available online: www.astm.org (accessed on 2 November 2019).
- Zhang, H. Concrete. Build. Mater. Civ. Eng. 2011, 81–423. [Google Scholar] [CrossRef]
- Torres, M.L.; García-Ruiz, P.A. Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cem. Concr. Compos. 2009, 31, 114–119. [Google Scholar] [CrossRef]
- ISO. UNE-EN 998-1:2010. Specification for Mortar for Masonry-Part 1: Rendering and Plastering Mortar. 2018. Available online: www.iso.org (accessed on 2 November 2019).
Compound | Perlite |
---|---|
SiO2 | 75.5% |
Al2O3 | 14.6% |
Fe2O3 | 0.60% |
CaO | 0.85% |
MgO | 0.20% |
Na2O | 2.99% |
K2O | 5.26% |
Total | 100.00% |
Density | 0.7 ± 1 g/cc |
pH | pH = 7.0–8.0 |
Apparent Density | Compacted Density | ||||||
---|---|---|---|---|---|---|---|
Density (kg/m3) | Das1 | Das2 | Das | Density (kg/m3) | Dac1 | Dac2 | Dac |
PP8 | 78 | 80 | 79 | PP8 | 88 | 96 | 92 |
PP6 | 77 | 75 | 76 | PP6 | 90 | 97 | 94 |
C-SG | 76 | 76 | 76 | Coarse | 98 | 99 | 99 |
M-SG | 80 | 81 | 81 | Medium | 98 | 99 | 99 |
F-SG | 87 | 85 | 86 | Fine | 110 | 112 | 111 |
Code | Cement (kg/m3) | Water (L/m3) | Water/Cement | Expanded Perlite for Size in mm (kg) | EP Fineness Modulus | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | R | Total | |||||
F-SG | 170 | 228 | 1.34 | 0 | 0 | 12.15 | 20.25 | 28.35 | 12.15 | 8.1 | 81 | 2.20 |
M-SG | 170 | 228 | 1.34 | 0 | 5.67 | 24.3 | 18.63 | 20.25 | 8.1 | 4.05 | 81 | 2.85 |
C-SG | 170 | 228 | 1.34 | 0 | 12.15 | 36.45 | 16.2 | 12.15 | 4.05 | 0 | 81 | 3.50 |
Code | Volume (cm3) | Humidity State Mass (gr) | Dry State Mass (gr) | Humidity State Density (kg/m3) | Dry State Density (kg/m3) | Thermal Conductivity (W/m·K) | Compressive Strength (MPa) | Water Absorption (%) |
---|---|---|---|---|---|---|---|---|
F-SG | 2.870 | 2895.4 | 1896.4 | 1008.8 | 660.8 | 0.184 | 0.42 | 158 |
M-SG | 3.037 | 2129.2 | 1225.4 | 720.0 | 403.5 | 0.163 | 0.21 | 137 |
C-SG | 3.032 | 2104.1 | 1138.1 | 540.1 | 375.4 | 0.100 | 0.13 | 67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyton-Vergara, M.; Pérez-Fargallo, A.; Pulido-Arcas, J.; Cárdenas-Triviño, G.; Piggot-Navarrete, J. Influence of Granulometry on Thermal and Mechanical Properties of Cement Mortars Containing Expanded Perlite as a Lightweight Aggregate. Materials 2019, 12, 4013. https://doi.org/10.3390/ma12234013
Leyton-Vergara M, Pérez-Fargallo A, Pulido-Arcas J, Cárdenas-Triviño G, Piggot-Navarrete J. Influence of Granulometry on Thermal and Mechanical Properties of Cement Mortars Containing Expanded Perlite as a Lightweight Aggregate. Materials. 2019; 12(23):4013. https://doi.org/10.3390/ma12234013
Chicago/Turabian StyleLeyton-Vergara, Matías, Alexis Pérez-Fargallo, Jesús Pulido-Arcas, Galo Cárdenas-Triviño, and Jeremy Piggot-Navarrete. 2019. "Influence of Granulometry on Thermal and Mechanical Properties of Cement Mortars Containing Expanded Perlite as a Lightweight Aggregate" Materials 12, no. 23: 4013. https://doi.org/10.3390/ma12234013
APA StyleLeyton-Vergara, M., Pérez-Fargallo, A., Pulido-Arcas, J., Cárdenas-Triviño, G., & Piggot-Navarrete, J. (2019). Influence of Granulometry on Thermal and Mechanical Properties of Cement Mortars Containing Expanded Perlite as a Lightweight Aggregate. Materials, 12(23), 4013. https://doi.org/10.3390/ma12234013