Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation
Abstract
:1. Introduction | 3 |
2. Measuring Techniques and Methods for the Analysis of Solid-Solid Phase Transformations | 7 |
2.1. Methods for In Situ Kinetic Analysis of Solid-Solid Phase Transformations in Metals | 7 |
2.2. Methodology and Systematics of State-of-the-Art Kinetic DSC Analysis | 9 |
2.2.1. Basic Concepts of DSC Measurements | 9 |
2.2.2. Key Features for In Situ Quantification of Enthalpy Changes of Solid-Solid Phase Transformation as a Function of the Scanning Rate or Time | 11 |
Excess Specific Heat Capacity | 11 |
Zero-Level Accuracy | 12 |
Large Dynamic Range | 14 |
Specific Physical Requirements for the Alloy over the Considered Dynamic range | 14 |
Metrological Aspects of a Large Dynamic Range | 15 |
2.3. Construction Scheme for Continuous Cooling Precipitation Diagrams | 18 |
2.4. Methods and Systematics for Complementary Micro- and Nano-Structure Analysis | 19 |
2.5. Analysis of Resulting Mechanical Properties | 20 |
2.6. General Illustration of Results and Reading Guidelines for CCP Diagrams | 21 |
3. Solid-Solid Phase Transformations in Al Alloys over a Wide Dynamic Range | 22 |
3.1. Heating to Solution Treatment and Isothermal Soaking | 22 |
3.1.1. Capabilities and Limitations of DSC Heating Curve Analysis and Interpretation | 22 |
3.1.2. Achieving a Complete Solid Solution | 26 |
3.1.3. Extending the Scanning Rate by Reheating Experiments | 26 |
3.2. Quench-Induced Precipitation during Cooling from Solution Treatment | 28 |
3.2.1. AlSi binary Wrought Alloys | 28 |
3.2.2. 6xxx AlMgSi Wrought Alloys | 33 |
3.2.3. 7xxx AlZnMg(Cu) Wrought Alloys | 48 |
3.2.4. 2xxx AlCu(Mg) Wrought Alloys | 59 |
3.2.5. AlSiMg Cast Alloys | 61 |
4. General Aspects of Quench-Induced Precipitation in Al Alloys | 66 |
5. Kinetic Assessment of the DSC Data by Modelling | 68 |
6. Application of the Derived DSC Methods to Other Alloy Systems | 71 |
7. Conclusions | 74 |
7.1. In Situ DSC Analysis of Solid-Solid Phase Transformations in Precipitation Hardening Alloys | 74 |
7.2. Continuous Heating and Solution Annealing | 74 |
7.3. Continuous Cooling and Analysis of Quench-Induced Precipitation | 75 |
Appendix A | 77 |
References | 82 |
1. Introduction
2. Measuring Techniques and Methods for the Analysis of Solid-Solid Phase Transformations
2.1. Methods for In Situ Kinetic Analysis of Solid-Solid Phase Transformations in Metals
- changes in the electric conductivity or resistivity;
- changes in the volume;
- changes occurring in the crystal structure and related scattering effects; and
- changes in the enthalpy due to the endothermic nature of dissolution reactions or the exothermic nature of precipitation reactions.
- DSC allows for controlled linear heating and cooling by providing the largest accessible dynamic scanning rate range, which now covers the whole cooling rate range of technological and physical relevance. By using a combination of different DSC devices, rates of about 10−5 to 105 K/s [83,84] can be achieved.
- In addition to linear cooling, nonlinear Newtonian heating and cooling can also be investigated using DSC [114].
- With regard to the abovementioned detection limits, DSC offers the highest sensitivity of all techniques over the whole dynamic range. In particular, precipitation of any precipitate size and very small volume fractions of precipitation can be detected by DSC, and even cluster formation can be recorded [99,115].
2.2. Methodology and Systematics of State-of-the-Art Kinetic DSC Analysis
2.2.1. Basic Concepts of DSC Measurements
2.2.2. Key Features for In Situ Quantification of Enthalpy Changes of Solid-Solid Phase Transformation as a Function of the Scanning Rate or Time
Excess Specific Heat Capacity
Zero-Level Accuracy
Large Dynamic Range
Specific Physical Requirements for the Alloy over the Considered Dynamic Range
Metrological Aspects of a Large Dynamic Range
- The reaction is detectable in at least three repeated experiments;
- The reaction is also detectable at the next slower cooling rate;
- The specific precipitation heat is at least 0.1 J/g; and
- Peak temperatures are in the same region as for the next slower rate.
2.3. Construction Scheme for Continuous Cooling Precipitation Diagrams
2.4. Methods and Systematics for Complementary Micro- and Nano-Structure Analysis
2.5. Analysis of Resulting Mechanical Properties
2.6. General Illustration of Results and Reading Guidelines for CCP Diagrams
3. Solid-Solid Phase Transformations in Al Alloys over a Wide Dynamic Range
3.1. Heating to Solution Treatment and Isothermal Soaking
3.1.1. Capabilities and Limitations of DSC Heating Curve Analysis and Interpretation
- The course of the DSC heating curve strongly depends on the initial state of the sample and the heating rate, e.g., Ref. [75,117,120,127,144,157,158,159,160]. The differences from the initial state are therefore mostly relevant at temperatures below about 300 °C (see Figure 18, which shows heating DSC curves for three AlMgSi alloys in different initial heat treatment states). Above 300 °C, the differences between the DSC curves resulting from different initial precipitation states are mostly equalised, and thus the heating DSC curves are very similar at high temperatures.
- If the maximum temperature of the heating program is chosen to be high enough, and if the alloy happens to allow the complete dissolution of the major alloying elements, the heating rate-dependent solvus temperature can be determined by heating DSC. In Figure 18, this characteristic temperature relates to the end of peak H, where the DSC signal finally drops back towards zero. This aspect has high technological relevance, as determination of the solvus temperature allows us to choose a proper solution treatment temperature. Choosing a solution temperature well above the solvus is crucial in cases where a short soaking is necessarily related to the technological process, for instance in continuous annealing processes during sheet production [148].
- If the abovementioned condition is fulfilled and the DSC heating curves exceed the scanning-rate-specific solvus temperature, the total integral of the DSC heating curve gives the enthalpy level Δh of the initial state. This enthalpy level is an indicator of the thermal and kinetic stability of the initial state. That is, a more stable precipitation state has a larger enthalpy level (6005A: ΔhT4 = 6 J/g < ΔhT6 = 10 J/g < Δhoa = 12 J/g, see Figure 19, [120]). In the case of a soft annealed 6005A (Figure 19E), the precondition for complete dissolution during heating to Tmax does not hold. The determination of the enthalpy level of the initial state can be useful in two different ways: firstly, the heat treatment state of an unknown delivery condition of an alloy can be estimated; and secondly, the determination of the enthalpy level by a reheating experiment allows us to determine the enthalpy changes caused by preceding heat treatments, which is very valuable in order to extend the DSC scanning rate range by indirect experiments, for instance.
3.1.2. Achieving a Complete Solid Solution
3.1.3. Extending the Scanning Rate by Reheating Experiments
3.2. Quench-Induced Precipitation during Cooling from Solution Treatment
3.2.1. AlSi Binary Wrought Alloys
3.2.2. 6xxx AlMgSi Wrought Alloys
3.2.3. 7xxx AlZnMg(Cu) Wrought Alloys
3.2.4. 2xxx AlCu(Mg) Wrought Alloys
3.2.5. AlSiMg Cast Alloys
4. General Aspects of Quench-Induced Precipitation in Al Alloys
5. Kinetic Assessment of the DSC Data by Modelling
6. Application of the Derived DSC Methods to Other Alloy Systems
7. Conclusions
7.1. In Situ DSC Analysis of Solid-Solid Phase Transformations in Precipitation Hardening Alloys
- In the past 10 to 15 years, the dynamic range of in situ DSC on age-hardening alloys has been substantially extended, particularly in terms of continuous cooling experiments. A range of cooling rates from about 3 × 10−4 to 3 K/s can now be applied in a reliable analysis method using direct, in situ DSC experiments. Based on a typical temperature interval for the cooling of light metal alloys from solution treatment, this is equivalent to cooling durations ranging from several weeks up to a few minutes.
- By combining direct, in situ DSC measurements with indirect DSC measurements where no direct measurement is possible, the accessible cooling rate range is extended to 10 orders of magnitude, from about 10−5 to 105 K/s. When applied to the cooling of aluminium alloys from solution annealing, this corresponds to cooling over several months down to cooling within several hundredths of a second.
- The key features which make these in situ DSC analyses of solid-solid phase transformation possible are as follows:
- ○
- Measurement and evaluation of the specific excess heat capacity;
- ○
- Taking great care with the accuracy of the DSC zero level; and
- ○
- Consideration of a large dynamic range of heating or cooling rates as well as the analysed scales of microstructural changes.
- DSC provide crucial information for choosing appropriate heat treatment parameters for age-hardening alloys based on in situ experiments. This holds for the solution treatment (heating rates, solution temperature and soaking duration) and particularly for quenching.
- The new DSC methods have also been successfully adapted and applied to the analysis of solid-solid phase transformations in other precipitation hardening alloy systems, including Mg alloys, precipitation-hardening martensitic steels and Ni-based alloys.
7.2. Continuous Heating and Solution Annealing
- DSC heating curves of precipitation hardening alloys for a specific initial condition allow us to judge whether dissolution or precipitation reactions are predominant at certain times and temperatures.
- Interpretations of DSC heating curves for precipitation-hardening alloys are often found to be challenging. The strong superposition of opposite endo- and exothermic reactions (dissolution/precipitation) make exact interpretations difficult; that is, single DSC peaks, their peak positions and peak areas are not necessarily equal to the maximum intensity of the underlying microstructural reaction.
- Nevertheless, as a general rule, it can be derived that:
- ○
- Any diffusion-controlled reaction is increasingly suppressed with increasing heating rate. Suppression of precipitation reactions seems to be easier than suppression of dissolution reactions. Consequently, at sufficiently high heating rates, only dissolution reactions will occur.
- ○
- Any diffusion-controlled reaction shifts to higher temperatures with increasing heating rate. Increasing the heating rate by a factor of 100 typically causes shifts on the order of more than 100 K.
- If the alloy and heating rate specific solvus temperature is exceeded, the total integral of the DSC heating curve reveals the enthalpy level of the initial alloy state. This enthalpy level provides information about the thermal stability of the initial condition, and is higher for more stable conditions.
- For aluminium alloys undergoing different initial heat treatment states such as “as quenched”, T4, T6 or T7, DSC heating curves show severe differences at temperatures below about 300 °C. Above this temperature, the differences are typically small.
- DSC heating is able to identify appropriate temperature ranges for solution treatment, particularly at slow heating rates, since for slower heating the alloy- and heating-rate-specific solvus temperature can be identified. At very slow heating rates, the latter will be close to the equilibrium solvus temperature. Additional experiments can be performed to check whether a complete dissolution of the major alloying elements has been achieved. These additional experiments include isothermal DSC during soaking within the previously identified temperature range.
7.3. Continuous Cooling and Analysis of Quench-Induced Precipitation
- During cooling, only exothermic precipitation occurs, making interpretation of DSC cooling curves easier than for DSC heating curves. However, in most cases, several different reactions overlap, and their deconvolution may be challenging. Multiple reactions occurring sequentially were detected for all alloys investigated.
- The nature and kinetics of quench-induced precipitates in age-hardening Al-alloys were analysed for 27 different alloys, and both differences and similarities were identified between different alloying systems:
- ○
- Quench-induced precipitation occurs at both, grain boundaries and predominantly inside grains. The latter particularly holds for grain sizes above several tens of µm.
- ○
- Nucleation of quench-induced precipitation generally occurs on existing crystal defects such as grain boundaries, primary precipitates and dispersoids.
- ○
- At high temperatures (≈500–350 °C), the stable equilibrium phases of the alloy system precipitate as coarse particles with a low aspect ratio (aspect ratios = length/ (thickness or diameter) is about 1 to 5), and nucleation occurs on coarse primary particles.
- ○
- At medium temperatures (≈350–200 °C) in the AlMgSi system, precipitation of MgSi precursor phases occurs as rods with aspect ratios of about 10. In the AlZnMg(Cu) system, precipitation of the η-Mg(Zn,Al,Cu)2 phase occurs as plates with aspect ratios of up to 10. In both alloy systems, quench-induced precipitation at medium temperatures nucleates on dispersoids.
- ○
- At low temperatures (≈250–150 °C) in the AlZnMg(Cu) system, thin plates enriched with Cu and Zn were detected as quench-induced precipitation. At very low temperatures (≈150–50 °C) in the AlZnMg(Cu) and AlMg(Cu) systems, quench-induced precipitation of clusters was revealed.
- The major aspects influencing the quench sensitivity are:
- ○
- The concentrations of the main and dispersoid-forming alloying elements;
- ○
- The density of nucleation sites (coarse primary particles, particularly dispersoids, grain boundaries, undissolved secondary phases, eutectic structure), i.e., the initial microstructure initial prior to the start of cooling;
- ○
- Concentrations and nucleation sites form the major reason for the significant alloy batch sensitivity in terms of the kinetics of quench-induced precipitation. For instance, for different batches of 6082, the upper critical cooling rate (UCCR) might vary by up to a factor of 10;
- ○
- Moreover, the result of the solution treatment in terms of complete or incomplete dissolution influences the quench sensitivity; incompletely dissolved remaining particles can instantly start to grow with the onset of cooling (with no nucleation required, and no undercooling). This can increase the UCCR by a factor of three.
- The most highly concentrated Al alloys have a UCCR in the range of several hundreds of K/s. Lean commercial alloys such as 6060 may have a UCCR as low as 0.5 K/s, and for pure laboratory alloys (with a substantially reduced number of nucleation sites), this may be even lower (e.g., pure binary Al0.26Si about 0.02 K/s).
- A systematic methodology for the analysis, evaluation and construction of continuous cooling precipitation diagrams for precipitation hardening alloys and guidelines for reading these were derived. This significantly advances the state of the art in the heat treatment of aluminium alloys.
- It was shown that alloys with the highest alloying element contents are able to achieve the highest hardness if the necessary high upper critical cooling rate is reached. However, if the technological application requires slower cooling (for instance due to thick products or to keep distortion low), a lower concentration of alloying elements can lead to higher hardness due to quench-induced precipitation kinetics and the related loss of age-hardening potential.
- A kinetic assessment of the specific precipitation enthalpy data allowed us to model the kinetic development of quench-induced precipitation and verification of the model using these DSC data. In addition, the resulting strength and hardness after subsequent artificial ageing were modelled for AlMgSi and AlZnMg(Cu) alloys.
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Mass Fraction in % | Atomic Fraction in % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
wrought alloys | |||||||||||
product type | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al | |
6xxxx - AlMgSi | |||||||||||
AA6060 | commercial extrusion | 0.4 | 0.2 | 0.01 | 0.02 | 0.44 | 0.001 | 0.01 | 0.009 | 98.9 | |
thin walled profile | 0.38 | 0.10 | 0.00 | 0.01 | 0.49 | 0.00 | 0.00 | 0.01 | 99.0 | ||
AA6063 | commercial extrusion | 0.5 | 0.19 | 0.02 | 0.03 | 0.47 | 0.005 | 0.03 | 98.7 | ||
closed profile | 0.48 | 0.09 | 0.01 | 0.01 | 0.52 | 0.00 | 0.01 | 98.9 | |||
AA6005A | commercial extrusion | 0.68 | 0.2 | 0.01 | 0.11 | 0.57 | 0.04 | 0.01 | 98.4 | ||
open profile | 0.65 | 0.10 | 0.00 | 0.05 | 0.63 | 0.02 | 0.00 | 98.5 | |||
Al0.6Mg0.8Si | laboratory extrusion | 0.79 | <0.001 | <5 ppm | <5 ppm | 0.59 | <5 ppm | <10 ppm | 98.6 | ||
rectangular bar 20 mm × 50 mm | 0.76 | 0.65 | 98.6 | ||||||||
Al0.8Mg0.6Si | laboratory extrusion | 0.61 | <0.001 | <5 ppm | <5 ppm | 0.8 | <5 ppm | <10 ppm | <2ppm | 98.6 | |
rectangular bar 20 mm × 50 mm | 0.59 | 0.89 | 98.5 | ||||||||
AA6082 I | commercial extrusion | 0.733 | 0.22 | 0.05 | 0.48 | 0.609 | 0.003 | <0.01 | 0.008 | 97.9 | |
rod Ø30 mm | 0.71 | 0.11 | 0.02 | 0.24 | 0.68 | 0.00 | 0.00 | 0.00 | 98.2 | ||
AA6082 II | commercial extrusion | 0.94 | 0.19 | 0.0452 | 0.575 | 0.757 | 0.0803 | 0.198 | 0.0245 | 97.2 | |
thin walled open profile | 0.91 | 0.09 | 0.019 | 0.28 | 0.84 | 0.042 | 0.082 | 0.014 | 97.7 | ||
AA6082 III | 0.83 | 0.38 | 0.06 | 0.48 | 0.92 | 0.03 | 0.01 | 0.02 | 97.3 | ||
commercial 10 mm sheet | 0.80 | 0.18 | 0.03 | 0.24 | 1.03 | 0.02 | 0.00 | 0.01 | 97.7 | ||
AA6082 IV | commercial extrusion | 1019 | 0.435 | 0.106 | 0.476 | 0.64 | 0.04 | 0.096 | 0.034 | 97.0 | |
rod Ø30 mm | 1.15 | 0.21 | 0.05 | 0.24 | 0.71 | 0.02 | 0.04 | 0.02 | 97.6 | ||
AA6082 V | commercial extrusion | 1.23 | 0.2 | 0.09 | 0.65 | 1.05 | 0.2 | 0.05 | 0.03 | 96.5 | |
rod Ø70 mm | 1.19 | 0.1 | 0.038 | 0.32 | 1.17 | 0.104 | 0.021 | 0.017 | 97.0 | ||
7xxxx - AlZnMg(Cu,Si) | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al | |
AA7020 | laboratory extrusion | 0.11 | 0.17 | 0.04 | 0.15 | 1.19 | 0.11 | 4.37 | 0.03 | 0.14 | 93.69 |
rod Ø30 mm | 0.11 | 0.08 | 0.02 | 0.06 | 1.36 | 0.06 | 1.85 | 96.42 | |||
AA7021 | <0.25 | <0.4 | <0.16 | <0.1 | 1.6–2.1 | <0.05 | 6.0–6.8 | <0.1 | <0.18 | ||
commercial 2 mm sheet | |||||||||||
AA7055 | 0.03 | 0.03 | 2 | <0.01 | 2 | <0.01 | 8.12 | 0.12 | 87.7 | ||
laboratory hot rolled plate | 0.03 | 0.02 | 0.9 | 2.36 | 3.56 | 0.04 | 93.09 | ||||
AA7150 | commercial thick plate, | 0.02 | 0.05 | 2.04 | 0.04 | 2.15 | <0.01 | 6.33 | 0.01 | 0.12 | 89.24 |
centre layer | 0.02 | 0.03 | 0.91 | 0.02 | 2.51 | 2.74 | 0.04 | 93.73 | |||
AA7150 | commercial thick plate, | 0.02 | 0.05 | 2.04 | 0.04 | 2.15 | <0.01 | 6.33 | 0.01 | 0.12 | 89.24 |
surface layer | 0.02 | 0.03 | 0.91 | 0.02 | 2.51 | 2.74 | 0.04 | 93.73 | |||
AA7085 | 0.07 | 0.03 | 2.06 | <0.01 | 1.46 | <0.01 | 8.16 | 0.12 | 88.1 | ||
laboratory hot rolled plate | 0.07 | 0.02 | 0.93 | 1.72 | 3.58 | 0.04 | 93.64 | ||||
AA7085lowCu | 0.12 | 0.02 | 0.91 | <0.01 | 1.37 | <0.01 | 7.82 | 0.12 | 89.64 | ||
laboratory hot rolled plate | 0.12 | 0.01 | 0.41 | 1.6 | 3.4 | 0.04 | 94.42 | ||||
AA7075 I | commercial extrusion | 0.17 | 0.22 | 1.57 | 0.11 | 2.08 | 0.22 | 5.95 | 0.05 | 89.63 | |
rod Ø35 mm | 0.17 | 0.11 | 0.698 | 0.06 | 2.42 | 0.12 | 2.57 | 0.029 | 93.83 | ||
AA7075 II | 0.19 | 0.11 | 1.5 | 0.04 | 2.64 | 0.18 | 3.06 | 0.04 | 89.24 | ||
commercial 2 mm sheet | 0.19 | 0.06 | 0.67 | 0.02 | 3.06 | 0.10 | 2.61 | 0.024 | 93.27 | ||
AA7049A | commercial extrusion | 0.25 | 0.35 | 1.9 | 0.2 | 2.9 | 0.22 | 8.2 | 86.0 | ||
rod Ø50 mm | 0.26 | 0.18 | 0.86 | 0.1 | 3.43 | 0.12 | 3.6 | – | – | 91.45 | |
2xxxx – AlCu(Mg) | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al | |
AA2219 | 0.041 | 0.089 | 6.41 | 0.301 | 0.0057 | <0.001 | 0.031 | 0.034 | 93.1 | ||
commercial 9mm sheet | 0.04 | 0.045 | 2.83 | 0.15 | 0.007 | <0.001 | 0.013 | 0.020 | 96.9 | ||
AA2024 | commercial extrusion | 0.138 | 0.209 | 4.64 | 0.58 | 1.5 | 0.007 | 0.066 | 0.05 | 92.8 | |
rod Ø30 mm | 0.14 | 0.10 | 2.3 | 0.29 | 1.72 | 0.00 | 0.03 | 0.03 | 95.7 | ||
Al-Si binary | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al | |
Al0.26Si | 0.26 | <5 ppm | <4 ppm | <3 ppm | <1 ppm | <3 ppm | – | 20 ppm | 99.74 | ||
laboratory 20 mm plate | 0.25 | 99.75 | |||||||||
Al0.72Si | 0.72 | <5 ppm | <1 ppm | <3 ppm | <1 ppm | <3 ppm | 14 ppm | 11 ppm | 99.28 | ||
laboratory 20 mm plate | 0.69 | 99.31 | |||||||||
cast alloys | |||||||||||
AlSiMg cast | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al | |
Al7Si0.3Mg | 7.31 | 0.092 | 0.005 | 0.005 | 0.31 | 0.13 | 92.1 | ||||
mould cast | 7.05 | 0.04 | 0.002 | 0.002 | 0.35 | 0.07 | 92.5 | ||||
Al10Si0.3Mg | 10.92 | 0.16 | 0.02 | 0.39 | 0.23 | 0.02 | 0.04 | 88.2 | |||
high pressure die cast | 10.56 | 0.08 | 0.01 | 0.19 | 0.26 | 0.01 | 0.02 | 88.9 | |||
Al10Si0.3Mg | 9.46 | 0.16 | 0.01 | 0.003 | 0.30 | 0.02 | 0.01 | 90.0 | |||
laser beam molten bar | 9.13 | 0.08 | 0.004 | 0.001 | 0.33 | 0.01 | 0.00 | 90.4 |
References
- Statista. Global Raw-Steel Production from 2002 to 2017. ID153008, Recource: World Steel Association. Available online: https://de.statista.com/statistik/daten/studie/153008/umfrage/welt-rohstahlerzeugung-seit-2008/ (accessed on 11 July 2018).
- Statista. Global Production Amount of Major non-Ferrus Metals in 2013 and 2014. 323132 Resource: World Bureau of Metal Statistics. Available online: https://de.statista.com/statistik/daten/studie/323132/umfrage/produktion-der-wichtigsten-ne-metalle-weltweit/ (accessed on 11 July 2018).
- Statista. Global Production of Castings from Various Metals in 2016. Ressources: European Foundry Association. American Foundry Society. Available online: https://de.statista.com/statistik/daten/studie/421534/umfrage/produktion-von-guss-weltweit-nach-metall/ (accessed on 11 July 2018).
- Statista. Global Demand for Aluminum from 2006 to 2019. ID156039. Available online: https://de.statista.com/statistik/daten/studie/156039/umfrage/weltweite-aluminiumnachfrage-seit-2006/ (accessed on 11 July 2018).
- Polmear, I.J. Light Alloys from Traditional Alloys to Nanocrystals, 4th ed.; Elsevier Butterworth-Heinemann: Amsterdam, The Netherlands, 2006; ISBN 0750663715. [Google Scholar]
- Hornbogen, E. Hundred years of precipitation hardening. J. Light Met. 2001, 1, 127–132. [Google Scholar] [CrossRef]
- Hornbogen, E. Precipitation hardening–The oldest nanotechnology. Metall 2001, 55, 522–526. [Google Scholar]
- Gottstein, G. Physikalische Grundlagen der Materialkunde. Mit 28 Tabellen, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9783540711049. [Google Scholar]
- Kammer, C. Aluminium-Taschenbuch. CD-ROM. Bd. 1-3, 2nd ed.; Alu Media GmbH: Düsseldorf, Germany, 2011; ISBN 9783942486101. [Google Scholar]
- Fink, W.L.; Willey, L.A. Quenching of 75s-aluminum alloy. Trans. Am. Inst. Min. Metall. Eng. 1948, 175, 414–427. [Google Scholar]
- Bryant, A.J. Effect of composition on quench-sensitivity of some Al-Zn-Mg alloys. J. Inst. Met. 1966, 94, 94. [Google Scholar]
- Holl, H.A. Investigations into possibility of reducing quench-sensitivity in high-strength Al-Zn-Mg-Cu alloys. J. Inst. Met. 1969, 97, 200. [Google Scholar]
- Conserva, M.; Russo, E.; Caloni, O. Comparison of the influence of chromium and zirconium on the quench sensitivity of Al-Zn-Mg-Cu alloys. Met. Trans. A 1971, 2, 1227–1232. [Google Scholar] [CrossRef]
- Zoller, H.; Ried, A. Metallurgical aspects in developement of Al-Mg-Si alloys with a low sensitivity to quenching. Z-Met. 1971, 62, 354–358. [Google Scholar]
- Thompson, D.S.; Subramanya, B.S.; Levy, S.A. Quench rate effects in Al-Zn-Mg-Cu alloys. Met. Trans. A 1971, 2, 1149–1160. [Google Scholar] [CrossRef]
- Conserva, M.; Fiorini, P. Interpretation of quench-sensitivity in Al-Zn-Mg-Cu alloys. Met. Trans. A 1973, 4, 857–862. [Google Scholar] [CrossRef]
- Lohne, O.; Dons, A.L. Quench sensitivity in Al-Mg-Si alloys containing Mn or Cr. Scand. J. Met. 1983, 12, 34–36. [Google Scholar]
- Evancho, J.W.; Staley, J.T. Kinetics of precipitation in aluminum alloys during continuous cooling. Metall. Trans. A 1974, 5, 43–47. [Google Scholar]
- Dons, A.L.; Lohne, O. Quench Sensitivity of Al-Mg-Si-Alloys Containing Mn or Cr. Mater. Res. Soc. Symp. Proc. 1984, 21, 723–728. [Google Scholar] [CrossRef]
- Staley, J.T. Quench factor analysis of aluminium alloys. Mater. Sci. Technol. 1987, 3, 923–935. [Google Scholar] [CrossRef]
- Thomas, M.P.; King, J.E. Quench sensitivity of 2124 Al alloy and Al/Si-Cp metal matrix composite. SCR Metall. Mater. 1994, 31, 209–214. [Google Scholar] [CrossRef]
- Cavazos, J.L.; Colás, R. Aging of an aluminum alloy resulting from variations in the cooling rate. J. Mater. Eng. Perform. 1999, 8, 509–512. [Google Scholar] [CrossRef]
- Zajac, S.; Bengtsson, B.; Jönsson, C.; Isaksson, A. Quench sensitivity of 6063 and 6082 aluminium alloys. In Proceedings of the 7th International Aluminum Extrusion Technology Seminar, Chicago, IL, USA, 16–19 May 2000; pp. 73–82. [Google Scholar]
- Cavazos, J.L.; Colás, R. Precipitation in a heat-treatable aluminum alloy cooled at different rates. Mater. Charact. 2001, 47, 175–179. [Google Scholar] [CrossRef]
- Cavazos, J.L.; Colás, R. Quench sensitivity of a heat treatable aluminum alloy. Mater. Sci. Eng. A 2003, 363, 171–178. [Google Scholar] [CrossRef]
- Lim, S.T.; Yun, S.J.; Nam, S.W. Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications. Mater. Sci. Eng. A 2004, 371, 82–90. [Google Scholar] [CrossRef]
- Strobel, K.; Easton, M.A.; Sweet, L.; Couper, M.J.; Nie, J.F. Relating quench sensitivity to microstructure in 6000 series aluminium alloys. Mater. Trans. 2011, 52, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Strobel, K.; Lay, M.D.H.; Easton, M.A.; Sweet, L.; Zhu, S.; Parson, N.C.; Hill, A.J. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060. Mater. Charact. 2016, 111, 43–52. [Google Scholar] [CrossRef]
- YoshIDa, H.; Watanabe, T.; Hatta, H. Effect of quenching rate on age hardening in an Al–Zn–Mg alloy sheet. J. Jpn. Inst. Light Met. 2017, 67, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Hirano, S.; Yoshida, H.; Uno, T. Quench Sensitivity in Al-Li based alloys. In Proceedings of the Fifth International Aluminum-Lithium Conference, Williamsburg, VA, USA, 27–31 March 1989; Sanders, T.H., Starke, E.A., Pitts, D., Eds.; Materials and Component Engineering Publications Ltd.: Birmingham, UK, 1989; pp. 335–344. [Google Scholar]
- Deschamps, A.; Texier, G.; Ringeval, S.; Delfaut-Durut, L. Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy. Mater. Sci. Eng. A 2009, 501, 133–139. [Google Scholar] [CrossRef]
- Martin, J.W. Micromechanisms in Particle-Hardened Alloys; Cambridge University Press: Cambridge, UK, 1980; ISBN 052122623. [Google Scholar]
- Schumacher, P.; Pogatscher, S.; Starink, M.J.; Kessler, O.; Schick, C.; Mohles, V.; Milkereit, B. Control of phase transformation during heat treatments based on DSC experiments. In Proceedings of the International Conference on SolID-SolID Phase Transformations in Inorganic Materials 2015, Whistler, BC, Canada, 28 June–3 July 2015; pp. 699–706, ISBN 9780692437360. [Google Scholar]
- Deng, Y.L.; Wan, L.; Zhang, Y.Y.; Zhang, X.M. Influence of Mg content on quench sensitivity of Al-Zn-Mg-Cu aluminum alloys. J. Alloy. Compd. 2011, 509, 4636–4642. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Zhang, Y.; Knight, S. Heat treatment of 7xxx series aluminium alloys–Some recent developments. Trans. Nonferrous Met. Soc. China 2014, 24, 2003–2017. [Google Scholar] [CrossRef]
- Reich, M. Mechanische Eigenschaften Unterkühlter Aluminiumlegierungen und Deren Implementierung in die Wärmebehandlungssimulation; Shaker: Aachen, Germany, 2013; ISBN 3844019251. [Google Scholar]
- Reich, M.; Kessler, O. Mechanical properties of undercooled aluminium alloys and their implementation in quenching simulation. Mater. Sci. Technol. 2012, 28, 769–772. [Google Scholar] [CrossRef]
- Reich, M.; Kessler, O. Numerical and experimental analysis of residual stresses and distortion in different quenching processes of aluminum alloy profiles. In Quenching Control and Distortion 2012–Proceedings of the 6th International Quenching and Control of Distortion Conference, Chicago, IL, USA, 9–13 September 2012; MacKenzie, D.S., Ed.; ASM International: Materials Park, OH, USA, 2012; pp. 563–574. ISBN 1615039805. [Google Scholar]
- Chobaut, N. Measurements and Modelling of Residual Stresses during Quenching of Thick Heat Treatable Aluminium Components in Relation to Their Precipitation State. Ph.D. Thesis, EPFL Lausanne, Lausanne, Switzerland, 2015. [Google Scholar]
- Chobaut, N.; Carron, D.; Drezet, J.M. Monitoring precipitation kinetics in heat treatable aluminium alloys using in-situ resistivity in gleeble thermomechanical simulator. Mater. Sci. Forum 2014, 794–796, 921–925. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.S. (Ed.) Quenching Control and Distortion 2012–Proceedings of the 6th International Quenching and Control of Distortion Conference, Chicago, IL, USA, 9–13 September 2012; ASM International: Materials Park, OH, USA, 2012. [Google Scholar]
- Hoffmann, F.; Kessler, O.; Lübben, T.; Mayr, P. Distortion Engineering–Verzugsbeherrschung in der Fertigung. HTM J. Heat Treatm. Mat. 2002, 57, 213–217. [Google Scholar]
- Hoffmann, F.; Kessler, O.; Lübben, T.; Mayr, P. “Distortion Engineering”–Distortion control during the production process. Heat Treat. Met. 2004, 31, 27–30. [Google Scholar]
- Shuey, R.T.; Tiryakioğlu, M. Quenching of Aluminum Alloys. In Quenching Theory and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Sjölander, E.; Seifeddine, S.; Fracasso, F. Influence of quench rate on the artificial ageing response of an Al-8Si-0.4Mg cast alloy. Mater. Sci. Forum 828-829 2015, 219. [Google Scholar] [CrossRef] [Green Version]
- Saikawa, S.; Morioka, R.; Matsuda, K.; Ikeno, S.; Yanagihara, E.; Orii, S. Age-hardening behavior of Al-10%Si-0.3%Mg alloy with water quenching and direct quenching after solution treatment. J. Jpn. Inst. Light Met. (J. Jpn. Inst. Light Met.) 2015, 65, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Tiryakioğlu, M.; Shuey, R.T. Quench sensitivity of an Al-7 pct Si-0.6 pct Mg alloy: Characterization and modeling. Met. Mater. Trans. B 2007, 38, 575–582. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Wang, S.C.; Harriss, A.; Gregson, P.J.; Starink, M.J. The effect of homogenizing on the quench sensitivity of 6082. Mater. Sci. Forum 2002, 396–402, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.L.; Zheng, L. The quench sensitivity of cast Al-7 Wt Pet Si-0.4 Wt pct Mg alloy. Met. Mater. Trans. A 1996, 27, 3983–3991. [Google Scholar] [CrossRef]
- Chaudhury, S.K.; Apelian, D. Effects of Mg and Cu content on quench sensitivity of Al-Si-Mg alloy. Int. J. Met. 2016, 10, 138–146. [Google Scholar] [CrossRef]
- Tzeng, Y.C.; Wu, C.T.; Lee, S.L. The effect of trace Sc on the quench sensitivity of Al-7Si-0.6 Mg alloys. Mater. Lett. 2015, 161, 340–342. [Google Scholar] [CrossRef]
- Jr Sisson, R.D.; Ma, S. Predicting quench rate effect on cast Al alloy mechanical properties. Heat Treat. Prog. 2006, 6, 24. [Google Scholar]
- Newkirk, J.W.; Mehta, S. Studying the Quench Sensitivity of Cast Al Alloys. In Heat Treating: Proceedings of the 20th Conference; Funatani, K., Totten, G.E., Eds.; ASM International: Materials Park, OH, USA, 2000; pp. 1094–1100. [Google Scholar]
- Dorward, R.C. A dynamic quench model for strength predictions in heat-treatable aluminum alloys. J. Mater. Process. Technol. 1997, 66, 25–29. [Google Scholar] [CrossRef]
- Ma, S.; Maniruzzaman, M.D.; MacKenzie, D.S.; Sisson, R.D. A methodology to predict the effects of quench rates on mechanical properties of cast aluminum alloys. Met. Mater. Trans. B 2007, 38, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Rometsch, P.A.; Schaffer, G.B. Quench modelling of Al-7Si-Mg casting alloys. Int. J. Cast Met. Res. 2000, 12, 431–439. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Starink, M.J.; Gregson, P.J. Improvements in quench factor modelling. Mater. Sci. Eng. A 2003, 339, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Tiryakioğlu, M.; Shuey, R.T. Modeling quench sensitivity of aluminum alloys for multiple tempers and properties: Application to AA2024. Met. Mater. Trans. A 2010, 41, 2984–2991. [Google Scholar] [CrossRef]
- Li, H.-Y.; Geng, J.F.; Zheng, Z.Q.; Wang, J.Q.; Su, Y.; Hu, B. Continuous cooling transformation curve of a novel Al-Cu-Li alloy. Trans. Nonferrous Met. Soc. China 2006, 16, 1110–1115. [Google Scholar] [CrossRef]
- Li, H.-Y.; Bin, J.; Zhao, Y.-k.; WANG, X.F. Establishment of continuous cooling transformation diagrams of aluminum alloys using in situ voltage measurement. Trans. Nonferrous Met. Soc. China 2011, 21, 1944–1949. [Google Scholar] [CrossRef]
- Li, H.-Y.; Bin, J.; Wang, X.F.; Tang, Y. Continuous cooling transformation of 2A12 aluminum alloy studied by using in-situ electrical resistivity measurement. Zhongguo Youse Jinshu Xuebao 2011, 21, 2068–2074. [Google Scholar]
- Li, H.-Y.; Zeng, C.-T.; Has, M.-S.; Liu, J.-J.; Lu, X.-C. Time–temperature–property curves for quench sensitivity of 6063 aluminum alloy. Trans. Nonferrous Met. Soc. China 2013, 23, 38–45. [Google Scholar] [CrossRef]
- Li, H.-Y.; Zhao, Y.K.; Tang, Y.; Wang, X.F.; Deng, Y.Z. Continuous cooling transformation curve for 2A14 aluminum alloy and its application. Zhongguo Youse Jinshu Xuebao 2011, 21, 968–974. [Google Scholar]
- Hengge, E.; Enzinger, R.; Luckabauer, M.; Sprengel, W.; Würschum, R. Quantitative volumetric IDentification of precipitates in dilute alloys using high-precision isothermal dilatometry. Philos. Mag. Lett. 2018, 98, 301–309. [Google Scholar] [CrossRef]
- Luckabauer, M.; Hengge, E.; Klinser, G.; Sprengel, W.; Würschum, R. In Situ Real-Time Monitoring of Aging Processes in an Aluminum Alloy by High-Precision Dilatometry; Solanki, K., Orlov, D., Singh, A., Neelameggham, N., Eds.; Magnesium Technology 2017; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2017; Volume 2017, pp. 669–674. [Google Scholar] [CrossRef]
- Tsao, C.-S.; Huang, E.-W.; Wen, M.-H.; Kuo, T.-Y.; Jeng, S.-L.; Jeng, U.-S.; Sun, Y.-S. Phase transformation and precipitation of an Al-Cu alloy during non-isothermal heating studied by in situ small-angle and wide-angle scattering. J. Alloy. Compd. 2013, 579, 138–146. [Google Scholar] [CrossRef]
- Huang, E.-W.; Tsao, C.-S.; Wen, M.-H.; Kuo, T.-Y.; Tu, S.-Y.; Wu, B.-W.; Su, C.-J.; Jeng, U.-S. Resolution of structural transformation of intermediates in Al-Cu alloys during non-isothermal precipitation. J. Mater. Res. 2014, 29, 874–879. [Google Scholar] [CrossRef]
- De Geuser, F.; Styles, M.J.; Hutchinson, C.R.; Deschamps, A. High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys. Acta Mater. 2015, 101, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Levine, L.E.; Allen, A.J.; Campbell, C.E.; Creuziger, A.A.; Kazantseva, N.; Ilavsky, J. In situ structural characterization of ageing kinetics in aluminum alloy 2024 across angstrom-to-micrometer length scales. Acta Mater. 2016, 111, 385–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, R.; Deschamps, A.; De Geuser, F. A combined characterization of clusters in naturally aged Al-Cu-(Li, Mg) alloys using small-angle neutron and X-ray scattering and atom probe tomography. J. Appl. Cryst. 2017, 50, 1725–1734. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, R.; Deschamps, A.; De Geuser, F. Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions. Acta Mater. 2018, 157, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Biroli, G.; Caglioti, G.; Martini, L.; Riontino, G. Precipitation kinetics of AA4032 and AA6082: A comparison based on DSC and TEM. SCR Mater. 1998, 39, 197–203. [Google Scholar] [CrossRef]
- Li, X.M.; Starink, M.J. Analysis of Precipitation and Dissolution in Overaged 7xxx Aluminium Alloys using DSC. Mater. Sci. Forum 2000, 331–337, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Starink, M.J. Heating rate dependence of precipitation in an Al-1%Si alloy. J. Mater. Sci. Lett. 1996, 15, 1749–1751. [Google Scholar] [CrossRef]
- Starink, M.J. Analysis of aluminium based alloys by calorimetry: Quantitative analysis of reactions and reaction kinetics. Int. Mater. Rev. 2004, 49, 191–226. [Google Scholar] [CrossRef]
- Birol, Y. DSC analysis of the precipitation reaction in AA6005 alloy. J. Therm. Anal. Calorim. 2008, 93, 977–981. [Google Scholar] [CrossRef]
- Birol, Y. DSC Analysis of the precipitation reactions in the alloy AA6082. J. Anal. Calorim. 2006, 83, 219–222. [Google Scholar] [CrossRef]
- Herding, T.; Kessler, O.; Hoffmann, F.; Mayr, P. An Approach for Continuous Cooling Transformation (CCT) Diagrams of Aluminium Alloys. Mater. Sci. Forum 2002, 396–402, 869–874. [Google Scholar] [CrossRef]
- Kessler, O.; von Bargen, R.; Hoffmann, F.; Zoch, H.W. Continuous cooling transformation (CCT) diagram of aluminum alloy Al-4.5Zn-1Mg. Mater. Sci. Forum 2006, 519–521, 1467–1472. [Google Scholar] [CrossRef]
- Bargen, R.; von Kessler, O.; Zoch, H.W. Kontinuierliche Zeit- Temperatur- AusscheIDungsdiagramme der Aluminiumlegierungen 7020 und 7050. HTM J. Heat Treatm. Mat. 2007, 62, 8. [Google Scholar]
- Ostermann, F. Anwendungstechnologie Aluminium, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783662438060. [Google Scholar]
- Starink, M.J. A new model for diffusion-controlled precipitation reactions using the extended volume concept. Thermochim. Acta 2014, 596, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Milkereit, B.; Kessler, O.; Schick, C. Precipitation and Dissolution Kinetics in Metallic Alloys with Focus on Aluminium Alloys by Calorimetry in a Wide Scanning Rate Range. In Fast Scanning Calorimetry; Schick, C., Mathot, V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 723–773. ISBN 9783319313290. [Google Scholar]
- Milkereit, B.; Kessler, O.; Schick, C. Recent Advances in Thermal Analysis and Calorimetry of Aluminum Alloys. In Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications, 2nd ed.; Vyazovkin, S., Koga, N., Schick, C., Eds.; Elsevier Ltd., Elsevier Science: New York, NY, USA, 2018; Volume 6, ISBN 9780444640635. [Google Scholar]
- Li, H.-Y.; Zhao, Y.K.; Tang, Y.; Wang, X.F. Determination and application of CCT diagram for 6082 aluminum alloy. Acta Met. Sin. 2010, 46, 1237–1243. [Google Scholar] [CrossRef]
- Li, P.Y.; Xiong, B.Q.; Zhang, Y.A.; Li, Z.H.; Zhu, B.H.; Wang, F.; Liu, H.W. Quench sensitivity and microstructure character of high strength AA7050. Trans. Nonferrous Met. Soc. China 2012, 22, 268–274. [Google Scholar] [CrossRef]
- Li, S.L.; Huang, Z.Q.; Chen, W.P.; Liu, Z.M.; Qi, W.J. Quench sensitivity of 6351 aluminum alloy. Trans. Nonferrous Met. Soc. China 2013, 23, 46–52. [Google Scholar] [CrossRef]
- Li, H.-Y.; Liu, J.J.; Yu, W.C.; Li, D.W. Development of non-linear continuous cooling precipitation diagram for Al-Zn-Mg-Cu alloy. Mater. Sci. Tech. 2015, 31, 1443–1451. [Google Scholar] [CrossRef]
- Ólafsson, P.; Sandström, R.; Karlsson, Å. Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys. J. Mater. Sci. 1997, 32, 4383–4390. [Google Scholar] [CrossRef]
- Esmaeili, S.; Vaumousse, D.; Zandbergen, M.W.; Poole, W.J.; Cerezo, A.; Lloyd, D.J. A study on the early-stage decomposition in the Al-Mg-Si-Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe. Philos. Mag. 2007, 87, 3797–3816. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Xu, Z.; Zhong, H.; Yang, H.; Ju, L.; Wu, X.H. Strength and Electrical Conductivity Relationships in Al-Mg-Si and Al-Sc Alloys. Mater. Sci. Forum 2014, 794–796, 827–832. [Google Scholar] [CrossRef]
- Luckabauer, M.; Sprengel, W.; Würschum, R. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements. Rev. Sci. Instrum. 2016, 87, 075116. [Google Scholar] [CrossRef] [PubMed]
- Kövér, M.; Sláma, P. Aluminium Alloys Measurement in Quenching Dilatometer and Application of the Data. Adv. Mater. Res. 2015, 1127, 73–77. [Google Scholar] [CrossRef]
- Milkereit, B.; Reich, M.; Kessler, O. Detection of Quench Induced Precipitation in Al Alloys by Dilatometry. Mater. Sci. Forum 2016, 877, 147–152. [Google Scholar] [CrossRef]
- Krause-Rehberg, R.; Leipner, H.S. Positron Annihilation in Semiconductors. Defect Studies; with 20 Tables; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 3-540-64371-0. [Google Scholar]
- Dlubek, G.; Krause, R.; Brümmer, O.; Plazaola, F. Study of formation and reversion of Guinier-Preston zones in Al-4.5 at%Zn-x at%Mg alloys by positrons. J. Mater. Sci. 1986, 21, 853–858. [Google Scholar] [CrossRef]
- Banhart, J.; Liu, M.; Yong, Y.; Liang, Z.; Chang, C.S.T.; Elsayed, M.; Lay, M.D.H. Study of ageing in Al-Mg-Si alloys by positron annihilation spectroscopy. Phys. B Condens. Matter 2012, 407, 2689–2696. [Google Scholar] [CrossRef] [Green Version]
- Banhart, J.; Lay, M.D.H.; Chang, C.S.T.; Hill, A.J. Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy. Phys. Rev. B 2011, 83. [Google Scholar] [CrossRef] [Green Version]
- Banhart, J.; Chang, C.S.T.; Liang, Z.; Wanderka, N.; Lay, M.D.H.; Hill, A.J. Natural Aging in Al-Mg-Si Alloys—A Process of Unexpected Complexity. Adv. Eng. Mater. 2010, 12, 559–571. [Google Scholar] [CrossRef]
- Liu, M.; Klobes, B.; Banhart, J. Positron lifetime study of the formation of vacancy clusters and dislocations in quenched Al, Al–Mg and Al–Si alloys. J. Mater. Sci. 2016, 51, 7754–7767. [Google Scholar] [CrossRef]
- Banhart, J.; Helmholtz-Centre Berlin, Berlin, Germany. Personal Comunication, 2019.
- Schloth, P.; Menzel, A.; Fife, J.L.; Wagner, J.N.; van Swygenhoven, H.; Drezet, J.-M. Early cluster formation during rapID cooling of an Al–Cu–Mg alloy: In situ small-angle X-ray scattering. SCR Mater. 2015, 108, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Schloth, P.; Wagner, J.N.; Fife, J.L.; Menzel, A.; Drezet, J.M.; van Swygenhoven, H. Early precipitation during cooling of an Al-Zn-Mg-Cu alloy revealed by in situ small angle X-ray scattering. Appl. Phys. Lett. 2014, 105, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Schloth, P. Precipitation in the High Strength AA7449 Aluminium Alloy: Implications on Internal Stresses on Different Length Scales. Ph.D. Thesis, EPFL Lausanne, Lausanne, Switzerland, 2015. [Google Scholar]
- De Geuser, F.; Deschamps, A. Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering. Comptes. Rendus. Phys. 2012, 13, 246–256. [Google Scholar] [CrossRef]
- de Geuser, F.; SIMaP—Grenoble Institute of Technology, Grenoble, France. Personal Comunication, 2019.
- Briggs, S.A.; Edmondson, P.D.; Littrell, K.C.; Yamamoto, Y.; Howard, R.H.; Daily, C.R.; Terrani, K.A.; SrIDharan, K.; Field, K.G. A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys. Acta Mater. 2017, 129, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Andrews, R.N.; Serio, J.; MuralIDharan, G.; Ilavsky, J. An in situ USAXS-SAXS-WAXS study of precipitate size distribution evolution in a model Ni-based alloy. J. Appl. Cryst. 2017, 50, 734–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, S.; Andersson, J.; Fisk, M.; Park, J.-S.; Lienert, U. Correlation of precipitate evolution with Vickers hardness in Haynes® 282® superalloy: In-situ high-energy SAXS/WAXS investigation. Mater. Sci. Eng. A 2018, 711, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Tolnai, D.; Mendis, C.L.; Stark, A.; Szakács, G.; Wiese, B.; Kainer, K.U.; Hort, N. In situ synchrotron diffraction of the Solidification of Mg4Y3Nd. Mater Lett. 2013, 102–103, 62–64. [Google Scholar] [CrossRef] [Green Version]
- Milkereit, B.; Rowolt, C.; Fröck, H.; Reich, M.; Kowalski, W.; Kemsies, R.; Stark, A.; Keßler, O. In-Situ X-Ray Diffraction during Quenching of Aluminum Alloy. 7150; Lecture at 16th International Conference on Aluminium Alloys: Montreal, QC, Canada, 2018. [Google Scholar]
- Hunger, H.-J. (Ed.) Werkstoffanalytische Verfahren. Eine Auswahl; mit 39 Tabellen; Grundstoffindustrie: Leipzig, Germany, 1995; ISBN 3-342-00430-4. [Google Scholar]
- Höhne, G.W.H.; Hemminger, W.F.; Flammersheim, H.J. Differential Scanning Calorimetry, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 9783642055935. [Google Scholar]
- Milkereit, B.; Beck, M.; Reich, M.; Kessler, O.; Schick, C. Precipitation kinetics of an aluminium alloy during Newtonian cooling simulated in a differential scanning calorimeter. Thermochim. Acta 2011, 522, 86–95. [Google Scholar] [CrossRef]
- Chang, C.S.T.; Banhart, J. Low-temperature differential scanning calorimetry of an Al-Mg-Si Alloy. Met. Mater. Trans. A 2011, 42, 1960–1964. [Google Scholar] [CrossRef]
- Milkereit, B. Kontinuierliche Zeit-Temperatur-AusscheIDungs-Diagramme von Al-Mg-Si-Legierungen. Ph.D. Thesis, University of Rostock, Rostock, Germany, 2011. [Google Scholar] [CrossRef]
- Schumacher, P.; Pogatscher, S.; Starink, M.J.; Schick, C.; Mohles, V.; Milkereit, B. Quench-induced precipitates in Al–Si alloys: Calorimetric determination of solute content and characterisation of microstructure. Thermochim. Acta 2015, 602, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Milkereit, B.; Starink, M.J. Quench sensitivity of Al-Mg-Si alloys: A model for linear cooling and strengthening. Mater. Des. 2015, 76, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Starink, M.J.; Milkereit, B.; Zhang, Y.; Rometsch, P.A. Predicting the quench sensitivity of Al-Zn-Mg-Cu alloys: A model for linear cooling and strengthening. Mater. Des. 2015, 88, 958–971. [Google Scholar] [CrossRef] [Green Version]
- Osten, J.; Milkereit, B.; Schick, C.; Kessler, O. Dissolution and precipitation behaviour during continuous heating of Al-Mg-Si alloys in a wide range of heating rates. Materials 2015, 8, 2830–2848. [Google Scholar] [CrossRef] [Green Version]
- Milkereit, B.; Kessler, O.; Schick, C. Recording of continuous cooling precipitation diagrams of aluminium alloys. Thermochim. Acta 2009, 492, 73–78. [Google Scholar] [CrossRef]
- Rowolt, C.; Milkereit, B.; Andreazza, P.; Kessler, O. Quantitative High Temperature Calorimetry on Precipitation in Steel and Nickel Alloys. Thermochim. Acta 2019, 677, 169–179. [Google Scholar] [CrossRef]
- Milkereit, B.; Burgschat, L.; Kemsies, R.H.; Springer, A.; Schick, C.; Kessler, O. In situ differential scanning calorimetry analysis of dissolution and precipitation kinetics in Mg-Y-RE alloy WE43. J. Magnes. Alloy. 2019, 7, 1–14. [Google Scholar] [CrossRef]
- Sarge, S.M.; Hemminger, W.F.; Gmelin, E.; Höhne, G.W.H.; Cammenga, H.K.; Eysel, W. Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC. J. Therm. Anal. Calorim. 1997, 49, 1125–1134. [Google Scholar] [CrossRef]
- Höhne, G.W.H.; Glöggler, E. Some peculiarities of the DSC-2/-7 (Perkin-Elmer) and their influence on accuracy and precision of the measurements. Thermochim. Acta 1989, 151, 295–304. [Google Scholar] [CrossRef]
- Zahra, C.Y.; Zahra, A.-M. The Perkin-Elmer 1020 series thermal analysis system. Thermochim. Acta 1996, 276, 161–174. [Google Scholar] [CrossRef]
- Kemsies, R.H.; Milkereit, B.; Wenner, S.; Holmestad, R.; Kessler, O. In situ DSC investigation into the kinetics and microstructure of dispersoID formation in Al-Mn-Fe-Si(-Mg) alloys. Mater. Des. 2018, 146, 96–107. [Google Scholar] [CrossRef]
- Milkereit, B.; Wanderka, N.; Schick, C.; Kessler, O. Continuous cooling precipitation diagrams of Al-Mg-Si alloys. Mater. Sci. Eng. A 2012, 550, 87–96. [Google Scholar] [CrossRef]
- Yang, B.; Milkereit, B.; Zhang, Y.; Rometsch, P.A.; Kessler, O.; Schick, C. Continuous cooling precipitation diagram of aluminium alloy AA7150 based on a new fast scanning calorimetry and interrupted quenching method. Mater. Charact. 2016, 120, 30–37. [Google Scholar] [CrossRef]
- Zohrabyan, D.; Milkereit, B.; Kessler, O.; Schick, C. Precipitation enthalpy during cooling of aluminum alloys obtained from calorimetric reheating experiments. Thermochim. Acta 2012, 529, 51–58. [Google Scholar] [CrossRef]
- Rowolt, C.; Milkereit, B.; Gebauer, M.; SeIDel, C.; Müller, B.; Kessler, O. In-Situ Phase Transition Analysis of Conventional and Laser Beam Melted AlSi10Mg and X5CrNiCuNb16-4 Alloys. HTM-J. Heat Treat. Mater. 2018, 73, 317–334. [Google Scholar] [CrossRef]
- Schumacher, P. Plastisches Verformungsverhalten unterkühlter Aluminiumlegierungen im System Al-Mg-Si. Ph.D. Thesis, Universität Rostock, Rostock, Germany, 2018. [Google Scholar]
- Zhang, Y.; Milkereit, B.; Kessler, O.; Schick, C.; Rometsch, P.A. Development of continuous cooling precipitation diagrams for aluminium alloys AA7150 and AA7020. J. Alloy. Compd. 2014, 584, 581–589. [Google Scholar] [CrossRef]
- Zhuravlev, E.; Schick, C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim. Acta 2010, 50, 1–13. [Google Scholar] [CrossRef]
- Reich, M.; Kessler, O. Quenching Simulation of Aluminum Alloys Including Mechanical Properties of the Undercooled States. Matls. Perf. Charact. 2012, 1, 104632. [Google Scholar] [CrossRef]
- Chobaut, N.; Carron, D.; Arsène, S.; Schloth, P.; Drezet, J.M. Quench induced residual stress prediction in heat treatable 7xxx aluminium alloy thick plates using Gleeble interrupted quench tests. J. Mater. Process. Technol. 2015, 222, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Drezet, J.M.; Chobaut, N.; Schloth, P.; van Swygenhoven, H. Internal Stress Generation During Quenching of Thick Heat Treatable Aluminium Alloys; TMS 2013 Annual Meeting and Exhibition: San Antonio, TX, USA, 2013. [Google Scholar]
- Milkereit, B.; Jonas, L.; Schick, C.; Kessler, O. The continuous cooling precipitation diagram of an aluminum alloy en AW-6005A. HTM J. Heat Treatm. Mat. 2010, 65, 159–171. [Google Scholar] [CrossRef]
- Schumann, H. Metallographie. Mit Einer Einführung in die Keramografie, 15th ed.; Wiley-VCH: Weinheim, Germany, 2011; ISBN 9783527322572. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron. Microscopy and X-Ray Microanalysis; Springer: New York, NY, USA, 2018; ISBN 978-1-4939-6674-5. [Google Scholar]
- Brydson, R. Aberration-Corrected Analytical Transmission Electron. Microscopy; John Wiley & Sons, Ltd.: Chichester, UK, 2011; ISBN 9781119978848. [Google Scholar]
- Hornbogen, E.; Skrotzki, B. Mikro-und Nanoskopie der Werkstoffe, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9783540899457. [Google Scholar]
- Zhang, Y.; Weyland, M.; Milkereit, B.; Reich, M.; Rometsch, P.A. Precipitation of a new platelet phase during the quenching of an Al-Zn-Mg-Cu alloy. Sci. Rep. 2016, 6, 23109. [Google Scholar] [CrossRef] [Green Version]
- Osten, J. Werkstoffstrukturen und Eigenschaften beim laserunterstützten Clinchen von hochfesten Stahl/Aluminium-Mischverbindungen. Ph.D. Thesis, University of Rostock, Rostock, Germany, 2018. [Google Scholar]
- Schumacher, P.; Reich, M.; Mohles, V.; Pogatscher, S.; Uggowitzer, P.J.; Milkereit, B. Correlation between supersaturation of solID solution and mechanical behaviour of two binary Al-Si-alloys. Mater. Sci. Forum 2014, 794–796, 508–514. [Google Scholar] [CrossRef]
- Milkereit, B.; Kessler, O. Continuous-Cooling Precipitation Diagrams. In ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys; George, E., Ed.; ASM International: Materials Park, OH, USA, 2016; pp. 191–197. ISBN 978-1-62708-112-2. [Google Scholar]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Fröck, H.; Milkereit, B.; Wiechmann, P.; Springer, A.; Sander, M.; Kessler, O.; Reich, M. Influence of Solution-Annealing Parameters on the Continuous Cooling Precipitation of Aluminum Alloy 6082. Metals 2018, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Fröck, H.; Graser, M.; Reich, M.; Lechner, M.; Merklein, M.; Kessler, O. Influence of short-term heat treatment on the microstructure and mechanical properties of EN AW-6060 T4 extrusion profiles: Part A. Prod. Eng. Res. Devel. 2016, 10, 383–389. [Google Scholar] [CrossRef]
- Starink, M.J. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta 2003, 404, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Starink, M.J. Activation energy determination for linear heating experiments: Deviations due to neglecting the low temperature end of the temperature integral. J. Mater. Sci. 2007, 42, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Lang, P.; Povoden-Karadeniz, E.; Falahati, A.; Kozeschnik, E. Simulation of the effect of composition on the precipitation in 6xxx Al alloys during continuous-heating DSC. J. Alloy. Compd. 2014, 612, 443–449. [Google Scholar] [CrossRef]
- Falahati, A.; Wu, J.; Lang, P.; Ahmadi, M.R.; Povoden-Karadeniz, E.; Kozeschnik, E. Assessment of parameters for precipitation simulation of heat treatable aluminum alloys using differential scanning calorimetry. Trans. Nonferrous Met. Soc. China 2014, 24, 2157–2167. [Google Scholar] [CrossRef]
- Falahati, A.; Povoden-Karadeniz, E.; Lang, P.; Warczok, P.; Kozeschnik, E. Thermo-kinetic computer simulation of differential scanning calorimetry curves of Al-Mg-Si alloys. Int. J. Mater. Res. 2010, 101, 1089–1096. [Google Scholar] [CrossRef]
- Hersent, E.; Driver, J.H.; Piot, D. Modelling differential scanning calorimetry curves of precipitation in Al–Cu–Mg. SCR Mater. 2010, 62, 455–457. [Google Scholar] [CrossRef]
- Khan, I.N.; Starink, M.J. Microstructure and strength modelling of Al-Cu-Mg alloys during non-isothermal treatments Part 1-Controlled heating and cooling. Mater. Sci. Tech. 2008, 24, 1403–1410. [Google Scholar] [CrossRef] [Green Version]
- Birol, Y. A calorimetric analysis of the precipitation reactions in AlSi1MgMn alloy with Cu additions. Thermochim. Acta 2017, 650, 39–43. [Google Scholar] [CrossRef]
- Starink, M.J.; Zahra, A.M. β’ and β precipitation in an Al-Mg alloy studied by DSC and TEM. Acta Mater. 1998, 46, 3381–3397. [Google Scholar] [CrossRef]
- Kim, S.N.; Kim, J.H.; Tezuka, H.; Kobayashi, E.; Sato, T. Formation Behavior of Nanoclusters in Al-Mg-Si Alloys with Different Mg and Si Concentration. Mater. Trans. 2013, 54, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Papazian, J.M. A calorimetric study of precipitation in aluminum alloy 2219. Met. Trans. A 1981, 12, 269–280. [Google Scholar] [CrossRef]
- Milkereit, B.; Österreich, M.; Schuster, P.; Kirov, G.; Mukeli, E.; Kessler, O. Dissolution and Precipitation Behavior for Hot Forming of 7021 and 7075 Aluminum Alloys. Metals 2018, 8, 531. [Google Scholar] [CrossRef] [Green Version]
- Zohrabyan, D.; Milkereit, B.; Schick, C.; Kessler, O. Continuous cooling precipitation diagram of high alloyed Al-Zn-Mg-Cu 7049A alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 2018–2024. [Google Scholar] [CrossRef]
- Lasagni, F.A.; Mingler, B.; Dumont, M.; Degischer, H.P. Precipitation kinetics of Si in aluminium alloys. Mater. Sci. Eng. A 2008, 480, 383–391. [Google Scholar] [CrossRef]
- Rosenbaum, H.S.; Turnbull, D. Metallographic investigation of precipitation of silicon from aluminum. Acta Met. 1959, 7, 664–674. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Huang, T.; Zhao, X.; Yu, Z.; Fu, H. Effect of cooling rate on γ′ precipitate of DZ4125 alloy under high thermal gradient directional solIDification. Jinshu Xuebao/Acta Metall. Sin. 2009, 45, 592–596. [Google Scholar]
- Mallikarjuna, H.T.; Caley, W.F.; Richards, N.L. The effect of cooling rate on the γ’ composition, morphology and corrosion behaviour of IN738LC. Corros. Sci. 2019, 149, 37–44. [Google Scholar] [CrossRef]
- Rakoczy, Ł.; Cempura, G.; Kruk, A.; Czyrska-Filemonowicz, A.; Zielińska-Lipiec, A. Evolution of γ’ morphology a γ/γ’ lattice parameter misfit in a nickel-based superalloy during non-equilibrium cooling. Int. J. Mater. Res. 2019, 110, 66–69. [Google Scholar] [CrossRef]
- Hisazawa, H.; Terada, Y.; Takeyama, M. Morphology evolution of γ′ precipitates during isothermal exposure in wrought Ni-based superalloy Inconel X-750. Mater. Trans. 2017, 58, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metals and Alloys, 2nd ed.; Chapman & Hall: London, UK, 1992; ISBN 0412450305. [Google Scholar]
- Zajac, S.; Bengtsson, B.; Jönsson, C. Influence of Cooling after Homogenisation and Reheating to Extrusion on Extrudability and Final Properties of AA 6063 and AA6082 Alloys. Mater. Sci. Forum 2002, 396–402, 399–404. [Google Scholar] [CrossRef]
- Zajac, S.; Bengtsson, B.; Johansson, A.; Gullman, L.O. Optimisation of Mg2Si phase for extrudability of AA 6063 and AA 6005 alloys. Mater. Sci. Forum 1996, 217–222, 397–402. [Google Scholar] [CrossRef]
- Birol, Y. Effect of cooling rate on precipitation during homogenization cooling in an excess silicon Al-Mg-Si alloy. Mater. Charact. 2012, 73, 37–42. [Google Scholar] [CrossRef]
- Morgeneyer, T.F.; Starink, M.J.; Wang, S.C.; Sinclair, I. Quench sensitivity of toughness in an Al alloy: Direct observation and analysis of failure initiation at the precipitate-free zone. Acta Mater. 2008, 56, 2872–2884. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, M.H. The structure of metastable precipitates formed during aging of an Al-Mg-Si alloy. Philos. Mag. 1972, 26, 1–13. [Google Scholar] [CrossRef]
- Sagalowicz, L.; Lapasset, G.; Hug, G. Transmission electron microscopy study of a precipitate which forms in the Al-Mg-Si system. Philos. Mag. Lett. 1996, 74, 57–66. [Google Scholar] [CrossRef]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998, 46, 3893–3904. [Google Scholar] [CrossRef]
- Cayron, C.; Sagalowicz, L.; Beffort, O.; Buffat, P.A. Structural phase transition in Al-Cu-Mg-Si alloys by transmission electron microscopy study on an Al-4 wt% Cu-1 wt% Mg-Ag alloy reinforced by SiC particles. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop. 1999, 79, 2833–2851. [Google Scholar] [CrossRef]
- Cayron, C.; Buffat, P.A. Transmission electron microscopy study of the beta’ phase (Al-Mg-Si alloys) and QC phase (Al-Cu-Mg-Si alloys): Ordering mechanism and crystallographic structure. Acta Mater. 2000, 48, 2639–2653. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Stene, T.N.; Hasting, H.; Walmsley, J.; Van Helvoort, A.T.J.; Holmestad, R. The effect of Cu on precipitation in Al-Mg-Si alloys. Philos. Mag. 2007, 87, 3385–3413. [Google Scholar] [CrossRef]
- Strobel, K.; Easton, M.A.; Lay, M.D.H.; Rometsch, P.A.; Zhu, S.; Sweet, L.; Parson, N.C.; Hill, A.J. Quench Sensitivity in a Dispersoid-Containing Al-Mg-Si Alloy. Metall. Mater. Trans. A 2019, 50, 1957–1967. [Google Scholar] [CrossRef]
- Povoden-Karadeniz, E.; Lang, P.; Warczok, P.; Falahati, A.; Jun, W.; Kozeschnik, E. Calphad modeling of metastable phases in the Al-Mg-Si system. Calphad 2013, 43, 94–104. [Google Scholar] [CrossRef]
- Dumolt, S.D.; Laughlin, D.E.; Williams, J.C. Formation of a modified beta’-phase in aluminum alloy 6061. SCR Metall. 1984, 18, 1347–1350. [Google Scholar] [CrossRef]
- Bratland, D.H.; Grong, Ø.; Shercliff, H.; Myhr, O.R.; Tjøtta, S. Modelling of precipitation reactions in industrial processing. Acta Mater. 1997, 45, 1–22. [Google Scholar] [CrossRef]
- Maeda, T.; Kaneko, K.; Namba, T.; Koshino, Y.; Sato, Y.; Teranishi, R.; Aruga, Y. Structural and compositional study of precipitates in under-aged Cu-added Al-Mg-Si alloy. Sci. Rep. 2018, 8, 16629. [Google Scholar] [CrossRef]
- Saito, T.; Marioara, C.D.; Røyset, J.; Marthinsen, K.; Holmestad, R. The effects of quench rate and pre-deformation on precipitation hardening in Al–Mg–Si alloys with different Cu amounts. Mater. Sci. Eng. A 2014, 609, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Marioara, C.D.; Andersen, S.J.; Boothroyd, C.B.; Holmestad, R. Disordered Precipitates in an Al-Mg-Si-Cu-Ag alloy. In Proceedings 12th International Conference on Aluminium Alloys; ICAA: Yokohama, Japan, 2010. [Google Scholar]
- Holmestad, R.; Bjørge, R.; Ehlers, F.J.H.; Torsæter, M.; Marioara, C.D.; Andersen, S.J. Characterization and structure of precipitates in 6xxx aluminium alloys: Electron Microscopy and Analysis Group Conference 2011, EMAG 2011; Birmingham; UK, 6–11 September 2011. J. Phys. Conf. Ser. 2012, 371, 12082. [Google Scholar] [CrossRef]
- Yoshida, H.; Watanabe, T.; Hatta, H. Effect of quenching rate on age hardening in an Al-Zn-Mg alloy sheet. In 16th International Conference on Aluminium Alloys, Montral, Canada; Mary, W.M.B., Ed.; METSOC.org: Montreal, Canada, 2018; p. 393778. ISBN 978-1-926872-41-4. [Google Scholar]
- Zhang, Y. Quench Sensitivity of 7xxx Series Aluminium Alloys. Ph.D. Thesis, Monash University, Melbourne, Australia, 2014. [Google Scholar]
- Fang, X.; Song, M.; Li, K.; Du, Y.; Zhao, D.; Jiang, C.; Zhang, H. Effects of Cu and Al on the crystal structure and composition of η (Mg-Zn 2) phase in over-aged Al-Zn-Mg-Cu alloys. J. Mater. Sci. 2012, 47, 5419–5427. [Google Scholar] [CrossRef]
- Andrae, D.; Paulus, B.; Wedig, U.; Jansen, M. A first-principles study of electronic structure of the laves phase MgZn2. Z. Anorg. Allg. Chem. 2013, 639, 1963–1967. [Google Scholar] [CrossRef]
- Osten, J.; Reich, M.; Milkereit, B.; Kessler, O. Adapting Age Hardening Parameters of High-Alloyed 7xxx Aluminium Alloys through Thermal Analysis; Lecture at 16th International Conference on Aluminium Alloys: Montreal, Canada, 2018. [Google Scholar]
- Zhang, Y.; Pelliccia, D.; Milkereit, B.; Kirby, N.; Starink, M.J.; Rometsch, P.A. Analysis of age hardening precipitates of Al-Zn-Mg-Cu alloys in a wIDe range of quenching rates using small angle X-ray scattering. Mater. Des. 2018, 142, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bettles, C.; Rometsch, P.A. Effect of recrystallisation on Al3Zr dispersoid behaviour in thick plates of aluminium alloy AA7150. J. Mater. Sci. 2014, 49, 1709–1715. [Google Scholar] [CrossRef]
- Deschamps, A.; Bréchet, Y. Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu alloy. SCR Mater. 1998, 39, 1517–1522. [Google Scholar] [CrossRef]
- Deschamps, A.; Bréchet, Y. Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy. Mater. Sci. Eng. A 1998, 251, 200–207. [Google Scholar] [CrossRef]
- Lervik, A.; Marioara, C.D.; Kadanik, M.; Walmsley, J.C.; Milkereit, B.; Holmestad, R. Precipitation in an extruded AA7003 aluminium alloy: Observations of 6xxx-type hardening phases. Mater. Des. 2019, in press. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Lin, H.; Sun, L.; Long, T.; Ye, L.; Deng, Y. Effect of quench-induced precipitation on microstructure and mechanical properties of 7085 aluminum alloy. Mater. Des. 2017, 132, 119–128. [Google Scholar] [CrossRef]
- Godard, D.; Archambault, P.; Aeby-Gautier, E.; Lapasset, G. Precipitation sequences during quenching of the AA 7010 alloy. Acta Mater. 2002, 50, 2319–2329. [Google Scholar] [CrossRef]
- Suzuki, H.; Kanno, M.; SAITOH, H.; Itoi, K. Effects of zirconium addition on quench-sensitivity of Al-Zn-Mg-Cu alloys. J. Jpn. Inst. Light Met. 1983, 33, 29–37. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Liu, S.; Zhou, M. Effect of processing parameters on quench sensitivity of an AA7050 sheet. Mater. Sci. Eng. A 2011, 528, 795–802. [Google Scholar] [CrossRef]
- Liu, S.; Zhong, Q.; Zhang, Y.; Liu, W.; Zhang, X.; Deng, Y. Investigation of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by time-temperature-properties diagrams. Mater. Des. 2010, 31, 3116–3120. [Google Scholar] [CrossRef]
- Baba, Y. Influence of Additional Elements on the Quench-Sensitivity and Nucleation of Precipitates in Al-Zn-Mg Alloys. Nippon. Kinzoku Gakkaishi 1967, 31, 910–915. [Google Scholar] [CrossRef] [Green Version]
- Baba, Y. Quench-Sensitivity and Age-Hardening of Al-Zn-Mg Alloys Containing Trace Elements. Trans. Jpn. Inst. Met. 1968, S9, 356. [Google Scholar]
- Lin, L.; Liu, Z.; Bai, S.; Zhou, Y.; Liu, W.; Lv, Q. Effects of Ge and Ag additions on quench sensitivity and mechanical properties of an Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 2017, 682, 640–647. [Google Scholar] [CrossRef]
- Chobaut, N.; Carron, D.; Drezet, J.M. Characterisation of precipitation upon cooling of an AA2618 Al–Cu–Mg alloy. J. Alloy. Compd. 2016, 654, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Ives, L.K.; Swartzendruber, L.J.; Boettinger, W.J.; Rosen, M.; Ridder, S.D.; Biancaniello, F.C.; Reno, R.C.; Ballard, D.B.; Mehrabian, R. Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy. Plates; National Bureau of Standards Report: Washington, DC, USA, 1983; pp. 2583–2669. [Google Scholar]
- Ber, L.B. Accelerated artificial ageing regimes of commercial aluminum alloys. I. Al-Cu-Mg alloys. Mater. Sci. Eng. A 2000, 280, 83–90. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, Y.; Huang, S.; Dong, F.; Wang, H. Investigation of the quenching sensitivity of forged 2A14 aluminum alloy by time-temperature-tensile properties diagrams. J. Alloy. Compd. 2017, 728, 1239–1247. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Shuey, R.T. Quench sensitivity of 2219-T87 aluminum alloy plate. Mater. Sci. Eng. A 2010, 527, 5033–5037. [Google Scholar] [CrossRef]
- Yin, Y.; Luo, B.H.; Jing, H.B.; Bai, Z.H.; Gao, Y. Influences of Quench Cooling Rate on Microstructure and Corrosion Resistance of Al-Cu-Mg Alloy Based on the End-Quenching Test. Met. Mater. Trans. B 2018, 49, 2241–2251. [Google Scholar] [CrossRef]
- Wang, H.; Yi, Y.; Huang, S. Investigation of quench sensitivity of high strength 2219 aluminum alloy by TTP and TTT diagrams. J. Alloy. Compd. 2017, 690, 446–452. [Google Scholar] [CrossRef]
- Ber, L.B. Accelerated artificial ageing regimes of commercial aluminium alloys. II: Al-Cu, Al-Zn-Mg-(Cu), Al-Mg-Si-(Cu) alloys. Mater. Sci. Eng. A 2000, 280, 91–96. [Google Scholar] [CrossRef]
- Milkereit, B.; Fröck, H.; Schick, C.; Kessler, O. Continuous cooling precipitation diagram of cast aluminium alloy Al-7Si-0.3Mg. Trans. Nonferrous Met. Soc. China 2014, 24, 2025–2033. [Google Scholar] [CrossRef]
- Rowolt, C.; Gebauer, M.; SeIDel, C.; Müller, B.; Milkereit, B.; Kessler, O. Influence of heat treatment on the material properties of laser-melted components made of AlSi10Mg and X5CrNiCuNb16-4. Schweiss. Schneid. 2018, 70, 634–641. [Google Scholar]
- Li, Y.; Gu, D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 2014, 63, 856–867. [Google Scholar] [CrossRef]
- Doubenskaia, M.A.; Zhirnov, I.V.; Teleshevskiy, V.I.; Bertrand, P.; Smurov, I.Y. Determination of True Temperature in Selective Laser Melting of Metal Powder Using Infrared Camera. Mater. Sci. Forum 2015, 834, 93. [Google Scholar] [CrossRef]
- Campbell, J. Complete Casting Handbook. Metal, Casting Processes, Metallurgy, Techniques and Design, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2011; ISBN 978-1-85617-809-9. [Google Scholar]
- Starink, M.J. Analysis of nucleation and growth with the model for diffusion-controlled precipitation reactions based on the extended volume concept. J. Alloy. Compd. 2015, 630, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.W.; Doherty, R.D.; Cantor, B. Stability of Microstructure in Metallic Systems, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; ISBN 9780521423168. [Google Scholar]
- Reich, M.; Osten, J.; Milkereit, B.; Kalich, J.; Füssel, U.; Kessler, O. Short-time Heat Treatment of Press Hardened Steel for Laser-assisted Clinching. Mater. Sci. Technol. 2013, 30, 1287–1296. [Google Scholar] [CrossRef]
- Reich, M.; Milkereit, B.; Bader, M.; Oehmingen, H.G.; Kessler, O. Kalorimetrische und dilatometrische Analyse des Anlassverhaltens in der Wärmeeinflusszone von Schweißnähten des Stahls T24. HTM J. Heat Treatm. Mat. 2013, 68, 274–282. [Google Scholar] [CrossRef]
- Antony, K.C. Aging reactions in precipitation hardenable stainless steel. J. Met. 1963, 15, 922–927. [Google Scholar] [CrossRef]
- Hsiao, C.N.; Chiou, C.S.; Yang, J.R. Aging reactions in a 17-4 PH stainless steel. Mater. Chem. Phys. 2002, 74, 134–142. [Google Scholar] [CrossRef]
- Goller, G.N.; Clarke, W.C. New Precipitation-Hardening Stainless Steel. Iron Age 1950, 165, 86–89. [Google Scholar]
- Viswanathan, U.K.; Banerjee, S.; Krishnan, R. Effects of aging on the microstructure of 17-4 PH stainless steel. Mater. Sci. Eng. A 1988, 104, 181–189. [Google Scholar] [CrossRef]
- Brezina, P.; Sonderegger, B. Wärmebehandlung, Gefüge und Eigenschaften des korrosionsträgen, martensitaushärtbaren Stahles X5CrNiMoCuNb14-5 (14-5 PH). HTM Hart. Mitt. 1978, 33, 1–12. [Google Scholar]
- Bürgel, R.; Maier, H.J.; Niendorf, T. Handbuch Hochtemperatur–Werkstofftechnik; Vieweg+Teubner: Wiesbaden, Germany, 2011; ISBN 9783834813886. [Google Scholar]
- Renhof, L. Mikrostruktur und mechanische Eigenschaften der Nickellegierung IN 718. Ph.D. Thesis, Technical University Munich, Munich, Germany, 2007. Available online: http://mediatum2.ub.tum.de/doc/622870/document.pdf (accessed on 11 July 2018).
- Jackson, M.P.; Starink, M.J.; Reed, R.C. Determination of the precipitation kinetics of Ni3Al in the Ni-Al system using differential scanning calorimetry. Mater. Sci. Eng. A 1999, 264, 26–38. [Google Scholar] [CrossRef]
Quench-Induced Phases | Alloy | Precipitation Temperature Range from DSC | Particle Morphology and (Aspect Ratio: Length/Thickness) | Nucleation on | Reference | |
---|---|---|---|---|---|---|
Stable phases | β-Mg2Si, fcc | 6005A | HTR | Plates (3) | Coarse primary Fe, Si, Mn-rich particles (inside the grain and on grain boundaries) or on undissolved Mg2Si [148] | [128,138] |
Al0.6Mg0.8Si | HTR & LTR | Plates (?) and needles? (100) | ? | This work | ||
Si, diamond cubic | 6005A | HTR (LTR?) | Polygonal particles (close to 1) Potentially plates | ? | This work | |
Metastable phases | β′-Mg9Si5, hexagonal | 6005A Al-0.67Si-0.84Mg-0.35Mn-0.25Fe (mass %) | LTR | Rods (19) | Dispersoids | [118] [180] |
Al0.6Mg0.8Si Al0.8Mg0.6Si | LTR | Rods/plates? | ? | This work | ||
B’-Mg5Si4Al2, hexagonal | 6005A 6082 | LTR | Rods (10) | Dispersoids (potentially on grain boundaries) | [118,128] | |
U1-MgAl2Si2 trigonal | Al0.8Mg0.6Si | LTR | Rods/plates? | ? | This work |
Quench-Induced Phases | Alloy | Precipitation Temperature Range from DSC | Particle Morphology (Aspect Ratio) | Nucleation | Reference | |
---|---|---|---|---|---|---|
Stable phases | S-Al2CuMg | 7150 | HTR | (<5?) | On coarse primary Al7CuFe and grain boundaries | [119,133,189] |
β-Mg2Si | 7020 | HTR | Plates (?) | (?) | ||
η-Mg(Zn,Al,Cu)2 | 7150 | MTR | Polygonal plates (<10) | On dispersoids [31,194] and grain boundaries [119,189] | ||
7020 | MTR | Plates (?) | (?) | |||
Metastable phases | Y-phase (enriched in Zn, Cu) | 7150 | LTR | Thin plates (≈100) | Presumably on vacancy clusters or dislocations | [119,143] |
Cluster | 7449 | vLTR | [103,104] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milkereit, B.; Starink, M.J.; Rometsch, P.A.; Schick, C.; Kessler, O. Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation. Materials 2019, 12, 4083. https://doi.org/10.3390/ma12244083
Milkereit B, Starink MJ, Rometsch PA, Schick C, Kessler O. Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation. Materials. 2019; 12(24):4083. https://doi.org/10.3390/ma12244083
Chicago/Turabian StyleMilkereit, Benjamin, Marco J. Starink, Paul A. Rometsch, Christoph Schick, and Olaf Kessler. 2019. "Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation" Materials 12, no. 24: 4083. https://doi.org/10.3390/ma12244083
APA StyleMilkereit, B., Starink, M. J., Rometsch, P. A., Schick, C., & Kessler, O. (2019). Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation. Materials, 12(24), 4083. https://doi.org/10.3390/ma12244083