Theoretical and Experimental Study of 13.4 kV/55 A SiC PiN Diodes with an Improved Trade-Off between Blocking Voltage and Differential On-Resistance
Abstract
:1. Introduction
2. Device Structure and Fabrication
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kimoto, T.; Yonezawa, Y. Current status and perspectives of ultrahigh-voltage SiC power devices. Mater. Sci. Semicond. Process. 2018, 78, 43–56. [Google Scholar] [CrossRef]
- Fukuda, K.; Okamoto, D.; Okamoto, M.; Deguchi, T.; Mizushima, T.; Takenaka, K.; Kimoto, T. Development of Ultrahigh-Voltage SiC Devices. IEEE Trans. Electron. Devices 2015, 62, 396–404. [Google Scholar] [CrossRef]
- Sugawara, Y.; Takayama, D.; Asano, K.; Singh, R.; Palmour, J.; Hayashi, T. 12–19 kV 4H-SiC pin diodes with low power loss. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Osaka, Japan, 7 June 2001; IEEE: New York, NY, USA, 2001; pp. 27–30. [Google Scholar]
- Nami, A.; Liang, J.; Dijkhuizen, F.; Demetriades, G.D. Modular multilevel converters for HVDC applications: Review on converter cells and functionalities. IEEE Trans. Power Electron. 2015, 30, 18–36. [Google Scholar] [CrossRef]
- Singh, R.; Irvine, H.G.; Capell, D.C.; Richmond, J.T.; Berning, D.; Hefner, A.R.; Palmour, J.W. Large area, ultra-high voltage 4H-SiC p-i-n rectifiers. IEEE Trans. Electron. Devices 2002, 49, 2308–2316. [Google Scholar] [CrossRef]
- Zhang, D.; He, J.; Pan, D. A Megawatt-Scale Medium-Voltage High Efficiency High Power Density “SiC + Si” Hybrid Three-Level ANPC Inverter for Aircraft Hybrid-Electric Propulsion Systems. IEEE Trans. Ind. Appl. (Early Access) 2019, 55, 5971–5980. [Google Scholar] [CrossRef]
- Johannesson, D.; Nawaz, M.; Ilves, K. Assessment of 10 kV, 100 A Silicon Carbide MOSFET Power Modules. IEEE Trans. Power Electron. 2018, 33, 5215–5225. [Google Scholar] [CrossRef]
- Bindra, A. Wide-bandgap power devices: Adoption gathers momentum. IEEE Power Electron. Mag. 2018, 5, 22–27. [Google Scholar] [CrossRef]
- Kaji, N.; Niwa, H.; Suda, J.; Kimoto, T. Ultrahigh-voltage SiC p-i-n diodes with improved forward characteristics. IEEE Trans. Electron. Devices 2015, 62, 374–378. [Google Scholar] [CrossRef]
- Nakayama, K.; Tanaka, A.; Nishimura, M.; Asano, K.; Miyazawa, T.; Ito, M.; Tsuchida, H. Characteristics of a 4H-SiC PiN Diode with Carbon Implantation/Thermal Oxidation. IEEE Trans. Electron. Devices 2012, 59, 895–900. [Google Scholar] [CrossRef]
- Hull, B.A.; Sumakeris, J.J.; O’Loughlin, M.J.; Zhang, Q.; Richmond, J.; Powell, A.; Imhoff, E.; Hobart, K.; Rivera-López, A.; Hefner, J.; et al. Performance and stability of large-area 4H-SiC 10-kV junction barrier Schottky rectifiers. IEEE Trans. Electron. Devices 2008, 55, 1864–1870. [Google Scholar] [CrossRef]
- Nakayama, K.; Mizushima, T.; Takenaka, K.; Koyama, A.; Kiuchi, Y.; Matsunaga, S.; Fujisawa, H.; Hatakeyama, T.; Takei, M.; Yonezawa, Y.; et al. 27.5 kV 4H-SiC PiN Diode with Space-Modulated JTE and Carrier Injection Control. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Chicago, IL, USA, 13–17 May 2018; IEEE: New York, NY, USA, 2018; pp. 395–398. [Google Scholar]
- Sung, W.; Baliga, B.J. A near ideal edge termination technique for 4500 V 4H-SiC devices: The hybrid junction termination extension. IEEE Electron. Device Lett. 2016, 37, 1609–1612. [Google Scholar] [CrossRef]
- Deng, X.; Li, L.; Wu, J.; Li, C.; Chen, W.; Li, J.; Li, Z.; Zhang, B. A Multiple-Ring-Modulated JTE Technique for SiC Power Device with Improved JTE-Dose Window. IEEE Trans. Electron. Devices 2017, 64, 5042–5047. [Google Scholar] [CrossRef]
- Salemi, A.; Elahipanah, H.; Jacobs, K.; Zetterling, C.; Östling, M. 15 kV-Class Implantation-Free 4H-SiC BJTs with Record High Current Gain. IEEE Electron. Device Lett. 2018, 39, 63–66. [Google Scholar] [CrossRef]
- Bakowski, M.; Ranstad, P.; Lim, J.; Kaplan, W.; Reshanov, S.A.; Schoner, A.; Giezendanner, F.; Ranstad, A. Design and Characterization of Newly Developed 10 kV/2 A SiC p-i-n Diode for Soft-Switching Industrial Power Supply. IEEE Trans. Electron. Devices 2015, 62, 366–373. [Google Scholar] [CrossRef]
- Niwa, H.; Feng, G.; Suda, J.; Kimoto, T. Breakdown characteristics of 12–20 kV-class 4H-SiC PiN diodes with improved junction termination structures. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Bruges, Belgium, 3–7 June 2012; IEEE: New York, NY, USA, 2012; pp. 381–384. [Google Scholar]
- Device Simulation Framework. Available online: Http://www.silvaco.com/products/device_simulation/atlas.html (accessed on 20 July 2013).
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications; Wiley: Hoboken, NJ, USA, 2014; Volume 6, pp. 255–262. [Google Scholar]
- Konstantinov, A.O.; Wahab, Q.; Nordell, N.; Lindefelt, U. Ionization rates and critical fields in 4H silicon carbide. Apply Phys. Lett. 1997, 71, 90–92. [Google Scholar] [CrossRef]
- Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer: Berlin, Germany, 2012. [Google Scholar]
- Baliga, B.J. Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design, and Applications; Springer: Berlin, Germany, 2019. [Google Scholar]
- Sundaresan, S.; Sturdevant, C.; Marripelly, M.; Lieser, E.; Singh, R. 12.9 kV SiC PiN diodes with low on-resistance drops and high carrier lifetimes. Mater. Sci. Forum 2012, 717–720, 949–952. [Google Scholar] [CrossRef]
- Sundaresan, S.; Marripelly, M.; Arshavsky, S.; Singh, R. 15 kV SiC PiN diodes achieve 95% of avalanche limit and stable long-term operation. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Kanazawa, Japan, 26–30 May 2013; IEEE: New York, NY, USA, 2013; pp. 175–177. [Google Scholar]
- Salemi, A.; Elahipanah, H.; Buono, B.; Hallén, A.; Hassan, J.; Bergman, P.; Malm, G.; Zetterling, C.; Östling, M. Conductivity Modulated On-axis 4H-SiC 10+ kV PiN Diodes. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Hong Kong, China, 10–14 May 2015; IEEE: New York, NY, USA, 2015; pp. 269–272. [Google Scholar]
Reference | Current | BV (kV) | Vf at 100 A/cm2 | Termination | Ron,sp | BFOM BV2/Ron,sp | Fabrication |
---|---|---|---|---|---|---|---|
(V) | Efficiency | (mΩ·cm2) | (GW/cm2) | Complexity * | |||
[23] | >50 A | 12.9 | 3.75 | 84% | 5.75 | 29 | Simple |
[24] | ~10 A | 15 | 4.1 | 95% | 25.5 | 9 | Medium |
[25] | <1 A | >10 | 3.3 | - | 3.4 | Complex | |
[9] | <1 A | 13 | 3.22 | 84% | 1.87 | 90 | Complex |
[12] | <1 A | 27.5 | - | 83% | - | - | Complex |
This work | >50 A | 13.4 | 3.8 | 95% | 2.5 | 72 | Simple |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, R.; Wang, Y.; Zhang, Z.; Deng, X. Theoretical and Experimental Study of 13.4 kV/55 A SiC PiN Diodes with an Improved Trade-Off between Blocking Voltage and Differential On-Resistance. Materials 2019, 12, 4186. https://doi.org/10.3390/ma12244186
Liu Y, Yang R, Wang Y, Zhang Z, Deng X. Theoretical and Experimental Study of 13.4 kV/55 A SiC PiN Diodes with an Improved Trade-Off between Blocking Voltage and Differential On-Resistance. Materials. 2019; 12(24):4186. https://doi.org/10.3390/ma12244186
Chicago/Turabian StyleLiu, Yuewei, Ruixia Yang, Yongwei Wang, Zhiguo Zhang, and Xiaochuan Deng. 2019. "Theoretical and Experimental Study of 13.4 kV/55 A SiC PiN Diodes with an Improved Trade-Off between Blocking Voltage and Differential On-Resistance" Materials 12, no. 24: 4186. https://doi.org/10.3390/ma12244186
APA StyleLiu, Y., Yang, R., Wang, Y., Zhang, Z., & Deng, X. (2019). Theoretical and Experimental Study of 13.4 kV/55 A SiC PiN Diodes with an Improved Trade-Off between Blocking Voltage and Differential On-Resistance. Materials, 12(24), 4186. https://doi.org/10.3390/ma12244186