Electrophoresis Assembly of Novel Superhydrophobic Molybdenum Trioxide (MoO3) Films with Great Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of Schistose MoO3 Powders
2.3. Electrophoresis Assembly of SMFs
2.4. Characterization
3. Result and Discussion
3.1. Characterization of the Schistose MoO3 Powders and Target Film-SMFs
3.2. Wettability Study
3.3. Stability Analysis
4. Conclusions
Reference
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, R.Z.; Ouyang, Y.P.; Liang, T.; Wang, H.; Liu, J.; Chen, J.; Yang, C.H.; Yang, L.C.; Zhu, M. Stabilizing the nanostructure of SnO2 anodes by transition metals: A route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 2017, 29, 1605006. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Zheng, D.; Zhou, C.; Cheng, J.; Yu, J.S.; Li, L. Low-temperature preparation of tungsten oxide anode buffer layer via ultrasonic spray pyrolysis method for large-area organic solar cells. Materials 2017, 10, 820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Yue, X.P.; Huang, T.J.; Shen, K.; Lu, B. In situ DRIFTS studies of NH3-SCR mechanism over V2O5-CeO2/TiO2-ZrO2 catalysts for selective catalytic reduction of NOx. Materials 2018, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, G.H.; Hone, J.; Shepard, K.L. Ambipolar memristive phenomenon in large-scale, few-layered α-MoO3 recrystallized films. Adv. Mater. Interfaces 2018, 1801591. [Google Scholar] [CrossRef]
- Schieder, M.; Bojer, C.; Stein, J.; Koch, S.; Martin, T.; Schmalz, H.; Breu, J.; Lunkenbein, T. Template removal via boudouard equilibrium allows for synthesis of mesostructured molybdenum compounds. Angew. Chem. Int. Ed. 2017, 56, 13968–13972. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Q.; Gao, P.; Zhang, G.L.; Chen, G.R.; Chen, Y.J.; Wang, Y.; Bao, D. Synthesis of mesoporous MoO3 nanoribbons through a multi-molybdate coordination-polymer-precursor route. Eur. J. Inorg. Chem. 2012, 5831–5836. [Google Scholar] [CrossRef]
- Sakaushi, K.; Jürgen, T.; Kaskel, S.; Jürgen, E. Aqueous solution process for the synthesis and assembly of nanostructured one-dimensional α-MoO3 electrode materials. Chem. Mater. 2013, 25, 2557–2563. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Q.; Cui, W.L.; Zhu, C.H.; Qi, Y.H. Innentitelbild: CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide nanosheets for enhanced plasmon resonances. Angew. Chem. Int. Ed. 2017, 56, 1600–1604. [Google Scholar] [CrossRef]
- Tang, W.; Liu, R.; Lu, X.Y.; Zhang, S.G.; Liu, S.Y. Tribological behavior of lamellar molybdenum trioxide as a lubricant additive. Materials 2018, 11, 2427. [Google Scholar] [CrossRef]
- Shen, B.Y.; Xie, H.H.; Gu, L.; Chen, X.; Bai, Y.X.; Zhu, Z.X.; Wei, F. Direct chirality recognition of single-crystalline and single-walled transition metal oxide nanotubes on carbon nanotube templates. Adv. Mater. 2018, 30, 1803368. [Google Scholar] [CrossRef]
- Chiang, T.H.; Yeh, H.C. The synthesis of α-MoO3 by ethylene glycol. Materials 2013, 6, 4609–4625. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.B.; Chen, J.N.; Wang, Y.; Wang, X.M.; Chen, X.B.; Liu, P.Y.; Xie, W.G.; Chen, H.J.; Deng, S.Z.; Xu, N.S. Highly confined and tunable hyperbolic phonon polaritons in Van Der Waals semiconducting transition metal oxides. Adv. Mater. 2018, 30, 1705318. [Google Scholar] [CrossRef] [PubMed]
- Molina-Mendoza, A.J.; Lado, J.L.; Island, J.O.; NinO, M.A.; Aballe, L.; Foerster, M.; Bruno, F.Y.; López-Moreno, A.; Vaquero-Garzon, L.; Zant, H.S.J.; et al. Centimeter-scale synthesis of ultrathin layered MoO3 by van der Waals epitaxy. Chem. Mater. 2016, 28, 4042–4051. [Google Scholar] [CrossRef]
- Hanson, E.D.; Lajaunie, L.; Hao, S.Q.; Myers, B.D.; Shi, F.Y.; Murthy, A.A.; Wolverton, C.; Arenal, R.; Dravid, V.P. Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3−x enabled by vapor-based synthesis. Adv. Funct. Mater. 2017, 27, 1605380. [Google Scholar] [CrossRef]
- Cai, L.L.; McClellan, C.J.; Koh, A.L.; Li, H.; Yalon, E.; Pop, E.; Zheng, X.L. Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2. Nano Lett. 2017, 17, 3854–3861. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.Y.; Cao, Y.L.; Xie, J.; Xu, H.; Jia, D.Z. Solid-state chemical synthesis and xylene-sensing properties of α-MoO3 arrays assembled by nanoplates. Sens. Actuators B-Chem. 2017, 242, 769–776. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.H.; Sun, Y.J.; Zhou, X.W.; Chou, K.C. Preparation of ultrafine β-MoO3 from industrial grade MoO3 powder by the method of sublimation. J. Phys. Chem. C 2016, 120, 19821–19829. [Google Scholar] [CrossRef]
- Chen, J.Y.; Han, S.; Zhao, H.; Bai, J.L.; Wang, L.Z.; Sun, G.Z.; Zhang, Z.X.; Pan, X.J.; Zhou, J.Y.; Xie, E. Robust wire-based supercapacitors based on hierarchical α-MoO3 nanosheet arrays with well-aligned laminated structure. Chem. Eng. J. 2017, 320, 34–42. [Google Scholar] [CrossRef]
- Palneedi, H.; Park, J.H.; Maurya, D.; Peddigari, M.; Hwang, G.-T.; Annapureddy, V.; Kim, J.-W.; Choi, J.-J.; Hahn, B.-D.; Priya, S.; et al. Laser irradiation of metal oxide films and nanostructures: Applications and advances. Adv. Mater. 2018, 30, 1705148. [Google Scholar] [CrossRef]
- Cano-Casanova, L.; Amorós-Pérez, A.; Lillo-Ródenas, M.Á.; Román-Martínez, M.C. Effect of the preparation method (sol-gel or hydrothermal) and conditions on the TiO2 properties and activity for propene oxidation. Materials 2018, 11, 2227. [Google Scholar] [CrossRef]
- Butburee, T.; Bai, Y.; Wang, H.J.; Chen, H.J.; Wang, Z.L.; Liu, G.; Zou, J.; Khemthong, P.; Lu, G.Q.M.; Wang, L.Z. 2D porous TiO2, single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv. Mater. 2018, 30, 1705666. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Chow, B.Y.; Prakash, M.; Boyden, E.S.; Prakash, M.J. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat. Mater. 2011, 10, 596–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckert, M.; Peters, W.; Drillet, J.-F. Fast microwave-assisted hydrothermal synthesis of pure layered δ-MnO2 for multivalent ion intercalation. Materials 2018, 11, 2399. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Schaak, R.E. Size and interface modulated metal-insulator transition in solution-synthesized nanoscale VO2-TiO2-VO2 heterostructures. Angew. Chem. Int. Ed. 2017, 56, 15550–15554. [Google Scholar] [CrossRef] [PubMed]
- Kwoka, M.; Lyson-Sypien, B.; Kulis, A.; Maslyk, M.; Borysiewicz, M.A.; Kaminska, E.; Szuber, J. Surface properties of nanostructured, porous ZnO thin films prepared by direct current reactive magnetron sputtering. Materials 2018, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Mosso, M.; Pérez-González, M.; García-Tinoco, P.E.; Crotte-Ledesma, H.; Morales-Luna, M.; Tomás, S.A. Enhanced photocatalytic activity of amorphous MoO3 thin films deposited by rf reactive magnetron sputtering. Catal. Today 2018. [Google Scholar] [CrossRef]
- Ahmed, B.; Shahid, M.; Nagaraju, D.H.; Anjum, D.H.; Hedhili, M.N.; Alshareef, H.N. Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable li ion battery anodes. ACS Appl. Mater. Interfaces 2015, 7, 13154–13163. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.E.; Jadhav, P.R.; Tarwal, N.L.; Deshmukhc, H.P.; Karanjkard, M.M.; Patil, P.S. Electrochromic performance of mixed V2O5-MoO3 thin films synthesized by pulsed spray pyrolysis technique. Curr. Appl. Phys. 2011, 14, 389–395. [Google Scholar] [CrossRef]
- Guo, X.G.; Li, X.M.; Li, H.R.; Zhang, D.X.; Lai, C.; Li, W.L. A comprehensive investigation on the electrophoretic deposition (EPD) of nano-Al/Ni energetic composite coatings for the combustion application. Surf. Coat. Tech. 2015, 265, 83–91. [Google Scholar] [CrossRef]
- Guo, X.G.; Lai, C.; Jiang, X.; Mi, W.H.; Yin, Y.J.; Li, X.M.; Shu, Y.J. Remarkably facile fabrication of extremely superhydrophobic high-energy binary composite with ultralong lifespan. Chem. Eng. J. 2018, 335, 843–854. [Google Scholar] [CrossRef]
- Guo, X.G.; Li, X.M. An expanding horizon: Facile fabrication of highly superhydrophobic coatings. Mater. Lett. 2017, 186, 357–360. [Google Scholar] [CrossRef]
- Brassard, J.-D.; Sarkar, D.K.; Perron, J. Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films. ACS Appl. Mater. Interfaces 2011, 3, 3583–3588. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.L.; Feng, Y.J.; Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 2015, 54, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sathasivam, S.; Song, J.L.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Marmur, A.; Della Volpe, C.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Butt, H.-J.; Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Larmour, I.A.; Bell, S.E.J.; Saunders, G.C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew. Chem. Int. Ed. 2007, 119, 1740–1742. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liang, T. Electrophoresis Assembly of Novel Superhydrophobic Molybdenum Trioxide (MoO3) Films with Great Stability. Materials 2019, 12, 336. https://doi.org/10.3390/ma12030336
Guo X, Liang T. Electrophoresis Assembly of Novel Superhydrophobic Molybdenum Trioxide (MoO3) Films with Great Stability. Materials. 2019; 12(3):336. https://doi.org/10.3390/ma12030336
Chicago/Turabian StyleGuo, Xiaogang, and Taotao Liang. 2019. "Electrophoresis Assembly of Novel Superhydrophobic Molybdenum Trioxide (MoO3) Films with Great Stability" Materials 12, no. 3: 336. https://doi.org/10.3390/ma12030336
APA StyleGuo, X., & Liang, T. (2019). Electrophoresis Assembly of Novel Superhydrophobic Molybdenum Trioxide (MoO3) Films with Great Stability. Materials, 12(3), 336. https://doi.org/10.3390/ma12030336