Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives
Abstract
:1. Introduction
2. Butanol Production Routes
2.1. Biotechnological Processes for Bio-Based Butanol Production
2.1.1. Clostridia as Butanol Producers
2.1.2. Metabolism
2.1.3. Carbon Sources
2.1.4. Improvement Strategies
Processes Improvement
Strain Improvement
2.2. Chemical Processes for Producing Butanol from Bio-Ethanol
One-Step Continuous Process for the Production of Butanol by Catalytic Conversion of Bioethanol in the Sub-/Supercritical State
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Scott, F.; Quintero, J.; Morales, M.; Conejeros, R.; Cardona, C.; Aroca, G. Process Design and Sustainability in the Production of Bioethanol from Lignocellulosic Materials. Electron. J. Biotechnol. 2013, 16. [Google Scholar] [CrossRef]
- Goldemberg, J. Ethanol for a Sustainable Energy Future. Science 2007, 315, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Dragone, G.; Guimarães, P.M.R.; Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C.; Vicente, A.; Domingues, L.; Teixeira, J.A. Technological Trends, Global Market, and Challenges of Bio-Ethanol Production. Biotechnol. Adv. 2010, 28, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Anbarasan, P.; Baer, Z.C.; Sreekumar, S.; Gross, E.; Binder, J.B.; Blanch, H.W.; Clark, D.S.; Toste, F.D. Integration of Chemical Catalysis with Extractive Fermentation to Produce Fuels. Nature 2012, 491, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Tanaka, S. Ethanol Fermentation from Biomass Resources: Current State and Prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642. [Google Scholar] [CrossRef]
- Bai, F.W.; Anderson, W.A.; Moo-Young, M. Ethanol Fermentation Technologies from Sugar and Starch Feedstocks. Biotechnol. Adv. 2008, 26, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Szopa, J.; Patelski, P. Biotechnological trends in sugar beet processing. Sug. Ind. Mag. 2006, 11, 326–327. [Google Scholar]
- Dodić, S.; Popov, S.; Dodić, J.; Ranković, J.; Zavargo, Z.; Jevtić Mučibabić, R. Bioethanol Production from Thick Juice as Intermediate of Sugar Beet Processing. Biomass Bioenergy 2009, 33, 822–827. [Google Scholar] [CrossRef]
- Hinková, A.; Bubník, Z. Sugar Beet as a Raw Material for Bioethanol Production. Czech J. Food Sci. 2001, 19, 224–234. [Google Scholar] [CrossRef]
- Leiper, K.A.; Schlee, C.; Tebble, I.; Stewart, G.G. The Fermentation of Beet Sugar Syrup to Produce Bioethanol. J. Inst. Brew. 2006, 112, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.Q. Mechanisms of Yeast Stress Tolerance and Its Manipulation for Efficient Fuel Ethanol Production. J. Biotechnol. 2009, 144, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Knothe, G.; Dunn, R. Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel. ACS Symp. Ser. 1997, 666, 172–208. [Google Scholar] [CrossRef]
- Fukuda, H.; Kondo, A.; Noda, H. Biodiesel Fuel Production by Transesterification of Oils. J. Biosci. Bioeng. 2001, 92, 405–416. [Google Scholar] [CrossRef]
- Barnwal, B.K.; Sharma, M.P. Prospects of Biodiesel Production from Vegetable Oils in India. Renew. Sustain. Energ Rev. 2005, 9, 363–378. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel Production from Vegetable Oils via Catalytic and Non-Catalytic Supercritical Methanol Transesterification Methods. Prog. Energy Combust. 2005, 31, 466–487. [Google Scholar] [CrossRef]
- Van Gerpen, J. Biodiesel Processing and Production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical Aspects of Biodiesel Production by Transesterification—A Review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A Review on Biodiesel Production Using Catalyzed Transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N. The Effects of Catalysts in Biodiesel Production: A Review. J. Ind. Eng. Chem. 2013, 19, 14–26. [Google Scholar] [CrossRef]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A Review on Novel Processes of Biodiesel Production from Waste Cooking Oil. Appl. Energy 2013, 104, 683–710. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for Biodiesel Production and Other Applications: A Review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S. Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A Critical Review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Kröger, M.; Müller-Langer, F. Review on Possible Algal-Biofuel Production Processes. Biofuels 2012, 3, 333–349. [Google Scholar] [CrossRef]
- Stabnikova, O.; Wang, J.-Y.; Ivanov, V. Value-Added Biotechnological Products from Organic Wastes. In Environmental Biotechnology; Humana Press: Totowa, NJ, USA, 2010; pp. 343–394. [Google Scholar]
- Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef]
- Sanderson, K. Lignocellulose: A Chewy Problem. Nature 2011, 474, S12–S14. [Google Scholar] [CrossRef] [PubMed]
- Luterbacher, J.S.; Rand, J.M.; Alonso, D.M.; Han, J.; Youngquist, J.T.; Maravelias, C.T.; Pfleger, B.F.; Dumesic, J.A. Nonenzymatic Sugar Production from Biomass Using Biomass-Derived-Valerolactone. Science 2014, 343, 277–280. [Google Scholar] [CrossRef] [PubMed]
- González-García, S.; Moreira, M.T.; Feijoo, G. Comparative Environmental Performance of Lignocellulosic Ethanol from Different Feedstocks. Renew. Sustain. Energy Rev. 2010, 14, 2077–2085. [Google Scholar] [CrossRef]
- Dziugan, P.; Balcerek, M.; Pielech-Przybylska, K.; Patelski, P. Evaluation of the Fermentation of High Gravity Thick Sugar Beet Juice Worts for Efficient Bioethanol Production. Biotechnol. Biofuels 2013, 6, 158–168. [Google Scholar] [CrossRef]
- Xue, C.; Zhao, X.-Q.; Liu, C.-G.; Chen, L.-J.; Bai, F.-W. Prospective and Development of Butanol as an Advanced Biofuel. Biotechnol. Adv. 2013, 31, 1575–1584. [Google Scholar] [CrossRef]
- Pfromm, P.H.; Amanor-Boadu, V.; Nelson, R.; Vadlani, P.; Madl, R. Bio-Butanol vs. Bio-Ethanol: A Technical and Economic Assessment for Corn and Switchgrass Fermented by Yeast or Clostridium Acetobutylicum. Biomass Bioenergy 2010, 34, 515–524. [Google Scholar] [CrossRef]
- Lanzafame, P.; Temi, D.M.; Perathoner, S.; Centi, G.; Macario, A.; Aloise, A.; Giordano, G. Etherification of 5-Hydroxymethyl-2-Furfural (HMF) with Ethanol to Biodiesel Components Using Mesoporous Solid Acidic Catalysts. Catal. Today 2011, 175, 435–441. [Google Scholar] [CrossRef]
- Shi, S.; Yue, C.; Wang, L.; Sun, X.; Wang, Q. A Bibliometric Analysis of Anaerobic Digestion for Butanol Production Research Trends. Procedia Environ. Sci. 2012, 16, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Gautam, M.; Martin, D.W. Combustion Characteristics of Higher-Alcohol/gasoline Blends. Proc. Inst. Mech. Eng. A J. Power Energy 2000, 214, 497–511. [Google Scholar] [CrossRef]
- Patakova, P.; Maxa, D.; Rychtera, M.; Linhova, M.; Fribert, P.; Muzikova, Z.; Lipovsky, J.; Paulova, L.; Pospisil, M.; Sebor, G.; et al. Perspectives of Biobutanol Production and Use. In Biofuel’s Engineering Process Technology; In Tech: Zagreb, Croatia, 2011; pp. 243–266. [Google Scholar]
- Mascal, M. Chemicals from Biobutanol: Technologies and Markets. Biofuel Bioprod. Biorefin. 2012, 6, 483–493. [Google Scholar] [CrossRef]
- Kumar, M.; Goyal, Y.; Sarkar, A.; Gayen, K. Comparative Economic Assessment of ABE Fermentation Based on Cellulosic and Non-Cellulosic Feedstocks. Appl. Energy 2012, 93, 193–204. [Google Scholar] [CrossRef]
- Jurgens, G.; Survase, S.; Berezina, O.; Sklavounos, E.; Linnekoski, J.; Kurkijärvi, A.; Väkevä, M.; van Heiningen, A.; Granström, T. Butanol Production from Lignocellulosics. Biotechnol. Lett. 2012, 34, 1415–1434. [Google Scholar] [CrossRef]
- Kamiński, W.; Tomczak, E.; Górak, A. Biobutanol-production and purification methods. Biobutanol-metody wytwarzania i oczyszczania. Ecol. Chem. Eng. Sci. 2011, 18, 31–37. [Google Scholar]
- Ndaba, B.; Chiyanzu, I.; Marx, S. N-Butanol Derived from Biochemical and Chemical Routes: A Review. Biotechnol. Rep. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Robinson, G.C. A study of the acetone and butyl alcohol fermentation of various carbohydrates. J. Biol. Chem. 1922, 53, 125–155. [Google Scholar]
- Killeffer, D.H. Butanol and acetone from corn. Ind. Eng. Chem. 1927, 19, 46–50. [Google Scholar] [CrossRef]
- Gabriel, C.L.; Crawford, F.M. Development of the butyl-acetonic fermentation industry. Ind. Eng. Chem. 1930, 22, 1163–1165. [Google Scholar] [CrossRef]
- Davies, R.; Stephenson, M. Studies on the acetone-butyl alcohol fermentation. 1. Nutritional and other factors involved in the preparation of active suspensions of Cl. acetobutylicum (Weizmann). Biochem. J. 1941, 35, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Langlykke, A.F.; van Lanen, J.M.; Fraser, D.R. Butyl alcohol from xylose saccharification liquors from corncobs. Ind. Eng. Chem. 1948, 40, 1716–1719. [Google Scholar] [CrossRef]
- Rose, A.H. Industrial Microbiology; Butterworths: London, UK, 1961. [Google Scholar]
- Rosenberg, S.L. Fermentation of pentose sugars to ethanol and other neutral products by microorganisms. Enzyme Microb. Technol. 1980, 2, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Weigel, J. Fermentation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia 1980, 36, 1434–1446. [Google Scholar] [CrossRef]
- Zeikus, J.G. Chemical and fuel production by anaerobic bacteria. Annu. Rev. Microbiol. 1980, 34, 423–464. [Google Scholar] [CrossRef] [PubMed]
- Calam, C.T. Isolation of Clostridium acetobutylicum strains producing butanol and acetone. Biotechnol. Lett. 1980, 2, 111–116. [Google Scholar] [CrossRef]
- Haggstrom, L.; Molin, N. Calcium alginate immobilized cells of Clostridium acetobutylicum for solvent production. Biotechnol. Lett. 1980, 2, 241–246. [Google Scholar] [CrossRef]
- Maddox, I.S. Production of n-butanol from whey filtrate using Clostridium acetobutylicum NCIB 2951. Biotechnol. Lett. 1980, 2, 493–498. [Google Scholar] [CrossRef]
- Gheshlaghi, R.; Scharer, J.M.; Moo-Young, M.; Chou, C. Metabolic pathways of clostridia for producing butanol. Biotechnol. Adv. 2009, 27, 764–781. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, D.; Srivastava, D.; Mishra, I.; Upadhyay, S.N.; Mishra, P.K. Recent trends in biobutanol production. Rev. Chem. Eng. 2018. [Google Scholar] [CrossRef]
- Lan, E.I.; Liao, J.C. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour. Technol. 2013, 135, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Cangenella, F.; Weigel, J. The potential of thermophilic clostridia in biotechnology. In Woods DR; The Clostridia and Biotechnology: Reading, MA, USA, 1993; pp. 393–429. [Google Scholar]
- Mitchell, W.J. Physiology of carbohydrates to solvent conversion by clostridia. Adv. Microb. Physiol. 1998, 39, 31–130. [Google Scholar] [CrossRef]
- Mitchell, W.J.; Albasheri, K.A.; Yazdanian, M. Factors affecting utilization of carbohydrates by clostridia. FEMS Microbiol. 1995, 17, 317–329. [Google Scholar] [CrossRef]
- Gottwald, M.; Hippe, H.; Gottschalk, G. Formation of n-butanol from d-glucose by strains of “Clostridium tetanomorphum” group. Appl. Environ. Microbiol. 1984, 48, 573–576. [Google Scholar] [PubMed]
- George, H.A.; Johnson, J.L.; Moore, W.E.C.; Holdeman, L.V.; Chen, J.S. Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutylicum. Appl. Environ. Microbiol. 1983, 45, 1160–1163. [Google Scholar] [PubMed]
- George, H.A.; Chen, J.S. Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym. C. butylicum). Appl. Environ. Microbiol. 1983, 46, 321–327. [Google Scholar]
- Jones, T.J.; Woods, D.R. Solvent production. In Clostridia; Minton, N.P., Clarke, D.J., Eds.; Plenum Press: New York, NY, USA, 1989; pp. 105–144. [Google Scholar]
- Johnson, M.J.; Peterson, W.H.; Fred, E.B. Oxidation and reduction relations between substrate and products in the acetone-butylalcohol fermentation. J. Biol. Chem. 1931, 91, 569–591. [Google Scholar]
- Bahl, H.; Andersch, W.; Braun, K.; Gottschalk, G. Effect on pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum growing in a continuous culture. Eur. J. Appl. Microbiol. Biotechnol. 1982, 14, 17–20. [Google Scholar] [CrossRef]
- Ballongue, J.; Amine, J.; Masion, E.; Petitdemange, H.; Gay, R. Induction of acetoacetate decarboxylase in Clostridium acetobutylicum. FEMS Microbiol. Lett. 1985, 29, 273–277. [Google Scholar] [CrossRef]
- Fond, O.; Matta-Ammouri, G.; Petitdemange, H.; Engasser, J.M. The role of acids on the production of acetone and butanol by Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 1985, 22, 195–200. [Google Scholar] [CrossRef]
- Kell, D.B.; Peck, M.W.; Rodger, G.; Morris, J.G. On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum. Biochem. Biophys. Res. Commun. 1973, 99, 81–88. [Google Scholar] [CrossRef]
- Moreira, A.R.; Ulmer, D.C.; Linden, J.C. Butanol toxicity in the butylic fermentation. Biotechnol. Bioeng. Symp. 1981, 11, 567–579. [Google Scholar]
- Vollherbst-Schneck, K.J.A.; Sands, A.; Montencourt, B.S. Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 1984, 47, 193–194. [Google Scholar] [PubMed]
- Bowles, L.K.; Ellefson, W.L. Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 1985, 50, 1165–1170. [Google Scholar] [PubMed]
- Rogers, P. Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv. Appl. Microbiol. 1986, 31, 1–60. [Google Scholar] [CrossRef]
- Kotze, J.P. Glycolytic and related enzymes in clostridial classification. Appl. Microbiol. 1969, 18, 744–747. [Google Scholar] [PubMed]
- Gottschalk, G. Bacterial Metabolism; Springer: New York, NY, USA, 1986. [Google Scholar]
- Thauer, R.K.; Jungermann, K.; Dekker, K. Energy conservation in chemotropic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100–180. [Google Scholar] [PubMed]
- Doelle, H.W. Bacterial Metabolism; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Ounine, K.; Petitdemange, H.; Raval, G.; Gay, R. Acetone-butanol production from pentoses by Clostridium acetobutylicum. Biotechnol. Lett. 1983, 5, 605–610. [Google Scholar] [CrossRef]
- Cynkin, M.A.; Delwiche, E.A. Metabolism of pentoses by clostridia. I. Enzymes of ribose dissimilation in extracts of Clostridium perfringens. J. Bacteriol. 1958, 75, 331–334. [Google Scholar] [PubMed]
- Uyeda, K.; Rabinowitz, J.C. Pyruvate-ferredoxin oxidoreductase. III. Purification and properties of the enzyme. J. Bacteriol. Chem. 1971, 246, 3111–3119. [Google Scholar]
- Uyeda, K.; Rabinowitz, J.C. Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J. Bacteriol. Chem. 1971, 246, 3120–3125. [Google Scholar]
- Kim, B.H.; Bellows, P.; Datta, R.; Zeikus, J.G. Control of carbon and electron flow in Clostridium acetobutylicum fermentations: Utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Appl. Environ. Microbiol. 1984, 48, 764–770. [Google Scholar] [PubMed]
- Hartmanis, M.G.N.; Gatenbeck, S. Intermediary metabolism in Clostridium acetobutylicum: Levels of enzymes involved in the formation of acetate and butyrate. Appl. Environ. Microbiol. 1984, 47, 1277–1283. [Google Scholar]
- Seedorf, H.; Fricke, W.F.; Veith, B.; Brüggemann, H.; Liesegang, H.; Strittmatter, A.; Miethke, M.; Buckel, W.; Hinderberger, J.; Li, F.; et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc. Natl. Acad. Sci. USA 2008, 105, 2128–2133. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Lee, J.; Malaviya, A.; Seung, Y.; Cho, J.H.; Lee, S.Y. Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering. Biotechnol. J. 2012, 7, 186–198. [Google Scholar] [CrossRef]
- Köpke, M.; Held, C.; Hujer, S.; Liesegang, H.; Wiezer, A.; Wollherr, A.; Ehrenreich, A.; Liebl, W.; Gottschalk, G.; Dürre, P. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA 2010, 107, 13087–13092. [Google Scholar] [CrossRef]
- Munasinghe, P.C.; Khanal, S.K. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresour. Technol. 2010, 101, 5013–5022. [Google Scholar] [CrossRef]
- Tracy, B.P.; Jones, S.W.; Fast, A.G.; Indurthi, D.C.; Papoutsakis, E.T. Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr. Opin. Biotechnol. 2012, 23, 364–381. [Google Scholar] [CrossRef]
- Jones, D.T.; Woods, D.R. Acetone-butanol fermentation revisited. Microbiol. Rev. 1986, 50, 484–524. [Google Scholar] [PubMed]
- Qureshi, N.; Blaschek, H.P. Recent advances in ABE fermentation: Hyper-butanol producing Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 2001, 27, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Lolas, A.; Blaschek, H.P. Soy molases as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 2001, 26, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Ezeji, T.; Groberg, M.; Qureshi, N.; Blaschek, H.P. Continous production of butanol from starch-based packaking peanuts. Appl. Biochem. Biotechnol. 2003, 105–108, 375–382. [Google Scholar] [CrossRef]
- Madihah, M.S.; Ariff, A.B.; Sahaid, K.M.; Suraini, A.A.; Karim, M.I.A. Direct fermentation of gelatinized sago starch to acetone butanol ethanol by Clostridium acetobutylicum. World J. Microbiol. Biotechnol. 2001, 17, 567–576. [Google Scholar] [CrossRef]
- Thang, V.H.; Kanka, K.; Kobayashi, G. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl. Biochem. Biotechnol. 2010, 161, 157–170. [Google Scholar] [CrossRef]
- Liu, Z.; Ying, Y.; Li, F.; Ma, C.; Xu, P. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 2010, 37, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Saha, B.C.; Cotta, M.A. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosys. Eng. 2007, 30, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Al-Shorgani, N.K.; Kalil, M.S.; Yusoff, W.M. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst. Eng. 2012, 35, 817–826. [Google Scholar] [CrossRef]
- Al-Shorgani, N.K.; Al-Tabib, A.I.; Kalil, M.S. Production of butanol from acetyl chloride-treated deoiled rice bran by Clostridium acetobutylicum YM1. Bioresources 2017, 12, 8505–8518. [Google Scholar] [CrossRef]
- Lopez-Contreras, A.M.; Claassen, P.A.M.; Mooibroek, W.; De Vos, W.M. Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol. Appl. Microbiol. Biotechnol. 2000, 54, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Claassen, P.A.M.; van Lier, J.B.; Lopez Contreras, A.M.; van Niel, E.W.J.; Sijtsma, L.; Stams, A.J.M.; de Vries, S.S.; Weusthuis, R.A. Utilisation of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 1999, 52, 741–755. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Nikolskaya, A.B.; Lyagin, I.V.; Senko, O.V.; Makhlis, T.A.; Stepanov, N.A.; Maslova, O.V.; Mamedova, F.; Varfolomeev, S.D. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour. Technol. 2012, 114, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.T.; Hengge, N.N.; Sims, R.C.; Miller, C.D. Acetone, butanol, and ethanol production from wastewater algae. Bioresour. Technol. 2012, 111, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Park, J.H.; Jang, S.H.; Nielsen, L.K.; Kim, J.; Jung, K.S. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 2008, 101, 209–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zverlov, V.V.; Berezina, O.; Velikodvorskaya, G.A.; Schwarz, W.H. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: Use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biotechnol. 2006, 71, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Biotechnology of Lignocellulose: Theory and Practice; Chemical Industry Press: Beijing, China; Springer Science Business Media: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Blanch, H.W.; Simmons, B.A.; Klein-Marcuschamer, D. Biomass desconstruction to sugars. Biotechnol. J. 2011, 6, 1086–1102. [Google Scholar] [CrossRef]
- Qureshi, N.; Saha, B.C.; Dien, B.; Hector, R.E.; Cotta, M.A. Production of butanol (a biofuel) from agricultural residues: Part I—Use of barley straw hydrolysate. Biomass Bioenergy 2010, 34, 559–565. [Google Scholar] [CrossRef]
- Qureshi, N.; Saha, B.C.; Hector, R.E.; Diena, B.; Hughes, S.; Liu, S.; Iten, L.; Bowman, M.J.; Sarath, G.; Cotta, M.A. Production of butanol (a biofuel) from agricultural residues: Part II—Use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 2010, 34, 566–571. [Google Scholar] [CrossRef]
- Nunes, A.A.; Franca, A.S.; Oliveira, L.S. Activated carbons from waste biomass: An alternative use for biodiesel production solid residues. Bioresour. Technol. 2009, 100, 1786–1792. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A.; FAO. Global Food LOSSES and Food Waste—Extent, Causes and Prevention. In Study Conducted for the International Congress SAVE FOOD! at Interpack2011, Düsseldorf, Germany; FAO: Rome, Italy, 2011. [Google Scholar]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Voget, C.E.; Mignone, C.F.; Ertola, R.J. Butanol production from apple pomace. Biotechnol. Lett. 1985, 7, 43–46. [Google Scholar] [CrossRef]
- Survase, S.A.; Sklavounos, E.; van Heiningen, A.; Granström, T. Market refused vegetables as a supplement for improved acetone–butanol–ethanol production by Clostridium acetobutylicum DSM 792. Ind. Crop. Prod. 2013, 45, 349–354. [Google Scholar] [CrossRef]
- Qureshi, N.; Ezeji, T.C.; Ebener, J.; Dien, B.S.; Cotta, M.A.; Blaschek, H.P. Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour. Technol. 2008, 99, 5915–5922. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Saha, B.C.; Hector, R.E.; Hughesb, S.R.; Cottaa, M.A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I-batch fermentation. Biomass Bioenergy 2008, 32, 168–175. [Google Scholar] [CrossRef]
- Qureshi, N.; Saha, B.C.; Hector, R.E.; Cotta, M.A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II—Fed batch fermentation. Biomass Bioenergy 2008, 32, 176–185. [Google Scholar] [CrossRef]
- Qureshi, N.; Saha, B.C.; Hector, R.E.; Cotta, M.A. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy 2008, 32, 1353–1358. [Google Scholar] [CrossRef]
- Mariano, A.P.; Costa, C.B.B.; Angelis, D.F.; Filho, F.M.; Atala, D.I.P.; Maciel, M.R.W.; Filho, R.M. Optimisation of a continuous flash fermentation for butanol production using the response surface methodology. Chem. Eng. Res. Des. 2010, 88, 562–571. [Google Scholar] [CrossRef]
- Zheng, Y.N.; Li, L.Z.; Xian, M.; Ma, Y.J.; Yang, J.M.; Xu, X.; He, D.Z. Problems with the microbial production of butanol. J. Ind. Microbiol. Biotechnol. 2009, 36, 1127–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becerra, M.; Cerdán, M.E.; González-Siso, M.I. Biobutanol from cheese whey. Microb. Cell Factories 2015, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Gayen, K. Developments in biobutanol production: New insights. Appl. Energy 2011, 88, 1999–2012. [Google Scholar] [CrossRef]
- Ezeji, T.C.; Qureshi, N.; Blaschek, H.P. Acetone butanol ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 2004, 63, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Ezeji, T.; Qureshi, N.; Blaschek, H.P. Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 2007, 97, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Paez, K.M.; Alvarado-Michi, E.L.; Buitron, G.; Valdez-Vazquez, I. Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. Int. J. Hydrog. Energy 2019, 44, 2289–2297. [Google Scholar] [CrossRef]
- Cho, D.H.; Lee, Y.J.; Um, Y.; Sang, B.I.; Kim, Y.H. Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl. Microbiol. Biotechnol. 2009, 83, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, E.; Hahn-Hagerdal, B. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxication. Bioresour. Technol. 2000, 74, 17–24. [Google Scholar] [CrossRef]
- Gottumukkala, D.L.; Haigh, K.; Görgens, J. Trends and advances in conversion of lignocellulosic biomass to biobutanol: Microbes, bioprocesses and industrial viability. Renew. Sustain. Energy Rev. 2017, 76, 963–973. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Malaviya, A.; Cho, C.; Lee, J.; Lee, S.Y. Butanol production from renewable biomass by clostridia. Bioresour. Technol. 2012, 123, 653–663. [Google Scholar] [CrossRef]
- Dolejs, I.; Rebroš, M.; Rosenberg, M. Immobilisation of Clostridium spp. for production of solvents and organic acids. Chem. Pap. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Huang, W.-C.; Ramey, D.E.; Yang, S.-T. Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed reactor. Appl. Biochem. Biotechnol. 2004, 113, 887–898. [Google Scholar] [CrossRef]
- Napoli, F.; Olivieri, G.; Marzocchella, A.; Russo, M.E.; Salatino, P. Production of butanol in a continuous packed bed reactor of Clostridium acetobutylicum. Chem. Eng. Trans. 2010, 20, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Lai, L.L.; Blaschek, H.P. Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod. Process. 2004, 82, 164–173. [Google Scholar] [CrossRef]
- Zheng, J.; Tashiro, Y.; Yoshida, T.; Gao, M.; Wang, Q.; Sonomoto, K. Continuous butanol fermentation from xylose with high cell density by cell recycling system. Bioresour. Technol. 2013, 129, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ramírez, E.; Quiroz-Ramírez, J.J.; Segovia-Hernández, J.G.; Hernández, S.; Ponce-Ortega, J.M. Economic and environmental optimization of the biobutanol purification process. Clean Technol. Environ. 2016, 18, 395–411. [Google Scholar] [CrossRef]
- Grady, M.C.; Jahic, M.; Patnaik, R. A Method for Producing Butanol Using Two-Phase Extractive Fermentation. U.S. Patent No. 12/478,389, 4 June 2009. [Google Scholar]
- Roffler, S.; Blanch, H.; Wilke, C.R. Extractive Fermentation of Acetone and Butanol: Process Design and Economic Evaluation. Biotechnol. Prog. 1987, 3, 131–140. [Google Scholar] [CrossRef]
- Evans, P.J.; Wang, H.Y. Enhancement of Butanol Formation by Clostridium acetobutylicum in the Presence of Decanol-Oleyl Alcohol Mixed Extractants. Appl. Environ. Microbiol. 1988, 54, 1662–1667. [Google Scholar] [PubMed]
- Xue, C.; Liu, F.; Xu, M.; Zhao, J.; Chen, L.; Ren, J.; Bai, F.; Yang, S.-T. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnol Bioeng. 2016, 113, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-F.; Tian, J.; Ji, Z.-H.; Song, M.-Y.; Li, H. Intracellular metabolic changes of Clostridium acetobutylicum and promotion to butanol tolerance during biobutanol fermentation. Int. J. Biochem. Cell Biol. 2016, 78, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gua, Q.; Liao, C.; Yu, X. Enhancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol–glycerol storage during long-term preservation. Biomass Bioenerg 2014, 69, 192–197. [Google Scholar] [CrossRef]
- Lin, Y.L.; Blaschek, H.P. Butanol production by a butanol-tolerant strain of Clostridium acetobutyricum in extruded corn broth. Appl. Environ. Microbiol. 1983, 45, 966–973. [Google Scholar] [PubMed]
- Syed, Q.; Nadeem, M.; Nelofer, R. Enhanced butanol production by mutant strains of Clostridium acetobutylicum in molasses medium. Turk. J. Biochem. 2008, 33, 25–30. [Google Scholar]
- Duerre, P. Fermentative production of butanol–the academic perspective. Curr. Opin. Biotechnol. 2011, 22, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Yao, M.; Liu, H.; Lee, C.F.; Ji, J. Progress in the production and application of n-butanol as a biofuel. Renew. Sustain. Energy Rev. 2011, 15, 4080–4106. [Google Scholar] [CrossRef]
- Lee, J.; Jang, Y.S.; Choi, S.J.; Im, J.A.; Hyohak Song, H.; Cho, J.H.; Seung, D.Y.; Papoutsakis, E.T.; Bennett, G.N.; Lee, S.Y. Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation. Appl. Environ. Microbiol. 2012, 78, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Yoshida, T.; Noguchi, T.; Sonomoto, K. Recent advances and future prospects for increased butanol production by acetone-butanol-ethanol fermentation. Eng. Life Sci. 2013, 13, 432–445. [Google Scholar] [CrossRef]
- Torres, N.V.; Voit, E.O. Pathway Analysis and Optimization in Metabolic Engineering; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Papoutsakis, E.T. Engineering solventogenic clostridia. Curr. Opin. Biotechnol. 2008, 19, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.; Kayser, K.J. (Eds.) Chromosomal Mutagenesis; Humana Press Inc.: Totowa, NJ, USA, 2008. [Google Scholar]
- Jiang, Y.; Xu, C.; Dong, F.; Yang, Y.; Jiang, W.; Yang, S. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab. Eng. 2009, 11, 284–291. [Google Scholar] [CrossRef]
- de Gérando, H.M.; Wasels, F.; Bisson, A.; Clement, B.; Bidard, F.; Jourdier, E.; López-Contreras, A.M.; Ferreira, N.L. Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423. BMC Genom. 2018, 19, 242. [Google Scholar] [CrossRef]
- Garcia, V.; Pakkila, J.; Ojamo, H.; Muurinen, E.; Keiski, R.L. Challenges in biobutanol production: How to improve the efficiency? Renew. Sustain. Energy Rev. 2011, 15, 964–980. [Google Scholar] [CrossRef]
- Cornillot, E.; Nair, R.V.; Papoutsakis, E.T.; Soucaille, P. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 1997, 179, 5442–5447. [Google Scholar] [CrossRef]
- Sillers, R.; Chow, A.; Tracy, B.; Papoutsakis, E.T. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab. Eng. 2008, 10, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhao, C.; Zhang, T.; Zhu, H.; Zhao, L.; Tao, W.; Zhang, Y.; Li, Y. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metab. Eng. 2017, 44, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Inui, M.; Suda, M.; Kimura, S.; Yasuda, K.; Suzuki, H.; Toda, H.; Yamamoto, S.; Okino, S.; Suzuki, N.; Yukawa, H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 2008, 77, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Berezina, O.V.; Zakharova, N.V.; Brandt, A.; Yarotsky, S.V.; Schwarz, W.H.; Zverlov, V.V. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl. Microbiol. Biotechnol. 2010, 87, 635–646. [Google Scholar] [CrossRef]
- Steen, E.J.; Chan, R.; Prasad, N.; Myers, S.; Petzold, C.J.; Redding, A.; Oellet, M.; Keasling, J.D. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories 2008, 7, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Veibel, S.; Nielsen, J.I. On the mechanism of the Guerbet reaction. Tetrahedron 1967, 23, 1723–1733. [Google Scholar] [CrossRef]
- O’Lenick, A.J., Jr. Guerbet chemistry. J. Surfactants Deterg. 2001, 4, 311–315. [Google Scholar] [CrossRef]
- Knothe, G. Synthesis, applications, and characterization of Guerbet compounds and their derivatives. Lipid Technol. 2002, 14, 101–104. [Google Scholar]
- Van Noorden, R. Chemical treatment could cut cost of biofuel. Nature 2014. [Google Scholar] [CrossRef]
- Carlini, C.; Di Girolamo, M.; Macinai, A.; Marchionna, M.; Noviello, M.; Galletti, A.M.R.; Sbrana, G. Selective synthesis of isobutanol by means of the Guerbet reaction Part 2. Reaction of methanol/ethanol and methanol/ethanol/n-propanol mixtures over copper based/MeONa catalytic systems. J. Mol. Catal. A Chem. 2003, 200, 137–146. [Google Scholar] [CrossRef]
- Ogo, S.; Onda, A.; Yanagisawa, K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl. Catal. A 2011, 402, 188–195. [Google Scholar] [CrossRef]
- Cornils, B.; Kuntz, E.G.J. Introducing TPPTS and related ligands for industrial biphasic processes. J. Organomet. Chem. 1995, 502, 177–186. [Google Scholar] [CrossRef]
- Tsuchida, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite. Ind. Eng. Chem. Res. 2006, 45, 8634–8642. [Google Scholar] [CrossRef]
- Joris, S.J.; Amberg, C.H. Nature of deficiency in nonstoichiometric hydroxyapatites. J. Phys. Chem. 1971, 75, 3167–3171. [Google Scholar] [CrossRef]
- Tsuchida, T.; Kubo, J.; Yoshioka, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 2008, 259, 183–189. [Google Scholar] [CrossRef]
- Ho, C.R.; Shylesh, S.; Bell, A.T. Mechanism and Kinetics of Ethanol Coupling to Butanol over Hydroxyapatite. ACS Catal. 2016, 6, 939–948. [Google Scholar] [CrossRef]
- Hanspal, S.; Young, Z.D.; Prillaman, T.; Davis, R.J. Influence of surface acid and base site on the Guerbert coupling of ethanol to butanol over metal phosphate catalysts. J. Catal. 2017, 352, 182–190. [Google Scholar] [CrossRef]
- Young, Z.D.; Davis, R.J. Hydrogen transfer reactions relevant to Guerbet coupling of alcohols over hydroxyaopatite and magnesium oxide catalysts. Catal. Sci. Technol. 2018, 8, 1722–1729. [Google Scholar] [CrossRef]
- Ndou, A.S.; Plint, N.; Coville, N.J. Dimerisation of ethanol to butanol over solid-base catalysts. Appl. Catal. A Gen. 2003, 251, 337–345. [Google Scholar] [CrossRef]
- Yang, C.; Meng, Z. Bimolecular condensation of ethanol to 1-butanol catalyzed by Alkali Cation Zeolites. J. Catal. 1993, 142, 37–44. [Google Scholar] [CrossRef]
- Li, X.N.; Peng, S.S.; Feng, L.N.; Lu, S.Q.; Ma, L.J.; Yue, M.B. One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol. Microporous Mesoporous Mater. 2018, 261, 44–50. [Google Scholar] [CrossRef]
- Yang, K.W.; Jiang, X.Z.; Zhang, W.C. One-step synthesis of n-butanol from ethanol condensation over alumina-supported metal catalysts. Chin. Chem. Lett. 2004, 15, 1497–1500. [Google Scholar]
- Apuzzo, J.; Cimino, S.; Lisi, L. Ni or Ru supported on MgO/γ-Al2O3 pellets for the catalytic conversion of ethanol into butanol. RSC Adv. 2018, 8, 25846–25855. [Google Scholar] [CrossRef]
- Cimino, S.; Lisi, L.; Romanucci, S. Catalysts for conversion of ethanol to butanol: Effect of acid-base and redox properties. Catal. Today 2018, 304, 58–63. [Google Scholar] [CrossRef]
- Wu, X.; Fang, G.; Liang, Z.; Leng, W.; Xu, K.; Jiang, D.; Ni, J.; Li, X. Catalytic upgrading of ethanol to n-butanol over M-CeO2/AC (M = Cu, Fe, Co, Ni and Pd) catalysts. Catal. Commun. 2017, 100, 15–18. [Google Scholar] [CrossRef]
- Onyestyak, G.; Novodarszki, G.; Wellisch, A.F.; Valyon, J.; Thakur, A.J.; Deka, D. Guerbert self-coupling for ethanol valorization over activated carbon supported catalyst. React. Kinet. Mech. Catal. 2017, 121, 31–41. [Google Scholar] [CrossRef]
- Koda, K.; Matsuura, T.; Obora, Y.; Ishii, Y. Guerbet reaction of ethanol to n-butanol catalyzed by iridium complexes. Chem. Lett. 2009, 38, 838–839. [Google Scholar] [CrossRef]
- Lenerda, M.; Storaro, L.; Ganzerla, R. Hydroformulation of simple olefins catalyzed by metals and clusters supported on unfunctionalized inorganic carriers. J. Mol. Catal. A Chem. 1996, 111, 203–237. [Google Scholar] [CrossRef]
- Riittonen, T.; Toukoniitty, E.; Madnani, D.K.; Leino, A.K.; Kordas, K.; Szabo, M.; Sapi, A.; Arve, K.; Wärnå, J.; Mikkola, J.P. One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide—The effect of the active metal on the selectivity. Catalysts 2012, 2, 68–84. [Google Scholar] [CrossRef]
- Fu, S.; Shao, Z.; Wang, Y.; Liu, Q. Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol. J. Am. Chem. Soc. 2017, 129, 11941–11948. [Google Scholar] [CrossRef]
- Kulkarni, N.V.; Brennessel, W.W.; Jones, W.D. Catalytic Upgrading of Ethanol to n-Butanol via Manganese-Mediated Guerbet Reaction. ACS Catal. 2018, 8, 997–1002. [Google Scholar] [CrossRef]
- Wu, X.; Fang, G.; Tong, Y.; Jiang, D.; Liang, Z.; Leng, W.; Liu, L.; Tu, P.; Wang, H.; Ni, J.; et al. Catalytic Upgrading of Ethanol to n-Butanol: Progress in Catalyst Development. Chem. Sustain. Chem. 2018, 11, 71–85. [Google Scholar] [CrossRef]
- Wiebus, E.; Cornils, B. Water soluble catalysts improve hydroformulation of olefins. Hydrocarb. Process. 1996, 75, 63–66. [Google Scholar]
- Michaels, W.; Zhang, H.; Luyben, W.L.; Baltrusaitis, J. Design of separation section in an ethanol-to-butanol process. Biomass Bioenergy 2018, 109, 231–238. [Google Scholar] [CrossRef]
- Lu, J.; Boughner, C.E.; Liotta, C.L.; Eckert, C.A. Nearcritical and supercritical ethanol as a benign solvent: Polarity and hydrogen-bonding. Fluid Phase Equilib. 2002, 198, 37–49. [Google Scholar] [CrossRef]
- Ghaziaskar, H.S.; Xu, C.C. One-step continuous process for the production of 1-butanol and 1-hexanol by catalytic conversion of bio-ethanol at its sub-/supercritical state. RSC Adv. 2013, 3, 4271–4280. [Google Scholar] [CrossRef]
- Dziugan, P.; Jastrzabek, K.; Binczarski, M.; Karski, S.; Witonska, I.A.; Kolesinska, B.; Kaminski, Z.J. Continuous catalytic coupling of raw bioethanol into butanol and higher homologues. Fuel 2015, 158, 81–90. [Google Scholar] [CrossRef]
- Dziugan, P.; Kamiński, Z.; Karski, S.; Kolesińska, B.; Witońska, I.; Jastrząbek, K. A Catalytic Method of Producing a Fuel Biocomponent from Bioethanol. Polish Patent PL B1227200, 26 May 2014. [Google Scholar]
- Alonso, F.; Riente, P.; Sirvent, J.A.; Yus, M. Nickel nanoparticles in hydrogen-transfer reductions: Characterisation and nature of the catalyst. Appl. Catal. A Gen. 2010, 378, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, F.; Schritt, W.; Deutsche Erdoel, A.G. Method of Producing Beta-Branched Aldehydes. U.S Patent 3,558,716, 26 January 1971. [Google Scholar]
- Witońska, I.; Karski, S.; Krawczyk, N.; Królak, A. Catalytic properties of Pd-Fe/Al2O3 systems in the reduction of nitrates(V) and nitrates(III) in drinking water. Pol. J. Environ. Stud. 2009, 18, 259–263. [Google Scholar]
- Witońska, I.; Karski, S.; Krolak, A. Catalytic hydrodechlorination of 2,4-dichlorophenol in liquid phase over Pd-Fe/Al2O3 systems. Przem. Chem. 2010, 89, 1115–1120. [Google Scholar]
- Witońska, I.; Walock, M.J.; Binczarski, M.; Lesiak, M.; Stanishevsky, A.V.; Karski, S. Pd-Fe/SiO2 and Pd-Fe/Al2O3 catalysts for selective hydrodechlorination of 2,4-dichlorophenol into phenol. J. Mol. Catal. A Chem. 2014, 393, 248–256. [Google Scholar] [CrossRef]
- Onda, A.; Ogo, S.; Yanagisawa, K. Catalyst and Alcohol Synthesis Method. U.S. Patent CA2685255C, 17 February 2011. [Google Scholar]
Fuel | Energy Density (MJ/ L) | Air-to-Fuel Ratio | Energy Content/Btu/US gallon | Research Octane Number | Water Solubility (%) |
---|---|---|---|---|---|
Gasoline | 32 | 14.6 | 114,000 | 81-89 | Negligible |
Diesel | 35.5 | 14.7 | 130,000 | nd | Negligible |
Butanol-1 | 29.2 | 11.12 | 105,000 | 78 | 7 |
Ethanol | 19.6 | 8.94 | 84,000 | 96 | 100 |
Strain | Carbon Source | Productivity (g/L) | Reference |
---|---|---|---|
C. beijerinckii | Soy molasses | 8 | [90] |
C. beijerinckii BA101 | Starch-based packing peanuts, | 18.9 | [91] |
C. acetobutylicum | Gelatinized sago starch | 16 | [92] |
C. saccharoperbutylacetonicum N1-4 | Cassava starch and cassava chip hydrolysate | 16.9 | [93] |
C.beijerinckii ATCC 55025 | Wheat bran hydrolysate | 8.8 | [94] |
C. beijerinckii | Wheat straw hydrolysate | 12 | [95] |
C. saccharoperbutylacetonicum | Rice brans | 7.7 | [96] |
C. acetobutylicum YM1 | Pretreated deoiled rice bran | 6.48 | [97] |
C. acetobutylicum | Fresh domestic wastes | 3 | [98] |
C. pasteurianum | Microalgae Dunaliella sp. and glycerol | 14.0–16.0 | [84] |
C. acetobutylicum DSM 792 | Wasted vegetables | 9.96–10.65 | [112] |
Catalyst | Manufactured | Product Code | Conver Sion [%] | Selectivity [%] | ||||
---|---|---|---|---|---|---|---|---|
Acet-Aldehyde | Diethyl Ether | Ethyl Acetate | 1-Butanol | 1,1-Diethoxy Ethane | ||||
5%Ru/Al2O3 | Degussa | H213 B/D | 2 | 8 | 1 | 30 | 19 | |
5%Ru/Al2O3 | La Roche | A 201 (self-prep.) | 12 | 54 | 3 | 2 | 9 | 31 |
5%Rh/Al2O3 | Degussa | G214 RA/D | 5 | 4 | 41 | 0 | 35 | 4 |
5%Pd/Al2O3 | Degussa | E213 R/D | 9 | 3 | 64 | 1 | 21 | 2 |
5%Pt/Al2O3 | Degussa | F 214 XPS/D | 3 | 9 | 10 | 9 | 37 | 8 |
6%Ag/Al2O3 | La Roche | A 201 (self-prep.) | 2 | 45 | 11 | 6 | 20 | 16 |
20%Ni/Al2O3 | Crossfield | HTC-500 | 5 | 5 | 7 | 4 | 62 | 3 |
20%Ni/Al2O3 | La Roche | A 201 (self-prep.) | 18 | 43 | 5 | 4 | 37 | 11 |
0.8%Au/Al2O3 | Mintek | BC3 | 6 | 18 | 31 | 15 | 35 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesinska, B.; Fraczyk, J.; Binczarski, M.; Modelska, M.; Berlowska, J.; Dziugan, P.; Antolak, H.; Kaminski, Z.J.; Witonska, I.A.; Kregiel, D. Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. Materials 2019, 12, 350. https://doi.org/10.3390/ma12030350
Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Antolak H, Kaminski ZJ, Witonska IA, Kregiel D. Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. Materials. 2019; 12(3):350. https://doi.org/10.3390/ma12030350
Chicago/Turabian StyleKolesinska, Beata, Justyna Fraczyk, Michal Binczarski, Magdalena Modelska, Joanna Berlowska, Piotr Dziugan, Hubert Antolak, Zbigniew J. Kaminski, Izabela A. Witonska, and Dorota Kregiel. 2019. "Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives" Materials 12, no. 3: 350. https://doi.org/10.3390/ma12030350
APA StyleKolesinska, B., Fraczyk, J., Binczarski, M., Modelska, M., Berlowska, J., Dziugan, P., Antolak, H., Kaminski, Z. J., Witonska, I. A., & Kregiel, D. (2019). Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. Materials, 12(3), 350. https://doi.org/10.3390/ma12030350