Mode-I Fracture Behavior of CFRPs: Numerical Model of the Experimental Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Tests
2.2. Numerical Model
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Koshravan, M.R.; Yourdkhani, A. Numerical Modeling of Delamination in Gfrp Composites. Eng. Trans. 2007, 55, 61–77. [Google Scholar]
- Carraro, P.A.; Novello, E.; Quaresimin, M.; Zappalorto, M. Delamination Onset in Symmetric Cross-Ply Laminates Under Static Loads: Theory, Numerics and Experiments. Compos. Struct. 2017, 176, 420–432. [Google Scholar] [CrossRef]
- Ousset, Y. Numerical simulation of delamination growth in layered composite plates. Eur. J. Mech. A Solids 1999, 18, 291–312. [Google Scholar] [CrossRef]
- Burlayenko, V.N.; Sadowski, T. FE modeling of delamination growth in interlaminar fracture specimens. Budownictwo i Architektura 2008, 2, 95–109. [Google Scholar]
- Bajurko, P.; Czajkowska, K.; Czarnocki, P.; Szeląg, D. Numerical Simulation of Fatigue Delamination Growth Under Mode I Loading Conditions. J. KONES 2015, 19, 17–24. [Google Scholar] [CrossRef]
- Zemcík, R.; Las, V. Numerical and Experimental Analyses of the Delamination of Cross-Ply Laminates. Mater. Technol. 2008, 42, 171–174. [Google Scholar]
- Barile, C.; Casavola, C.; Decillis, F. Mechanical Comparison of New Composite Materials for Aerospace Applications. Compos. Part B 2019, 162, 122–128. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C. Mechanical Characterization of Carbon Fiber Reinforced Plastics Specimens for Aerospace Applications. Poly. Compos. 2018. [Google Scholar] [CrossRef]
- Ilyas, M.; Espinosa, C.; Lachaud, F.; Salaun, M. Simulation of Dynamic Delamination and Mode I Energy dissipation. In Proceedings of the 7th European LS-DYNA Conference, Salzburg, Austria, 14–15 May 2009. [Google Scholar]
- Wong, K.J.; Gong, X.J.; Aivazzadeh, S.; Tamin, M.N. Numerical Simulation of Mode I Delamination Behaviour Of Multidirectional Composite Laminates with Fibre Bridging Effect. In Proceedings of the Eccm15 - 15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012. [Google Scholar]
- Barile, C. Innovative Mechanical characterization of CFRP by using acoustic emission technique. Eng. Fract. Mech. 2018. [Google Scholar] [CrossRef]
- Johar, M.; Israr, H.A.; Low, K.O.; Wong, K.J. Numerical simulation methodology for mode II delamination of quasi-isotropic quasi-homogeneous composite laminates. J. Compos. Mater. 2017, 51, 3955–3968. [Google Scholar] [CrossRef]
- Dimitri, R.; Tornabene, F.; Zavarise, G. Analytical and numerical modeling of the mixed-mode delamination process for composite moment-loaded double cantilever beams. Compos. Struct. 2018, 187, 535–553. [Google Scholar] [CrossRef]
- Dimitri, R.; Tornabene, F. Numerical Study of the Mixed-Mode Delamination of Composite Specimens. J. Compos. Sci. 2018, 2, 30. [Google Scholar] [CrossRef]
- Jawadullah, J.; Choudhry, R.S.; Saeed, H.A. Numerical simulation of delamination under mixed mode loading of woven fabric reinforced composites through cohesive zone elements. In Proceedings of the 2017 Fifth International Conference on Aerospace Science & Engineering (ICASE), Institute of Space Technology, Islamabad, Pakistan, 14–16 November 2017. [Google Scholar]
- Barile, C.; Casavola, C.; Pappalettera, G. Acoustic emission waveform analysis in CFRP under Mode I test. Eng. Fract. Mech. 2018. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C. Fracture Behavior of Unidirectional Composites Analyzed by Acoustic Emissions Technique. Fract. Fatigue Fail. Damage Evol. 2018, 7, 121–127. [Google Scholar]
- ASTM D5528-01. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Wanga, R.G.; Zhang, L.; Liu, W.B.; Zhang, J.; Sui, X.D.; Zheng, D.; Fang, Y.F. Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions. Poly. Compos. 2011, 19, 213–222. [Google Scholar] [CrossRef]
- Mohan, V.; Vijay, D. Numerical Analysis of Delamination Effects on Laminated Composites. Int. J. Sci. Res. Eng. 2017, 3, 31–36. [Google Scholar]
- Tabiei, A.; Zhang, W. Composite Laminate Delamination Simulation and Experiment: A Review of Recent Development. Appl. Mech. Rev. 2018, 70, 1–23. [Google Scholar] [CrossRef]
- Alfano, G.; Crisfield, M.A. Finite Element Interface Models for the Delamination Anaylsis of Laminated Composites: Mechanical and Computational Issues. Int. J. Numer. Methods Eng. 2001, 50, 1701–1736. [Google Scholar] [CrossRef]
- La Saponara, V.; Muliana, H.; Haj-Ali, R.; Kardomateas, G.A. Experimental and numerical analysis of delamination growth in double cantilever laminated beams. Eng. Fract. Mech. 2002, 69, 687–699. [Google Scholar] [CrossRef]
- Teixeira, J.M.D.; Campilho, R.D.S.G.; da Silva, F.J.G. Numerical assessment of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for the GIC determination of adhesive layers. J. Adhes. 2018. [Google Scholar] [CrossRef]
- Dubois, F.; Keunings, R. DCB testing of thermoplastic composites: A non-linear micro-macro numerical analysis. Compos. Sci. Tech. 1997, 57, 437–450. [Google Scholar] [CrossRef]
- Samborski, S. Numerical analysis of the DCB test configuration applicability to mechanically coupled Fiber Reinforced Laminated Composite beams. Compos. Struct. 2016, 152, 477–487. [Google Scholar] [CrossRef]
- Carollo, V.; Reinoso, J.; Paggi, M. A 3D finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model. Compos. Struct. 2017, 182, 636–651. [Google Scholar] [CrossRef]
- Wang, Y.; Waisman, H. Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model. Comput. Mech. 2015, 55, 1–26. [Google Scholar] [CrossRef]
- Wang, Y.; Waisman, H. From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials. Comput. Methods Appl. Mech. Engrg. 2016, 299, 57–89. [Google Scholar] [CrossRef]
- Yuan, Z.; Fish, J. Are the cohesive zone models necessary for delamination analysis? Comput. Methods Appl. Mech. Engrg. 2016, 310, 567–604. [Google Scholar] [CrossRef]
- Wang, Y.; Waisman, H. Material-dependent crack-tip enrichment functions in XFEM for modeling interfacial cracks in biomaterials. Int. J. Numer. Meth. Eng. 2017, 112, 1495–1518. [Google Scholar] [CrossRef]
- Kanninen, M.F.; Popelar, C.H. Advanced Fracture Mechanics; Oxford University Press: New York, NY, USA, 1985. [Google Scholar]
- Tsai, S.W.; Wu, E.M. General Theory of Strength for Anisotropic Materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos. Mater. 1973. [Google Scholar] [CrossRef]
- Chang, F.K.; Chang, K.Y. A progressive Damage Model for Laminated Composites Containing Stress Concentrations. J. Compos. Mater. 1987, 21, 834–855. [Google Scholar] [CrossRef]
- ANSYS User’s Guide. Available online: https://www.ansys.com.
- Modefrontier User’s Guide. Available online: https://www.esteco.com/modefrontier.
M1_1 | M1_2 | M1_3 | M1_4 | M1_5 | M1_6 | M1_7 | M1_8 | M1_9 | |
---|---|---|---|---|---|---|---|---|---|
BT GI [J/m2] | 463.39 | 483.67 | 506.03 | 470.57 | 509.72 | 442.16 | 419.61 | 337.70 | 459.64 |
MBT GI [J/m2] | 191.42 | 289.06 | 313.01 | 235.64 | 272.26 | 225.60 | 296.17 | 235.98 | 295.99 |
CC GI [J/m2] | 330.18 | 434.04 | 366.57 | 291.97 | 335.33 | 270.95 | 331.72 | 267.96 | 341.57 |
MCC GI [J/m2] | 154.60 | 306.14 | 131.29 | 90.46 | 113.90 | 94.86 | 196.29 | 175.90 | 171.62 |
ID | E_X [Pa] | E_Y [Pa] | G_XY [Pa] | G_YZ [Pa] | n_XY | n_YZ | CF Energy [J/mm2] | E teflon [J/mm2] | Max_NC Stress [Pa] | Stress Teflon [Pa] |
---|---|---|---|---|---|---|---|---|---|---|
271 | 1.65 × 1011 | 8.5 × 109 | 3.78 × 109 | 2.63 × 109 | 0.34 | 0.4 | 3.5 × 10−4 | 1.0 × 10−6 | 2.0 × 106 | 2.0 |
387 | 1.65 × 1011 | 8.5 × 109 | 3.78 × 109 | 2.63 × 109 | 0.34 | 0.4 | 3.5 × 10−4 | 3.0 × 10−6 | 2.0 × 106 | 2.0 |
456 | 1.65 × 1011 | 8.5 × 109 | 3.78 × 109 | 2.63 × 109 | 0.34 | 0.4 | 3.5 × 10−4 | 3.0 × 10−6 | 2.0 × 106 | 6.0 |
478 | 1.65 × 1011 | 8.5 × 109 | 3.78 × 109 | 2.63 × 109 | 0.34 | 0.4 | 3.5 × 10−4 | 3.0 × 10−6 | 2.0 × 106 | 6.0 |
M1_1 | M1_2 | M1_3 | M1_4 | M1_5 | M1_6 | M1_7 | M1_8 | M1_9 | |
---|---|---|---|---|---|---|---|---|---|
BT GI [J/m2] | 463.39 | 483.67 | 506.03 | 470.57 | 509.72 | 442.16 | 419.61 | 337.70 | 459.64 |
MBT GI [J/m2] | 191.42 | 289.06 | 313.01 | 235.64 | 272.26 | 225.60 | 296.17 | 235.98 | 295.99 |
CC GI [J/m2] | 330.18 | 434.04 | 366.57 | 291.97 | 335.33 | 270.95 | 331.72 | 267.96 | 341.57 |
MCC GI [J/m2] | 154.60 | 306.14 | 131.29 | 90.46 | 113.90 | 94.86 | 196.29 | 175.90 | 171.62 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barile, C.; Casavola, C.; Gambino, B.; Mellone, A.; Spagnolo, M. Mode-I Fracture Behavior of CFRPs: Numerical Model of the Experimental Results. Materials 2019, 12, 513. https://doi.org/10.3390/ma12030513
Barile C, Casavola C, Gambino B, Mellone A, Spagnolo M. Mode-I Fracture Behavior of CFRPs: Numerical Model of the Experimental Results. Materials. 2019; 12(3):513. https://doi.org/10.3390/ma12030513
Chicago/Turabian StyleBarile, Claudia, Caterina Casavola, Benedetto Gambino, Alessandro Mellone, and Marco Spagnolo. 2019. "Mode-I Fracture Behavior of CFRPs: Numerical Model of the Experimental Results" Materials 12, no. 3: 513. https://doi.org/10.3390/ma12030513
APA StyleBarile, C., Casavola, C., Gambino, B., Mellone, A., & Spagnolo, M. (2019). Mode-I Fracture Behavior of CFRPs: Numerical Model of the Experimental Results. Materials, 12(3), 513. https://doi.org/10.3390/ma12030513