Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Self-Cleaning Test
2.3. NOx Abatement Test
3. Results and Discussion
3.1. Waste Transformation and Characterization
3.1.1. Self-Cleaning and Self-Depolluting Properties
3.1.2. Self-Cleaning and Self-Depolluting Building Materials
4. Conclusions
- The appropriate management of HSL waste could transform this waste into a new material with high added value as a sustainable photocatalytic material.
- HSL waste is iron rich, its phases are mainly hematite (α-Fe2O3), mixed oxides (Fe0.6Cr0.4)2O3 or Ferrites (CaFe2O4).
- It is necessary to perform thermal pretreatment in order to remove traces of impurities.
- The increased amount of α-Fe2O3 phase is obtained in calcinated samples at temperatures higher than 600 °C.
- The calcination treatment affects the pore microstructure of the sample, decreasing porosity and surface area in samples calcinated at higher temperatures in the 600–900 °C range.
- The specific surface area was found to be an important experimental parameter. A decrease in the specific surface of the treated waste leads to worse photocatalytic performance.
- Discoloration of dyes and NO removal from air were positively tested with the HSL powders and mortars, indicating their ability to act as photocatalytic materials.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Anastas, P.; Warner, J. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 2000; p. 152. [Google Scholar]
- Sugrañez, R.; Cruz-Yusta, M.; Mármol, I.; Martín, F.; Morales, J.; Sánchez, L.; Cruz-Yusta, M.; Jiménez, F.D.P.M. Use of Industrial Waste for the Manufacturing of Sustainable Building Materials. Chem. Sus. Chem. 2012, 5, 694–699. [Google Scholar] [CrossRef]
- Chen, J.; Poon, C.-S. Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ. 2009, 44, 1899–1906. [Google Scholar] [CrossRef]
- Papa, M.; Bertanza, G.; Abbà, A. Reuse of wastewater: A feasible option, or not? A decision support system can solve the doubt. Desalin. Water Treat. 2015, 57, 1–13. [Google Scholar] [CrossRef]
- Cossu, R.; Lai, T. Automotive shredder residue (ASR) management: An overview. Waste Manag. 2015, 45, 143–151. [Google Scholar] [CrossRef]
- Guney, Y.; Sari, Y.D.; Yalcin, M.; Tuncan, A.; Donmez, S. Re-usage of waste foundry sand in high-strength concrete. Waste Manag. 2010, 30, 1705–1713. [Google Scholar] [CrossRef]
- Albini, A.; Fagnoni, M. Green chemistry and photochemistry were born at the same time. Green Chem. 2004, 6, 1. [Google Scholar] [CrossRef]
- Folli, A.; Campbell, S.B.; Anderson, J.A.; Macphee, D.E. Role of TiO2 surface hydration on NO oxidation photo-activity. J. Photochem. Photobi. A Chem. 2011, 220, 85–93. [Google Scholar] [CrossRef]
- Balbuena, J.; Calatayud, J.M.; Cruz-Yusta, M.; Pardo, P.; Martín, F.; Alarcon, J.; Sánchez, L.; Cruz, M. Mesocrystalline anatase nanoparticles synthesized using a simple hydrothermal approach with enhanced light harvesting for gas-phase reaction. Dalton Trans. 2018, 47, 6590–6597. [Google Scholar] [CrossRef]
- Nicolas, M.P.; Balbuena, J.; Yusta, M.C.; Sanchez, L.; Navarro-Blasco, I.; Fernández, J.; Alvarez, J. Photocatalytic NOx abatement by calcium aluminate cements modified with TiO2: Improved NO2 conversion. Cem. Concr. Res. 2015, 70, 67–76. [Google Scholar] [CrossRef]
- Sugrañez, R.; Alvarez, J.I.; Yusta, M.C.; Mármol, I.; Morales, J.; Vilá, J.; Sanchez, L. Enhanced photocatalytic degradation of NOx gases by regulating the microstructure of mortar cement modified with titanium dioxide. Build. Environ. 2013, 69, 55–63. [Google Scholar] [CrossRef]
- Yuranova, T.; Sarria, V.; Jardim, W.; Rengifo, J.; Pulgarin, C.; Trabesinger, G.; Kiwi, J. Photocatalytic discoloration of organic compounds on outdoor building cement panels modified by photoactive coatings. J. Photochem. Photobio. A Chem. 2007, 188, 334–341. [Google Scholar] [CrossRef]
- Folli, A.; Pade, C.; Hansen, T.B.; De Marco, T.; Macphee, D.E. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cem. Concr. Res. 2012, 42, 539–548. [Google Scholar] [CrossRef]
- Hahn, N.T.; Ye, H.; Flaherty, D.W.; Bard, A.J.; Mullins, C.B. Reactive Ballistic Deposition of α-Fe2O3 Thin Films for Photoelectrochemical Water Oxidation. ACS Nano 2010, 4, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Sugrañez, R.; Balbuena, J.; Yusta, M.C.; Martin, F.; Morales, J.; Sanchez, L. Efficient behaviour of hematite towards the photocatalytic degradation of NO x gases. Appl. Catal. B Environ. 2015, 165, 529–536. [Google Scholar] [CrossRef]
- Sugrañez, R.; Cruz-Yusta, M.; Mármol, I.; Morales, J.; Sanchez, L.; Cruz-Yusta, M. Preparation of Sustainable Photocatalytic Materials through the Valorization of Industrial Wastes. Chem. Sus. Chem. 2013, 6, 2340–2347. [Google Scholar] [CrossRef] [PubMed]
- Huaiwei, Z.; Xin, H. An overview for the utilization of wastes from stainless steel industries. Resour. Conserv. Recycl. 2011, 55, 745–754. [Google Scholar] [CrossRef]
- Sikalidis, C.; Zorba, T.; Chrissafis, K.; Paraskevopoulos, K. Iron oxide pigmenting powders produced by thermal treatment of iron solid wastes from steel mill pickling lines. J. Therm. Anal. Calorim. 2006, 86, 411–415. [Google Scholar] [CrossRef]
- Sapiña, M.; Jimenez-Relinque, E.; Castellote, M. Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material. Environ. Sci. Pollut. Res. 2014, 21, 12091–12098. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, L.C.; Ni, L.L.; Wang, B.L. A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater. Appl. Catal. B Environ. 2013, 138, 9–16. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Métodos de Ensayo de los Morteros para Albañilería. Parte 2: Toma de Muestra Total de Morteros y Preparación de los Morteros para Ensayo; UNE-EN 1015-2:1999; Asociacion Espanola de Normalizacion: Madrid, Spain, 1999.
- Métodos de Ensayo para Morteros de Albañilería. Parte 3: Determinación de la Consistencia del Mortero Fresco (por la mesa de Sacudidas); UNE-EN 1015-3:2000; Asociacion Espanola de Normalizacion: Madrid, Spain, 2000.
- Métodos de Ensayo de los Morteros para Albañilería. Parte 11: Determinación de la Resistencia a Flexión y a Compresión del Mortero Endurecido; UNE-EN 1015-11:2000; Asociacion Espanola de Normalizacion: Madrid, Spain, 2000.
- Materiales de Rejuntado para Baldosas Cerámicas. Parte 2: Determinación de la Resistencia a la Abrasión; Asociacion Espanola de Normalizacion: Madrid, Spain, 2009.
- Photocatalysis—Determination of the Photocatalytic Activity of Hidraulic Binders—Rodammina Test Method; UNI 11259: 2008; Ente Nazionale Italiano di Unificazione (UNI): Milano, Italy, 2008.
- Maury, A.; De Belie, N. Estado del arte de los materiales a base de cemento que contienen TiO2: propiedades Auto-limpiantes. Mater. Constr. 2010, 60, 33–50. [Google Scholar] [CrossRef]
- Ruot, B.; Plassais, A.; Olive, F.; Guillot, L.; Bonafous, L. TiO2-containing cement pastes and mortars: Measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test. Solar Energy 2009, 83, 1794–1801. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Balbuena, J.; Yusta, M.C.; Cuevas, A.L.; López-Escalante, M.C.; Martín, F.; Pastor, A.; Sanchez, L. Enhanced activity of α-Fe2O3 for photocatalytic NO removal. RSC Adv. 2016, 6, 92917–92922. [Google Scholar] [CrossRef]
- Balbuena, J.; Cruz-Yusta, M.; Sánchez, L. Nanomaterials to Combat NOx Pollution. J. Nanosci. Nanotechnol. 2015, 15, 6373–6385. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.A.; Wang, G.; Ling, Y.; Li, Y.; Zhang, J.Z. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682–6702. [Google Scholar] [CrossRef]
- Shao, X.; Lu, W.; Zhang, R.; Pan, F. Enhanced photocatalytic activity of TiO₂-C hybrid aerogels for methylene blue degradation. Sci. Rep. 2013, 3, 3018. [Google Scholar] [CrossRef]
- Houas, A. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Hassena, H. Photocatalytic Degradation of Methylene Blue by Using Al2O3/Fe2O3 Nano Composite under Visible Light. Mod. Chem. Appl. 2016, 4, 5. [Google Scholar]
- Dalton, J.; Janes, P.; Jones, N.; Nicholson, J.; Hallam, K.; Allen, G. Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach. Environ. Pollut. 2002, 120, 415–422. [Google Scholar] [CrossRef]
- Balbuena, J.; Carraro, G.; Maccato, C.; Pastor, A.; Cruz, M.; Gasparotto, A.; Sada, C.; Barreca, D.; Sánchez, L. Advances in photocatalytic NOx abatement through the use of Fe2O3/TiO2 nanocomposites. RSC Adv. 2016, 6, 74878–74885. [Google Scholar] [CrossRef]
- Mishra, M.; Chun, D.-M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Sugrañez, R.; Alvarez, J.; Yusta, M.C.; Mármol, I.; Morales, J.; Sanchez, L. Controlling microstructure in cement based mortars by adjusting the particle size distribution of the raw materials. Constr. Build. Mater. 2013, 41, 139–145. [Google Scholar] [CrossRef]
- Ai, Z.; Ho, W.; Lee, S.-C.; Zhang, L. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light. Environ. Sci. Technol. 2009, 43, 4143–4150. [Google Scholar] [CrossRef] [PubMed]
Sample | BET Surface Area (m2·g−1) | Pore Volume (cm3∙g−1) | Average Pore Size (nm) |
---|---|---|---|
HSL600 | 11.48 ± 0.05 | 0.065 | 22.695 |
HSL750 | 7.96 ± 0.05 | 0.036 | 18.467 |
HSL900 | 1.61 ± 0.02 | 0.006 | 15.029 |
Hematite | 5.10 ± 0.08 | 0.017 | 7.524 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbuena, J.; Sánchez, L.; Cruz-Yusta, M. Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars. Materials 2019, 12, 621. https://doi.org/10.3390/ma12040621
Balbuena J, Sánchez L, Cruz-Yusta M. Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars. Materials. 2019; 12(4):621. https://doi.org/10.3390/ma12040621
Chicago/Turabian StyleBalbuena, José, Luis Sánchez, and Manuel Cruz-Yusta. 2019. "Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars" Materials 12, no. 4: 621. https://doi.org/10.3390/ma12040621
APA StyleBalbuena, J., Sánchez, L., & Cruz-Yusta, M. (2019). Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars. Materials, 12(4), 621. https://doi.org/10.3390/ma12040621