Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Fabrication of Model Perovskite/TiO2 Samples
2.2. Fabrication of Mesoscopic Perovskite Solar Cells
2.3. XPS Depth Profile Analysis
2.4. ToF-SIMS Depth Profile Analysis
3. Results and Discussion
3.1. Depth Profiles on Model Perovskite/TiO2 Samples
3.2. Depth Profiles on Full Perovskite Solar Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.-P.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J.M.; Alsari, M.; Booker, E.P.; Hutter, E.M.; Pearson, A.J.; et al. Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation. Nature 2018, 555, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Miyasaka, T. Stabilizing the Efficiency Beyond 20% with a Mixed Cation Perovskite Solar Cell Fabricated in Ambient Air under Controlled Humidity. Adv. Energy Mater. 2018, 8, 1700677. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide Management in Formamidinium-Lead-Halide–Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Lira-Cantú, M. Perovskite Solar Cells: Stability Lies at Interfaces. Nat. Energy 2017, 2, 17115. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A.; Pescetelli, S.; Busby, Y.; Aernouts, T. Thermally Induced Fullerene Domain Coarsening Process in Organic Solar Cells. IEEE Trans. Electron Devices 2019, 66, 678–688. [Google Scholar] [CrossRef]
- Busby, Y.; Agresti, A.; Pescetelli, S.; Di Carlo, A.; Noel, C.; Pireaux, J.-J.; Houssiau, L. Aging Effects in Interface-Engineered Perovskite Solar Cells with 2D Nanomaterials: A Depth Profile Analysis. Mater. Today Energy 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Palma, A.L.; Cinà, L.; Busby, Y.; Marsella, A.; Agresti, A.; Pescetelli, S.; Pireaux, J.-J.; Di Carlo, A. Mesoscopic Perovskite Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2016, 8, 26989–26997. [Google Scholar] [CrossRef] [PubMed]
- Christians, J.A.; Schulz, P.; Tinkham, J.S.; Schloemer, T.H.; Harvey, S.P.; Tremolet de Villers, B.J.; Sellinger, A.; Berry, J.J.; Luther, J.M. Tailored Interfaces of Unencapsulated Perovskite Solar Cells for >1,000 Hour Operational Stability. Nat. Energy 2018, 3, 68–74. [Google Scholar] [CrossRef]
- Ralaiarisoa, M.; Busby, Y.; Frisch, J.; Salzmann, I.; Pireaux, J.-J.; Koch, N. Correlation of Annealing Time with Crystal Structure, Composition, and Electronic Properties of CH3NH3PbI3−xClx Mixed-Halide Perovskite Films. Phys. Chem. Chem. Phys. 2017, 19, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Matteocci, F.; Busby, Y.; Pireaux, J.-J.; Divitini, G.; Cacovich, S.; Ducati, C.; Di Carlo, A. Interface and Composition Analysis on Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 26176–26183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Liu, B.; Zhao, E.W.; Jin, K.; Du, Y.; Neeway, J.J.; Ryan, J.V.; Hu, D.; Zhang, K.H.L.; Hong, M.; et al. Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information. J. Am. Soc. Mass Spectrom. 2015, 26, 1283–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabbani, S.; Barber, A.M.; Fletcher, J.S.; Lockyer, N.P.; Vickerman, J.C. TOF-SIMS with Argon Gas Cluster Ion Beams: A Comparison with C60+. Anal. Chem. 2011, 83, 3793–3800. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, S.; Ichiki, K.; Yamada, H.; Nakata, Y.; Seki, T.; Aoki, T.; Matsuo, J. Molecular Depth Profiling of Multilayer Structures of Organic Semiconductor Materials by Secondary Ion Mass Spectrometry with Large Argon Cluster Ion Beams. Rapid Commun. Mass Spectrom. 2009, 23, 3264–3268. [Google Scholar] [CrossRef] [PubMed]
- Brison, J.; Muramoto, S.; Castner, D.G. ToF-SIMS Depth Profiling of Organic Films: A Comparison between Single-Beam and Dual-Beam Analysis. J. Phys. Chem. C 2010, 114, 5565–5573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postawa, Z. Sputtering Simulations of Organic Overlayers on Metal Substrates by Monoatomic and Clusters Projectiles. Appl. Surf. Sci. 2004, 231–232, 22–28. [Google Scholar] [CrossRef]
- Aoki, T. Molecular Dynamics Simulations of Cluster Impacts on Solid Targets: Implantation, Surface Modification, and Sputtering. J. Comput. Electron. 2014, 13, 108–121. [Google Scholar] [CrossRef]
- Delcorte, A.; Moshkunov, K.; Debongnie, M. Relationships between Crater and Sputtered Material Characteristics in Large Gas Cluster Sputtering of Polymers: Results from Molecular Dynamics Simulations. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2018, 36, 03F109. [Google Scholar] [CrossRef]
- Lozano, O.; Chen, Q.Y.; Tilakaratne, B.P.; Seo, H.W.; Wang, X.M.; Wadekar, P.V.; Chinta, P.V.; Tu, L.W.; Ho, N.J.; Wijesundera, D.; et al. Evolution of Nanoripples on Silicon by Gas Cluster-Ion Irradiation. AIP Adv. 2013, 3, 062107. [Google Scholar] [CrossRef]
- Conard, T.; Fleischmann, C.; Havelund, R.; Franquet, A.; Poleunis, C.; Delcorte, A.; Vandervorst, W. Inorganic Material Profiling Using Ar n + Cluster: Can We Achieve High Quality Profiles? Appl. Surf. Sci. 2018, 444, 633–641. [Google Scholar] [CrossRef]
- Tilakaratne, B.; Chen, Q.; Chu, W.-K. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment. Materials 2017, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Barlow, A.J.; Portoles, J.F.; Cumpson, P.J. Observed Damage during Argon Gas Cluster Depth Profiles of Compound Semiconductors. J. Appl. Phys. 2014, 116, 054908. [Google Scholar] [CrossRef]
- Fleischmann, C.; Conard, T.; Havelund, R.; Franquet, A.; Poleunis, C.; Voroshazi, E.; Delcorte, A.; Vandervorst, W. Fundamental Aspects of Ar n + SIMS Profiling of Common Organic Semiconductors: Organic Depth Profiling. Surf. Interface Anal. 2014, 46, 54–57. [Google Scholar] [CrossRef]
- Czerwinski, B.; Delcorte, A. Molecular Dynamics Study of Fullerite Cross-Linking under KeV C 60 and Arn Cluster Bombardment. J. Phys. Chem. C 2013, 117, 3595–3604. [Google Scholar] [CrossRef]
- Tuccitto, N.; Bombace, A.; Torrisi, A.; Licciardello, A. Effect of Sputtering Yield Changes on the Depth Resolution in Cluster Beam Depth-Profiling of Polymers. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2018, 36, 03F124. [Google Scholar] [CrossRef]
- Smith, E.F.; Counsell, J.D.P.; Bailey, J.; Sharp, J.S.; Alexander, M.R.; Shard, A.G.; Scurr, D.J. Sample Rotation Improves Gas Cluster Sputter Depth Profiling of Polymers. Surf. Interface Anal. 2017, 49, 953–959. [Google Scholar] [CrossRef]
- Ellsworth, A.A.; Young, C.N.; Stickle, W.F.; Walker, A.V. New Horizons in Sputter Depth Profiling Inorganics with Giant Gas Cluster Sources: Niobium Oxide Thin Films. Surf. Interface Anal. 2017, 49, 991–999. [Google Scholar] [CrossRef]
- Niehuis, E.; Möllers, R.; Rading, D.; Cramer, H.-G.; Kersting, R. Analysis of Organic Multilayers and 3D Structures Using Ar Cluster Ions. Surf. Interface Anal. 2013, 45, 158–162. [Google Scholar] [CrossRef]
- Angerer, T.B.; Blenkinsopp, P.; Fletcher, J.S. High Energy Gas Cluster Ions for Organic and Biological Analysis by Time-of-Flight Secondary Ion Mass Spectrometry. Int. J. Mass Spectrom. 2015, 377, 591–598. [Google Scholar] [CrossRef]
- Houssiau, L.; Mine, N. Molecular Depth Profiling with Reactive Ions, or Why Chemistry Matters in Sputtering. Surf. Interface Anal. 2011, 43, 146–150. [Google Scholar] [CrossRef]
- Wehbe, N.; Pireaux, J.-J.; Houssiau, L. XPS Evidence for Negative Ion Formation in SIMS Depth Profiling of Organic Material with Cesium. J. Phys. Chem. C 2014, 118, 26613–26620. [Google Scholar] [CrossRef]
- Noel, C.; Houssiau, L. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions. J. Am. Soc. Mass Spectrom. 2016, 27, 908–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eames, C.; Frost, J.M.; Barnes, P.R.F.; O’Regan, B.C.; Walsh, A.; Islam, M.S. Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells. Nat. Commun. 2015, 6, 7497. [Google Scholar] [CrossRef] [PubMed]
Sputtering Beam | E (keV) | E/n (eV) | Ion Current (nA) |
---|---|---|---|
Ar4000+ | 10 | 2.5 | 1 |
Ar1000+ | 10, 20 | 10, 20 | 0.5 |
Ar500+ | 5, 10, 20 | 10, 20, 40 | 0.5 |
Ar+ | 0.5, 1 | / | ~100 |
Cs+ | 0.5, 1 | / | 35, 75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noël, C.; Pescetelli, S.; Agresti, A.; Franquet, A.; Spampinato, V.; Felten, A.; di Carlo, A.; Houssiau, L.; Busby, Y. Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials 2019, 12, 726. https://doi.org/10.3390/ma12050726
Noël C, Pescetelli S, Agresti A, Franquet A, Spampinato V, Felten A, di Carlo A, Houssiau L, Busby Y. Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials. 2019; 12(5):726. https://doi.org/10.3390/ma12050726
Chicago/Turabian StyleNoël, Céline, Sara Pescetelli, Antonio Agresti, Alexis Franquet, Valentina Spampinato, Alexandre Felten, Aldo di Carlo, Laurent Houssiau, and Yan Busby. 2019. "Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams" Materials 12, no. 5: 726. https://doi.org/10.3390/ma12050726
APA StyleNoël, C., Pescetelli, S., Agresti, A., Franquet, A., Spampinato, V., Felten, A., di Carlo, A., Houssiau, L., & Busby, Y. (2019). Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials, 12(5), 726. https://doi.org/10.3390/ma12050726