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Abstract: An innovative testing methodology to evaluate the effect of long-term exposure to a marine
environment on Glass Fiber Reinforced Polymers (GFRPs) has been investigated and is presented
in this paper. Up to one-year ageing was performed in seawater, to simulate the environment for
offshore oil and gas applications. The performance of an epoxy and epoxy-based GFRP exposed at
different temperatures from 25 to 80 ◦C was quantified. The materials were also aged in dry air, to
de-couple the thermal effect from the seawater chemical action. Gravimetric testing and Dynamic
Mechanical Analysis (DMA) were conducted in parallel on progressively aged specimens. The effect
of specimen geometry and the anisotropic nature of diffusion are comprehensively discussed in this
paper. For the quasi-infinite specimens, the results show an exponential increase in the seawater
absorption rate with temperature. The methodology allowed for the prediction of the diffusivity at a
temperature of 4 ◦C as 0.23 and 0.05 × 10−13 m2/s for the epoxy and the epoxy-based composite,
respectively. The glass transition temperature reduces as sea water is absorbed, yet the sea water
effects appear to be reversible upon drying.

Keywords: PMCs; GFRPs; seawater exposure; diffusion; ageing; accelerated testing; gravimetric;
DMA

1. Introduction

Polymer Matrix Composites (PMCs) are becoming widespread in the oil and gas industry.
The potential to exploit their outstanding mechanical properties, along with their reduced density
compared to metals, makes them a suitable candidate to overcome the technical limitations of
traditional structural alloys for deep-water fossil fuels recovery.

The marine environment is aggressive towards building materials [1–4]. Both structural steel and
concrete are severely attacked by the high saline content of seawater. Standard stainless-steel alloys
cannot withstand the corrosive action without other protective means (e.g., passivation techniques,
protective paints and liners) [5,6]. Even these approaches can fail to prevent localized corrosion,
which will induce catastrophic failures in critical components, particularly if they are not periodically
inspected. The oil and gas industry is interested in qualifying materials for eXtreme High Pressure
High Temperature (XHPHT) operative conditions [7–9], which are usually met in deep-water offshore
reservoirs. In these working scenarios, hydrostatic pressure can exceed 700 bar and temperatures can
rise above 180 ◦C. The acidity of the extracted fossil fuels and fluids, which can be rich in CO2 and
H2S, particularly for enhanced oil recovery, poses a further challenge to the material durability [10,11].

Materials 2019, 12, 807; doi:10.3390/ma12050807 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-7736-3254
https://orcid.org/0000-0002-8630-1802
http://www.mdpi.com/1996-1944/12/5/807?type=check_update&version=1
http://dx.doi.org/10.3390/ma12050807
http://www.mdpi.com/journal/materials


Materials 2019, 12, 807 2 of 22

Duplex stainless alloys have been introduced for particularly demanding applications in corrosive
environments, but their cost rarely makes them a viable option for large structures, such as pipelines
in the petrochemical industry [10]. Polymers demonstrate a remarkable chemical inertness and they
do not suffer from electrochemical corrosion due to their dielectric nature. However, this is not their
only benefit: they are significantly lighter compared to metals. Considering their application in a
submerged structure, on average, their relative weight is seven-fold lighter compared to the more
common steel alloys. This means a significant reduction in the tensile stresses generated by the weight
of pillars or pipelines with a very long vertical drop [8,11]. However, they cannot perform as well
as structural materials, as they do not possess the required mechanical strength, in particular, with
regards to tensile and creep stress. They are much more effective when combined with engineered
fibers whose mechanical properties are far superior, resulting in a fiber reinforced Polymer Matrix
Composite (PMC). In this form, not only are they excellent structural materials, but their very low
relative density (about 2:1 compared to water) allows designers to exploit the hydrostatic pressure to
relieve most of the tensile stress due to the weight of a high drop construction [11]. This is a particularly
sensitive design constraint for components such as offshore risers, which are used to transfer the fossil
fuel and working fluids from the wellhead, sitting at the seabed, to the surface production and storage
facilities. Due to the exhaustion of many onshore and shallow water oilfields, the need to drill at
greater depths is pushing the design of these structures to the technical limits of traditional building
materials. There is an increasing need for composite and hybrid materials able to withstand XHPHT
conditions and to enable the exploitation of deep-water reservoirs [1,11].

There is not yet extensive experience with PMCs when it comes to marine applications.
The qualification of composite materials for harsh oil and gas services is less advanced than in
the aerospace industry, where specific grades and testing routines have been developed over many
decades [12]. Pipelines and petrochemical component manufacturers are finally ready to shift to fully
composite structures [8]. The main ongoing issue is that the operative working life for those components
should be in the order of tens of years in order for them to be economically viable. Due to the very
inaccessible environment in which they are installed, no maintenance should be needed for the entire
planned lifespan, lest to incur relevant additional costs, and their durability has to be consistently proven.

To introduce a new material grade in a commercial product, such as a flexible riser, the material
has to be fully qualified, first at the specimen level and then as a component prototype, to certify
that it is going to be safe and reliable for the whole working life. For long-term performance, testing
cannot be carried out at a real timescale, as the technology would be obsolete by the time the product
was ready to be introduced to the market. Therefore, there is a call for improved accelerated testing
methodologies, which shorten the test length to reasonable timeframes, in order to successfully predict
the evolution of the material properties over a few decades.

Many operational parameters can affect the results of these tests, so controlling or excluding
the highest possible number will return a more robust methodology. Some of the variables are also
interacting in a highly nonlinear way, such as the temperature, diffusivity coefficient, and chemical
reactions rate. Even when there are theoretical models available to describe these interactions, they still
rely on experimental data to be fit to. Hence, there is a need to map the material properties for certain
conditions and their evolution with time. The more representative the simulating environment is of
the operative scenario, the more accurate the data that is returned. The understanding of the diffusion
kinetics at different temperatures provides useful information for foreseeing how the material will
behave when exposed to the operative conditions. Ideally, if the data available is extensive enough,
it can be possible to define a time-temperature superposition relation, which will allow data from
short-term high temperature testing to be extrapolated to predict long-term performance at lower
temperatures. Holding this information, the materials, and component designers can result in making
an informed decision in a conservative manner.

In this paper, we investigated suitable approaches to measure and quantify the diffusion of
seawater in epoxy-based composites, and attempted to use the glass transition temperature as a means
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of quantifying the physical and chemical ageing of the materials. To achieve that, exposures at a range
of temperatures have been conducted and the effect of the coupon size in obtaining a reliable measure
of the diffusivity is discussed.

2. Materials and Methods

2.1. Materials

The materials used in the experimental work are all commercially available. They were selected
as representative for use in a marine environment involving exposure to seawater and it should be
noted that the present research work does not aim to formally evaluate the performance of these
commercial products.

A two-component Ampreg 26 epoxy resin with amine hardener commercial grade thermoset
epoxy was selected. This material is suitable for vacuum assisted infusion and was obtained
from Gurit (Newport, UK). The epoxy resin consists of a blend of bisphenol A, bisphenol F, and
1,6 hexanedioldiglycidylether, while the hardener is a blend of amines (polyoxyalkyleneamine,
2,2′-dimethyl-4,4′methylenebis (cyclohexylamine), 4,4′-methylenebis (cyclohexylamine), and
2,2′-iminodiethylamine) [13].

The stitched unidirectional glass fiber fabric (1200 g/m2, from Gamma Tensor, Alcoi, Spain)
comprises 3B Advantex® SE 2020 Direct Roving made of boron free E-CR glass, which is designed for
the production of non-crimped fabrics and has a proprietary sizing specifically designed for excellent
adhesion with epoxy resin systems.

Neat epoxy plates were manufactured by compression molding to reduce the formation of voids.
A hydraulic press (Mackey Bowley, now Wessex Hydraulic Services, Trowbridge, UK) was used to
apply a pressure of about 2 MPa at incremental steps to the viscous resin, hence ejecting residual air
from the mould cavity. A rubber seal placed between the mold plates allowed the plates to be adjusted
and let the air evacuate. The compression mold also enabled us to control the plate’s planarity. The
resin was left to cure for 24 h at room temperature, followed by a post-cure of 5 h at 80 ◦C. Once the
curing was completed, the solidified plate was carefully removed from the mold. The plates were
machined by a CNC milling machine to obtain the specimens at the required geometries.

The Glass Fiber Reinforced Polymer (GFRP) composite was manufactured by infusing the
unidirectional glass fiber fabric with the same Ampreg 26 epoxy. A vacuum bag infusion process was
used. After 24 h curing at room temperature, the GFRP plate was removed from the bag and placed
in a forced convection oven (Genlab Ltd., Widnes, UK) at 80 ◦C to post-cure for 5 h. Two machining
methods were used to section the GFRP plates and obtain the required specimens, namely diamond
blade cutting (for initial cut) and waterjet (for finishing of the coupons). There was not any effect of
the cutting method on the specimens obtained for this test program.

2.2. Methods

The evolution of the material properties was monitored by different techniques while the
specimens were exposed in simulated working environments, being soaked in substitute seawater. The
coupons were immersed in plastic containers and kept at different exposure temperatures (25, 55, and
80 ◦C) in forced convection ovens. At scheduled intervals, gravimetric measurements were performed
following the ASTM D5229M [14] standard procedure, allowing the evaluation of fluid absorption
progress. In the first stages, the fluid diffusion proceeded at a higher rate, requiring more frequent
sampling, particularly at the higher temperatures, even at just a few hours, to effectively capture the
absorption through the weight increase. After saturation, the sampling intervals were prolonged up to
weeks. In parallel, Dynamic Mechanical Analysis (DMA) runs were performed to evaluate the glass
transition temperature (Tg).
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2.2.1. Conditioning in Simulated Environments

The gravimetric and DMA test specimens were exposed to substitute (or synthetic) seawater,
described by the ASTM D1141 [15] standard procedure and purchased by ReAgent, (Runcorn, UK), in
order to simulate the marine environment. The composition of the seawater is presented in Table 1.

Table 1. Standard substitute seawater as per ASTM D1141 [15].

Compound Concentration
(g/L)

NaCl 24.53
MgCl2 5.20

Na2SO4 4.09
CaCl2 1.16
KCl 0.695

NaHCO3 0.201
KBr 0.101

H3BO3 0.027
SrCl2 0.025
NaF 0.003

Other metal nitrates/nitrites <0.1 mg/L
H2O balance

The seawater containers where placed in forced convection ovens to reach the equilibrium
temperature. Different temperatures were selected to accelerate the diffusion and ageing processes.
The selected temperatures were 25, 55, and 80 ◦C, as it was decided not to exceed this higher
temperature, which was already very close to the glass transition temperature of the pristine epoxy.
The oven’s temperature was constantly recorded by K-type thermocouples, logging to the lab server.

To evaluate the possible scale and edge effect due to the nominal coupons’ dimensions, five
different geometries were chosen and are listed in Table 2.

Table 2. Diffusion test coupons’ nominal geometries for both neat Ampreg 26 and GFRP.

Code
h× w× l

(mm×mm×mm)

α 2 × 19 × 19
β 2 × 40 × 40

γ—quasi-infinite 2 × 100 × 100
δ 1—fibers along l direction 2 × 10 × 100
ε 1—fibers along w direction 2 × 100 × 10

1 there is no physical difference between δ and ε for the neat Ampreg 26 (there is no fibre reinforcement); the
10 × 100 samples were unequivocally named as δ.

The specimens, following an initial pre-conditioning to eliminate any possible moisture content
(14 days at 50 ◦C), were introduced in the seawater: this moment is considered the beginning of the
conditioning/ageing process. At regular times, the gravimetric specimens were extracted from the
containers and were weighed, to monitor the progress of the seawater diffusion, and reintroduced in
the simulated environment, in an effort to reduce the exposure to the external atmosphere (5 min at
most out of the seawater) to a minimum. Two scales with a 0.1 mg precision were used for weighing
the coupons. Complete absorption curves were generated in this way. The results were recorded to
monitor the evolution of material properties. At the scheduled end of the conditioning, after about
one-year exposure, the remaining specimens were removed from the exposure and either tested “as-is”
or re-dried in an oven set at 50 ◦C, to evaluate the desorption curves and explore any recovery of the
elastic properties. As a reference control, some coupons were exposed at the same temperatures, but
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kept in dry air within sealed tin cans (silica bags were introduced in order to keep the moisture content
at a minimum), in order to compare the effect of the temperature ageing only on the materials.

2.2.2. Dynamic Mechanical Analysis (DMA)

Dynamic Mechanical Analysis (DMA) was performed using an RSA 3 analyzer, by TA Instruments
(New Castle, DE, USA), to evaluate the glass transition temperature (Tg) of the materials. The sampling
times were scheduled so as to capture the Tg shift in the critical moments of the absorption process.
The loading mode was sinusoidal three-point bending. The loading span was of 25 mm. The sample
geometry was 2 × 10 × 33 (h × w × l) and was obtained by cutting part of the respective δ coupons for
the neat Ampreg 26 and ε coupons for the GFRP. The temperature ramp was set from 25 up to 150 ◦C,
at a 5 K/min heating rate. Such a higher heating rate was selected (instead of the standard 3 K/min)
in an attempt to shorten the period during which the sample was outside the exposure environment.
A trade-off between the measurement precision and the accuracy of the “wet” Tg measured was
required to accelerate the test. The Tg transitions were evaluated both by the storage modulus (E’) drop
onset and by the tanδ peak. The DMA specimens removed at selected intervals of conditioning were
investigated “as-is” and after re-drying in an oven at 50 ◦C for up to two weeks. In this way, it was
possible to evaluate the reversibility of the fluid diffusion on the viscoelastic properties of the materials.

3. Results

The gravimetric measurements are reported as a function of the length of the exposure to the
simulated marine environment (i.e., substitute seawater). The timescale is expressed as the square
root of time, using days as the unit of measure for ease of understanding and to present a consistent
representation between the gravimetric measurements and the rest of the tests. The Fickian theory of
diffusion states that the mass uptake (i.e., moisture content) is linear to the square root time for the
initial part of the Mt vs.

√
t plot. This representation also helps to expand the early stages, when the

absorption process is at its highest rate and can be expected to have the highest degree of influence on
the material properties. The single data point is an average of the weight of the set of specimens (three
replicas for each exposure condition specimen type) involved in a single measurement.

3.1. Gravimetric Measurements on Neat Ampreg 26 Epoxy

Gravimetric measurements on neat epoxy specimens of different geometries were performed to
assess the fluid absorption process and evaluate if any shape factor influences the process. The results
are presented in Figure 1 as an average of the measurements of all the specimens available.

The results obtained show that the diffusion process is not completely Fickian. After an initial
linear uptake (in

√
t space), the material reaches a so-called pseudo-saturation [2,16]. A saturation time

can be calculated, related to the exposure temperature. However, if the gravimetric measurements are
continued, it is evident that the material continues to absorb seawater at a much slower rate, entering
another linear regime. It does eventually reach a definitive saturation stage, but at a much later stage.
For the 80 ◦C exposure, after about six months, the graph shows a noticeable decrease in weight,
perhaps an indication of chemical degradation.

The ASTM D570 and ASTM D5229 standards describe in detail the design and the methodology of
gravimetric testing to evaluate the diffusivity properties for plastics and polymer composite materials.
A pivotal feature is the saturation criteria used, which should be a numerical one, and it relies on the
convergence of the weight of the coupons as those approach a steady saturated state. Hence, from
consecutive measurements, when the relative change in per cent weight gain decreases below a certain
threshold, the material can be deemed as in equilibrium. The ASTM D570 standard states that the
material is saturated when its weight changes less than 5 wt% or less than 5 mg over three consecutive
measures, while the ASTM D5229 (see Equation (1)) is more stringent, and requires a change in weight
by less than 0.020 wt% over each of two consecutive reference time period spans, and examination of
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the weight gain versus (time)1/2 plot. The second criterion is much stricter due to composites being
less prone to absorbing fluid as inorganic fibers are considered inert.∣∣∣∣Wn −Wn−1

W0

∣∣∣∣× 100 < 0.020% for 2 consecutive reference time span (1)

This approach has its limitations. In particular, it does not consider the actual saturation level of
the material. Therefore, polymers with a very low saturation level or with very low diffusivity can be
evaluated as saturated too early, while others more prone to absorbing or showing secondary stages
could eventually never reach proper saturation. From experimental practice, it is evident that these
criteria are not good enough to capture the time to saturation, but they highly rely on the subjective
evaluation of the operator.
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Figure 1. Gravimetric measurements on neat Ampreg 26 coupons of different shape factors: (a) Alpha;
(b) beta; (c) gamma and (d) delta. (Note: coupons’ dimensions are listed in Table 2). The x-axes are
measured in the square root of seconds.

In this work, a slightly different saturation criterion is proposed, by evaluating the partial increase
over consecutive measurements and dividing this by the overall weight gain to that point. In this way,
small changes are more relevant to low diffusing materials compared to more permeable ones. This
allows a more robust numerical saturation criterion to be defined:∣∣∣∣Wn − Wn−1

Wn − W0

∣∣∣∣ < [thresold value] for [n] consecutive reference time spans (2)

Even this criterion is susceptible to the selection of appropriate threshold values. From our
analysis, it was found that a value of 0.02 (in other words, less than 1/50 of the overall weight gain)
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allows the saturation point to be individuated with a good consistency, even when the fluid uptake is
very slow, i.e., ambient temperature conditions.

In order to improve the reliability of a numerical criterion for the localization/target of the effective
equilibrium, the results obtained using different criteria are compared in Table A1 (see Appendix A).

From the values reported, it can be highlighted that the criterion prescribed by the ASTM D5229M
is less precise and reliable, with a large scatter in the values obtained for each specimen geometry at
any temperature. The proposed method appears to be more consistent, yet it is susceptible to noisy
measurement and still requires a comparison of the Mt vs.

√
t plot. Of the two different threshold

values proposed, the 0.02 is preferred as it captures the effective equilibrium at 25 ◦C in a more accurate
way. For these reasons, for the rest of this study, we refer to the effective equilibrium as defined by the
residual increment Criterion A.

The values in Table 3 are essential for the evaluation of the diffusivity of the material, as is the
consideration of the contribution of the exposed edges of the specimens, hence the deviation from
one-dimensional diffusion.

Table 3. Saturation levels and times for neat Ampreg 26 at various temperatures and specimen shapes.
(Note: Mean values of three specimens for each geometry are listed).

Temperature Specimen h× w× l Slope M∞ t∞

(◦C) (mm×mm×mm) (× 10−4 %/
√

s) (%) (days)

25

alpha 2.09 × 18.86 × 19.15 8.8 1.94 113
beta 2.18 × 40.00 × 40.08 7.9 1.90 107

gamma 2.04 × 100.04 × 100.07 8.4 2.01 110
delta 2.15 × 10.08 × 100.03 8.2 1.91 107

55

alpha 2.11 × 18.96 × 19.05 28.4 2.69 55
beta 2.16 × 40.03 × 39.99 26.6 2.60 33

gamma 2.12 × 100.05 × 100.05 26.6 2.63 33
delta 2.07 × 10.06 × 100.05 28.4 2.91 48

80

alpha 2.15 × 19.31 × 19.14 71.7 2.77 16
beta 2.15 × 39.96 × 40.03 65.9 2.77 9

gamma 2.13 × 100.03 × 100.05 64.9 2.79 9
delta 2.12 × 10.05 × 99.97 69.9 2.73 9

3.2. Gravimetric Measurements on GFRP Composite

Similar to the neat epoxy, gravimetric measurements on GFRP specimens of different geometries
were performed to assess the fluid diffusion and evaluate the shape factor effects. The results are
presented in Figure 2. In this case, the alpha coupons were not used due to their small mass (even
considering the relevant inert fiber content), so the change in weight due to the absorbed moisture
would be subject to significant experimental error. Instead, coupons coded as epsilon were introduced.
These have the same bar geometry as coupons denoted as delta, but the fibers are aligned along the
shorter side. The aim is to highlight if the there is any anisotropic effect in the fluid diffusion due to
the fiber presence, such as preferential paths or different contributions of the matrix-fiber interphase.
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Figure 2. Gravimetric measurements on GFRP coupons of different shape factors: (a) Beta; (b) gamma;
(c) delta and (d) epsilon. (Note: coupons’ dimensions are listed in Table 2). The x-axes are measured in
the square root of seconds.

The diffusion at 25 ◦C appears to be Fickian for the duration of the exposure as was at 55 ◦C
for approximately 250 days when a sudden increase in weight was observed. On the contrary, when
exposed at 80 ◦C, diffusion follows a Fickian curve for about 20 days and then significantly deviates,
signifying the beginning of a secondary diffusion stage [17,18].

The moisture uptake at effective equilibrium and the respective time to reach that level were
calculated using the residual increment Criterion A (see Equation (2)) with a threshold value of 0.02
and n = 2. The results are listed in Table 4. The scatter of the individual measurements negatively
affected the precision of determining a consistent point of effective equilibrium, with a large spread
between the different specimen geometries, particularly for the exposure at 80 ◦C. For this temperature,
if the threshold value is increased to 0.04–0.05, taking into account the higher degree of noise in the
measurements, it is possible to obtain much more accurate saturation times.

For the higher exposure temperatures (55 and 80 ◦C), a higher amount of seawater appears to be
absorbed by specimen type epsilon compared to delta, which could be an indication of an increasing
role of the fiber-matrix interphase as the fibers in epsilon are aligned along the shorter side and hence
more fiber edges are exposed to the environment. However, the differences are relatively small and no
solid conclusion can be derived.
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Table 4. Saturation levels and times for GFRP at various temperatures and specimen shapes.
(Note: Mean values of three specimens for each geometry are listed).

Temperature Specimen h× w× l Slope M∞ t∞

(◦C) (mm×mm×mm) (× 10−4 %/
√

s) (%) (days)

25

beta 1.72 × 39.99 × 40.00 1.4 0.48 143
gamma 1.70 × 99.84 × 99.73 1.3 0.46 132

delta 1.72 × 9.99 × 99.96 1.4 0.51 182
epsilon 1.70 × 99.90 × 10.03 1.5 0.47 119

55

beta 1.73 × 40.00 × 40.04 6.2 0.65 29
gamma 1.70 × 99.91 × 99.98 5.9 0.67 41

delta 1.73 × 9.95 × 99.98 6.1 0.64 31
epsilon 1.72 × 99.93 × 9.99 6.6 0.66 29

80

beta 1.73 × 39.99 × 39.99 20.0 0.72 8
gamma 1.76 × 99.12 × 99.75 20.0 0.82 24

delta 1.71 × 10.00 × 100.03 19.6 0.75 17
epsilon 1.74 × 99.93 × 10.01 21.1 0.80 70

3.3. Mechanical Performance

The mechanical performance plays a significant role when selecting a polymer composite material
for a structural application in a harsh environment. Amongst the different characterisation techniques,
the tensile test is commonly used to evaluate the mechanical performance and measure the Young’s
modulus and strength [4,12]. In our study, alongside the gravimetric coupons, tensile test specimens
were exposed in seawater over prolonged periods of time. Neat, epoxy specimens were tested
to evaluate the degradation in performance of the matrix alone. Likewise, GFRP specimens with
unidirectional reinforcement in either the longitudinal or transverse direction were tested to monitor
how the fiber- and matrix-dominated mechanical response changes over time. All specimens were
tested at different sampling times, chosen in relation to the advancement of the diffusion stages at the
exposure temperature, in an attempt to capture the most relevant transitions (i.e., pristine material,
linear uptake, Fickian saturation, aged). Although the experimental results of this expensive test
program are not presented here, a close correlation between the performance loss, the degree of
saturation degree, and the exposure temperature was found and will be comprehensively discussed in
a future paper.

4. Discussion

4.1. Diffusivity Calculation for Neat Ampreg 26 Epoxy

The moisture content in the isotropic (Dx = Dy = Dz = D) rectanguloid of Figure 3 is given by the
following integral solution to Fick’s equation for one-dimensional diffusion:

Mt

M∞
= G1D = 1− 8

π2

∞

∑
j=0

(2j + 1)−2 exp

[
− (2j + 1)2π2Dt

h2

]
(3)

To calculate the diffusivity coefficient, D, a simplified version (valid as Mt/M∞ < 0.6) of the
above equation was considered:

Mt

M∞
= G1D =

4
h

√
D/π×

√
t (4)
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where, Mt is the moisture content at time t, M∞ is the moisture content at the Fickian saturation
(effective equilibrium), and h is the thickness of the specimen. The slope of the Mt vs.

√
t for

Mt < 0.6 M∞ (linear diffusion) is equal to

Slope =
4M∞

h

√
D/π (5)

The above equations do not take into account any diffusion happening from the free edges of
the specimens. For that, the three-dimensional problem of diffusion in a rectanguloid needs to be
considered and solved. Apart from being very computationally expensive, this has the additional
drawback that the diffusivity is not easily determined from the linear initial slot of the Mt vs.

√
t graph.

For this reason, the introduction of a correction factor can be considered, as follows:

G3D = f G1D (6)

and hence,
Dcorr = f−2De f f (7)

where, Dcorr is the corrected diffusivity coefficient for diffusion through the free edges and Deff is the
diffusivity coefficient measured from the gravimetric experiments.

Shen and Springer [19] and Starink, Starink and Chambers [20] have derived correction factors
that are used in this paper to correct the diffusivity coefficients:

Shen and Springer [19]:

fS&S = 1 +
h
w

+
h
l

(8)

Starink, Starink and Chambers [20]:

fSSC = 1 + 0.54
h
w

+ 0.54
h
l
+ 0.33

h2

wl
(9)

The results for the neat Ampreg 26 epoxy are presented in Table 5 for the various temperatures
and specimen shapes.
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Table 5. Diffusivity coefficient for neat Ampreg 26 at various temperatures and specimen shapes. (Note:
Mean values of three specimens for each geometry are listed).

Temperature Specimen h× w× l fS&S fSSC
Dr Dr,S&S Dr,SSC

(◦C) (mm×mm×mm) (× 10−13 m2/s)

25

alpha 2.09 × 18.86 × 19.15 1.22 1.12 1.74 1.17 1.38
beta 2.18 × 40.00 × 40.08 1.11 1.06 1.59 1.29 1.41

gamma 2.04 × 100.04 × 100.07 1.04 1.02 1.40 1.29 1.34
delta 2.15 × 10.08 × 100.03 1.24 1.13 1.67 1.09 1.31

55

alpha 2.09 × 18.86 × 19.15 1.22 1.12 9.57 6.43 7.59
beta 2.16 × 40.03 × 39.99 1.11 1.06 9.57 7.80 8.53

gamma 2.12 × 100.05 × 100.05 1.04 1.02 9.03 8.31 8.63
delta 2.07 × 10.06 × 100.05 1.23 1.12 8.02 5.33 9.01

80

alpha 2.15 × 19.31 × 19.14 1.22 1.13 61.09 40.80 48.27
beta 2.15 × 39.96 × 40.03 1.11 1.06 51.01 41.60 45.49

gamma 2.13 × 100.03 × 100.05 1.04 1.02 48.13 44.28 45.98
delta 2.12 × 10.05 × 99.97 1.23 1.13 58.21 38.32 45.83

For the quasi-infinite coupon size (gamma), the two correction factors converge (only 2%
difference) to 1 and therefore, the corrected diffusivities are in better agreement and close to the
measured ones from the experimental curves. For more irregular coupon sizes and especially for the
very small coupon, the correction factors diverge from 1 and from each other, showing a large range of
diffusion coefficients. If all results are compared to the quasi-infinite coupons, then f S&S overcorrects
the diffusivity values; hence, the f SSC is considered more accurate and applicable. This is in agreement
with the results presented in [20,21].

The present analysis demonstrates that quasi-infinite coupons are necessary to obtain accurate
diffusivity values and, in the case that these are not available due to manufacturing issues
(i.e., extracting coupons from a small slab of material), the f SSC correction factor should definitely be
considered to avoid errors, even up to 30%.

4.2. Diffusivity Calculation for the GFRP Composite

As with the isotropic case of the neat Ampreg 26, correction for the diffusion through the free
edges needs to be evaluated for the composite, in addition to considering the anisotropic nature of the
diffusion process.

Starink, Starink and Chambers [20] have presented a modified treatment of diffusion in
unidirectional composites assuming that the fibers do not take any moisture, where the diffusivity
parallel (D‖) and transverse (D⊥) to the fibers in Figure 4 are given by

D‖ = Dr (10)

D⊥ =

(
1− 2

√
v f
π

)
1− v f

Dr = g2 × Dr (11)

where v f is the fiber volume fraction of the composite and Dr is the diffusivity coefficient of the neat
resin. The fiber hindrance factor g2 is an expression of the reduced free path for the diffusion species to
follow due to the volume fraction taken by the inert inorganic fibers. It does not take into account any
possible contribution due to the possible different chemical activity of the fiber-matrix interphase.
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For the unidirectional composite in Figure 5, the diffusivity coefficients are

Dx = D‖, Dy = Dz = D⊥ (12)
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Similar to the isotropic case, Starink, Starink and Chambers [20] have proposed a correction factor
for an orthotropic medium, ignoring second order edge effects:

fortho = 1 + 0.54
h
w

√
Dy

Dz
+ 0.54

h
l

√
Dx

Dz
(13)

By combining Equation (13) and Equations (10)–(12), it can be found that for the unidirectional
composite, the correction factor is only a function of the geometry of the specimen, considering along
which main direction the diffusion is favored (usually the shortest) and the fiber volume fraction. For
the fibers aligned along the x-axis, as in Figure 5, this results in two possible scenarios:

fortho, ⊥ = 1 + 0.54
(

h
w + h

l
1
g

)
for diffusion mainly ⊥ to the fibers

(14a)

fortho, ‖ = 1 + 0.54
(

h
w + h

l

)
g

for diffusion mainly ‖ to the fibers
(14b)
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Therefore, the effective diffusivity for the composite transverse and perpendicular to the fiber
direction can be estimated as

De f f . ⊥ ∼= f 2
ortho, ⊥D⊥ = f 2

ortho, ⊥·g
2·Dr (15a)

De f f . ‖ ∼= f 2
ortho, ‖D‖ = f 2

ortho, ‖·Dr (15b)

The above relationships are plotted in Figure 6 with respect to the volume fraction of the composite
material. It is apparent that the 100× 100 specimen geometry is closer to the infinite plate solution than
any other geometry, hence providing the most accurate geometry for the measurement of the diffusivity.
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Figure 6. (a) Deff,⊥/Dr and (b) Deff,‖/Dr versus fiber volume fraction for the different shape specimens
used in the study.

The GFRP composite under investigation was found to have a fiber volume fraction of 56%. For this
Vf value, g2 is equal to 0.3536. These values were used in the calculation of the correction factors.

In Table 6, the correction factors and diffusivity coefficients for the composite material are listed.
The value of the diffusivity calculated from the experimental weight gain test curves following the
Fickian approach is denoted as Dc. The corrected values Dc,S&S and Dc,SSC were calculated from
Equation (7) combined with Equation (8) and Equation (14a), respectively. In addition, the effective
diffusivity transverse (⊥) and parallel (‖) to the fibers were calculated from Equation (15a–b) and
presented for comparison. The corrected diffusivity of the neat Ampreg 26 was used in the prediction
of the effective anisotropic diffusivity.
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Table 6. Diffusivity coefficient for CFRP at various temperatures and specimen shapes. (Note: Mean
values of three specimens for each geometry are listed).

Temp. Specimen h× w× l fS&S fortho,⊥ fortho,‖
Dc Dc,S&S Dc,SSC Deff,⊥ Deff,‖

(◦C) (mm×mm×mm) (× 10−13 m2/s)

25

beta 1.72 × 39.99 × 40.00 1.09 1.06 1.03 0.51 0.43 0.45 0.56 1.49
gamma 1.70 × 99.84 × 99.73 1.03 1.02 1.01 0.49 0.46 0.47 0.50 1.37

delta 1.72 × 9.99 × 99.96 1.19 1.11 1.06 0.45 0.31 0.37 0.57 1.47
epsilon 1.70 × 99.90 × 10.03 1.19 1.16 1.06 0.60 0.43 0.44 0.63 1.47

55

beta 1.73 × 40.00 × 40.04 1.09 1.06 1.03 5.40 4.58 4.78 3.40 9.01
gamma 1.70 × 99.91 × 99.98 1.03 1.02 1.01 4.46 4.17 4.25 3.20 8.82

delta 1.73 × 9.95 × 99.98 1.19 1.11 1.06 5.37 3.78 4.36 3.92 10.15
epsilon 1.72 × 99.93 × 9.99 1.19 1.17 1.06 5.75 4.06 4.23 4.33 10.14

80

beta 1.73 × 39.99 × 39.99 1.09 1.06 1.03 45.81 38.80 40.57 18.17 48.06
gamma 1.76 × 99.12 × 99.75 1.04 1.03 1.01 36.29 33.85 34.50 17.10 47.03

delta 1.71 × 10.00 × 100.03 1.19 1.11 1.06 39.91 28.27 32.52 19.89 51.53
epsilon 1.74 × 99.93 × 10.01 1.19 1.17 1.06 40.94 28.84 30.05 22.08 51.63

In all cases, the least correction is required for the gamma type coupons, confirming the
convergence to the infinite specimen size. In analogy with the neat Ampreg 26 case, it is evident that
the correction proposed by Shen and Springer [19] seems to underestimate the material’s diffusivity
(i.e., highest values of the correction factor), while the one proposed in [20] is more consistent and
converges the diffusivity values towards the experimental of the 100× 100 gamma type coupon, which
is the representative closest to the ideal one-dimensional diffusion case.

The results in Table 6, also plotted in Figure 7 with respect to the diffusivity of the resin, suggest that:

1. The effective diffusivity transverse to the fiber direction (Deff,⊥) is approximately half than of the
resin’s, while the diffusivity along the fibers (Deff,‖) is slightly higher than that of the resin;

2. There is satisfactory agreement for the values of the GFRP diffusivity at 25 ◦C to Deff,⊥ but it
progressively deviates at higher temperatures towards Deff,‖. This is an indication that while at
ambient temperature, diffusion is occurring mainly through the thickness of the specimen, and
as the temperature increases, there is significantly more seawater travelling through the edges of
the specimens and along the fibers, which in turn suggests possible weakening of the fiber-matrix
interface, providing an easy pathway for the diffusing liquid.
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4.3. Arrhenius Plot and Prediction of Low Temperature Diffusivity

It has been suggested [22,23] that the temperature dependence of diffusivity follows the Arrhenius
equation as

D(T) = Ae
−Ea
RT (16)

where A is a pre-exponential factor and a constant for each chemical reaction, T is the absolute
temperature in Kelvin, Ea the activation energy for the reaction, and R is the universal gas
constant equal to 3.13446 J/mol·K. To explore this assumption for the materials under investigation,
an Arrhenius plot (lnD vs. (1/T)) was constructed for the gamma type specimen (Figure 8a). Despite
the higher exposure temperature being very close to the glass transition temperature of the dry
materials, it appears that the Arrhenius relationship holds for the range of temperatures investigated
and an extrapolation can be safely made to lower temperatures (Figure 8b). Considering the calculated
activation energies of 54.6 kJ/mol and 66.4 kJ/mol for the neat Ampreg 26 and the GFRP, respectively,
the diffusivity at a temperature of 4 ◦C, representing realistic deep-water applications, was evaluated
and shown to be equal to 0.23 and 0.05 × 10−13 m2/s.
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4.4. Tg Measurements on Neat Ampreg 26 and GFRP Composite

In parallel to the gravimetric measurements, the change in the glass transition temperature (Tg)
was monitored through an extensive campaign of Dynamic Mechanical Analysis (DMA) tests on
progressively exposed specimens in seawater and dry air at different temperatures. The Tg was taken
from the onset of the drop in the storage modulus (E′) in the DMA curve. The results are presented in
Figures 9a and 10a for the neat Ampreg 26 and GFRP composite, respectively. It can be noticed that for
any curve referring to Tg after seawater exposure, the first local minimum happens at about the same
time as the saturation of the material at the respective temperature when compared to the gravimetric
curves, and the higher the exposure temperature, the faster this initial drop in the Tg.

The materials show a complex behaviour, but some common features can be highlighted. For the
epoxy resin (see Figure 9a), the 25 ◦C seawater exposure shows a monotonic trend in the Tg, which
is seemingly proportional to the seawater uptake, as recorded in the gravimetric test. The higher
temperature exposures, instead, have alternated shifts. The measured Tg following exposure in dry air
at various elevated temperatures did not reveal any additional chemical crosslink happening to the
material, manifested through a rise in Tg, verifying that the epoxy system is properly cured at the start
of the exposure tests [24].
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(b) calculated Tg difference between wet and dry exposures for the GFRP. The x-axes are measured in
the square root of days.

To investigate the potential effect of the elevated exposure temperature, the Tg measured from
the specimens exposed in air was subtracted from that measured from the specimens in seawater. For
25 ◦C, the dry Tg value of 86 ◦C was considered as constant with exposure time. The resulting curves
are shown in Figure 9b for the neat Ampreg 26. If the values beyond saturation of the material and up
to the full duration of the exposure (i.e., one year) are considered, it appears that the net seawater effect
is relatively similar for the elevated temperatures and significantly greater for the 25 ◦C exposure.

Zhou and Lucas [25] have articulated that there are two types of water bound in an epoxy’s
crosslinked network. Type I bound water breaks inter-chain Van der Waals bonding and forms
hydrogen bonds (Figure 11a). The net effect of Type I bound water is the increase in chain mobility
that contributes to Tg depression. If only Type I bound water existed in the material, the Tg of the
resin system would be independent of hygro-thermal exposure conditions; in other words, unaffected
by exposure temperature and exposure time duration. In addition, there is Type II bound water that
promotes secondary crosslinking with hydrophilic groups, such as hydroxyls and amines (Figure 11b).
Popineau et al. [26] also postulated the existence of different types of water diffusing in epoxy, which are
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in agreement with the Langmuir-like diffusion kinetics proposed by Carter and Kibler [27]. However,
they attributed different interactions of the water molecules to the polymer matrix, referring to them as
free or bound solvent. There is no universal agreement about the behaviour of water inside a polymeric
medium beside the initial plasticization effect [28]. Yet, different authors have proposed the dual type
mechanism to explain the evolution of glass transition shifts [29–31].
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Figure 11. (a) Water molecules form one hydrogen bond with the epoxy network and (b) water
molecules form more than one hydrogen bond with the epoxy network [25].

Zhou and Lucas proved that the amount of Type II bound water increases with immersion
time and a higher immersion temperature [25]. Therefore, the measured Tg value is influenced by
a dual-mechanism process. That is, Type I bound water causes a drop in Tg and Type II bound
water lessens the drop in Tg because of secondary crosslinking as a result of the water-thermoset
network interaction.

This approach can explain the Tg decrease trend depicted in Figure 9b, where the exposure at
25 ◦C has caused much greater depression (∆Tg = −29 ◦C) when compared to the exposures at 55 ◦C
and 80 ◦C (∆Tg of −15 ◦C and −13 ◦C, respectively), where the amount of Type II bound seawater
would be much greater. When the absorbed seawater was removed by drying the specimens at 50 ◦C,
there was a full recovery of the Tg with measured values of 87 ◦C, 91 ◦C, and 88 ◦C when the initially
dry Tg of the material was measured in between 85 and 88 ◦C. It has been suggested that the recovery
of the Tg is associated with the removal of Type I bound seawater that restores inter-chain Van der
Waals bonding, which in turn masks the secondary cross-linking effect on Tg.

Similar to the epoxy, the variation in Tg of the GFRP composite with exposure time is presented
in Figure 10a, while the net seawater effect, expressed as the difference between the Tg after seawater
exposure and that after dry air exposure at the same temperature, is given in Figure 10b. The measured
Tg shows the same monotonic trend, seemingly proportional to the seawater uptake, as recorded in
the gravimetric tests. As for the neat epoxy, the depression in Tg was very close, irrespective of the
elevated exposure temperatures, particularly if the last two points in the curve representing the 80 ◦C
are treated as outliers since their respective Tg depression could not be replicated when the tanδ Tg
value was considered. There was a greater Tg decrease for the 80 ◦C exposure, although the difference
to the elevated temperatures was not as high. It is believed that in addition to the two mechanisms
described earlier affecting the Tg depression, there is a third one related to the presence of the glass
fibers and in particular, the interaction of the fiber-matrix interface with the absorbed seawater. Again,
when specimens were dried following one-year exposure to seawater, the Tg was fully recovered with
measured values of 84 ◦C, 89 ◦C, and 84 ◦C, when the initially dry Tg of the material was measured in
between 81 and 88 ◦C.

If the Tg decrease was only influenced by the polymer plasticization and enhanced inter-chain
mobility, then the Gordon-Taylor model [32] (see Equation (17)) would describe the relationship to
the seawater content and all measured Tg values would lie along the same curve, irrespective of
the exposure temperature. Instead, the parameter k in the model is different for different exposure
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temperatures, denoting a significant effect of temperature and reinforcing the assumption of different
mechanisms affecting Tg.

The Gordon-Taylor model describes the glass transition temperature Tg of a polymer as

Tg =
(1− xw)Tgdry + kxwTgw

(1− xw) + kxw
(17)

where xw is the seawater content, Tgw is the glass transition temperature of the seawater taken to be
equal to that of water (−137 ◦C) [32], Tgdry is the glass transition temperature of the dry material, and
k is a material parameter denoting the effect of the presence of seawater beyond the linear rule of
mixtures (i.e., k = 1). From Figure 12, it is suggested that the effect of seawater content is greater for the
GFRP composite, where a smaller amount of absorbed liquid causes a greater Tg decrease and hence
kGFRP > kresin for all exposure temperatures.
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5. Conclusions

An extensive ageing campaign on epoxy and epoxy-based GFRP materials was conducted. The
aim was to investigate the evolution of the material properties when exposed to a simulated marine
environment. Three different temperatures were chosen (25, 55, and 80 ◦C), to compare the different
rates at which the material properties would change, due to the increased physical/chemical kinetics.

The absorption progress was mainly monitored by gravimetric measurements. The results show
that the behaviour is not completely Fickian. In particular, for the GFRP composite, the anisotropic
nature of the material influences the diffusion kinetics with increasing temperature, both due to the fiber
presence and the changing conditions of the fiber-matrix interphase. Two different correction factors
were used, with that proposed by Starink et al. [20] providing more accurate results. Nevertheless, it is
critical to use coupons with a width/length to thickness ratio of 50:1 or more (quasi-infinite plate) to
reduce the effect of the fluid diffusion through the edges.

Using an Arrhenius plot, the exponential relation between the diffusivity coefficient and the
exposure temperature was verified and the diffusivity coefficient values for the materials at a temperature
of 4 ◦C, typical of offshore operative scenarios, were estimated at 0.23 and 0.05 × 10−13 m2/s for the
neat Ampreg 26 and the composite, respectively.

In addition to the gravimetric measurements, tensile tests were performed on both materials
to evaluate the evolution of mechanical performance with exposure to seawater. Although the
experimental results are not presented in this paper, a close correlation between the performance loss,
the degree of saturation, and the exposure temperature was found.
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The shifts in the glass transition temperature for the different exposure conditions show that
the initial local minimum happens at about the same time as the material saturates. The data was
analysed in light of the findings reported by Zhou and Lucas [25] about the two types of bonding of
water molecules with the epoxy network. The different bonding can increase chain mobility or induce
secondary cross-linking, hence altering the materials’ Tg. Moreover, for the GFRP composite, the
fiber-matrix interphase seems to play a role in the plasticization effect due to water absorption. When
the specimens are re-dried after exposure, the recovery of Tg is almost complete, so the process seems
to be mostly reversible. From an analysis of the data using the Gordon-Taylor model, it is evident that
the plasticization effect is not just dependent on the water content, but also the temperature, and the
different type of chemical bonds promoted do influence it.

Finally, the results verify the feasibility of accelerating the diffusion of seawater in polymer and
polymer composites as a reliable way to recover the diffusivity factors at different temperatures and to
estimate them for temperatures well below the glass transition of the polymer. The evaluation of the
evolution of the glass transition temperature (Tg) is more complex due to the concurring mechanism
interacting with the polymer network.
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Appendix A

Table A1. Comparison of the results obtained at effective equilibrium for the gravimetric test of the neat Ampreg 26 using different equilibrium criteria. (Note: mean
values of three coupons for each geometry are listed).

Effective Equilibrium
Criterion

Temperature 25 ◦C 55 ◦C 80 ◦C

Specimen alpha beta gamma delta alpha beta gamma delta alpha beta gamma delta

ASTM D5229M
Equation (1)

Effective
equilibrium 1 (days) 131 145 117 113 70 63 76 55 40 22 35 9

Moisture
content (%) 1.93 1.96 1.99 1.88 2.66 2.63 2.68 2.85 2.78 2.78 2.79 2.75

Uptake rate 2 (10−8/s) 1.48 0.65 2.88 1.59 1.29 2.57 1.70 3.00 0.90 0.35 8.60 3.30

Criterion A
as Equation (2)

(0.02, n = 2)

Effective
equilibrium (days) 113 107 110 107 55 33 33 48 16 9 9 9

Moisture
content (%) 1.94 1.90 2.01 1.91 2.69 2.60 2.63 2.91 2.77 2.77 2.79 2.73

Uptake rate (10−8/s) 0.16 2.00 2.90 3.00 1.70 1.67 2.95 1.12 1.60 2.60 2.60 1.20

Criterion B
as Equation (2)

(0.05, n = 3)

Effective
equilibrium (days) 62 62 65 62 27 26 28 35 8 8 9 8

Moisture
content (%) 1.63 1.59 1.75 1.62 2.52 2.49 2.57 2.76 2.69 2.73 2.75 2.75

Uptake rate (10−8/s) 4.87 6.56 8.01 6.34 4.90 5.12 6.40 6.00 4.80 1.00 2.60 1.10
1 The time to effective equilibrium is rounded up to the next integer. 2 The uptake rate is the average time ratio of the percent weight gain; in other words, a saturation “speed”.
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