Influence of the Elastic Modulus on the Osseointegration of Dental Implants
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sumner, D.R.; Turner, T.M.; Igloria, R.; Urban, R.M.; Galante, J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J. Biomech. 1998, 31, 909–917. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Hashimoto, S.; Kim, J.L.L.; Hosoda, H.; Miyazaki, S. Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys. Mater. Trans. 2004, 45, 2443–2448. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Watanabe, S.; Hanada, S. Beta TiNbSn Alloys with Low Young’s Modulus and High Strength. Mater. Trans. 2005, 46, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, S.; Kim, H.Y.; Hosoda, H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater. Sci. Eng. A 2006, 438, 18–24. [Google Scholar] [CrossRef]
- Hosoda, H.; Fukui, Y.; Inamura, T.; Wakashima, K.; Miyazaki, S.; Inoue, K. Mechanical Properties of Ti-Base Shape Memory Alloys. Mater. Sci. Forum. 2003, 426–432, 3121–3126. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ikehara, Y.; Kim, J.I.; Hosoda, H.; Miyazaki, S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 2006, 54, 2419–2429. [Google Scholar] [CrossRef]
- González, M.; Gil, F.J.; Peña, J.; Manero, J.M. Characterization of two Ti-Nb-Hf-Zr alloys under different cold rolling conditions. J. Mater. Eng. Performance. 2011, 20, 653–657. [Google Scholar] [CrossRef]
- González, M.; Peña, J.; Manero, J.M.; Gil, F.J. Influence of Cold Work in the Elastic Modulus of the Ti-16.2Hf-24.8Nb-1Zr Alloy Characterized by Instrumented Nanoindentation. Key Eng. Mater. 2010, 423, 113–118. [Google Scholar] [CrossRef]
- González, M.; Peña, J.; Manero, J.M.; Arciniegas, M.; Gil, F.J. Optimization of the Ti-16.2Hf-24.8Nb-1Zr Alloy by Cold Working. J. Mater. Eng. Perform. 2009, 18, 506–510. [Google Scholar] [CrossRef]
- González, M.; Peña, J.; Manero, J.M.; Arciniegas, M.; Gil, F.J. Design and Characterization of New Ti-Nb-Hf Alloys. J. Mater. Eng. Perform. 2009, 18, 490–495. [Google Scholar] [CrossRef]
- González, M.; Peña, J.; Gil, F.J.; Manero, J.M. Low modulus Ti–Nb–Hf alloy for biomedical applications. Mater. Sci. Eng. C 2014, 42, 691–695. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Salvagni, E.; Rodríguez-Cabello, J.C.; Rupérez, E.; Gil, F.J.; Peña, J.; Manero, J.M. A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading. J. Biomed. Mater. Res. Part A 2013, 101, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Titanium alloy with extra-low modulus and superelasticity and its producing method and processing (2004). Available online: http://www.google.ch/patents/US20070137742?utm_source=gb-gplus-sharePatent (accessed on 12 May 2017).
- Saito, T.; Furuta, T.; Hwang, J.H.; Kuramoto, S.; Nishino, K.; Suzuki, K.; Chen, R.; Yamada, A.; Ito, K.; Seno, Y.; et al. Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism. Science 2017, 80, 300. [Google Scholar] [CrossRef]
- Hao, Y.L.; Li, S.J.; Sun, S.Y.; Zheng, C.Y.; Yang, R. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 2007, 3, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Feighan, J.E.; Goldberg, V.M.; Davy, D.; Parr, J.A.; Stevenson, S. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. J. Bone Joint Surg. Am. 1995, 77, 1380–1395. [Google Scholar]
- Zhang, Y.; Wang, J.; Wang, P.; Fan, X.; Li, X.; Fu, J.; Li, S.; Fan, H.; Guo, Z. Low elastic modulus contributes to the osteointegration of titanium alloy plug. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101B, 584–590. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, X.; Xu, M.; Huang, Y.; Heng, B.C.; Mo, X.; Liu, Y.; Wei, D.; Zhou, Y.; Wei, Y.; et al. Synergistic effects of elastic modulus and surface topology of Ti-based implants on early osseointegration. RSC Adv. 2016, 6, 43685–43696. [Google Scholar] [CrossRef]
- Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001, 22, 1253–1262. [Google Scholar] [CrossRef]
- Arciniegas, M.; Manero, J.M.; Peña, J.; Gil, F.J.; Planell, J.A. Study of new multifunctional shape memory and low elastic modulus Ni-free Ti alloys”. Metall. Mater. Trans. A 2008, 39, 742–775. [Google Scholar] [CrossRef]
- Arciniegas, M.; Peña, J.; Manero, J.M.; Paniagua, J.C.; Gil, F.J. Quantum parameters for guiding the design of Ti alloys with shape memory and/or low elastic modulus”. Philos. Mag. 2008, 88, 2529–2548. [Google Scholar] [CrossRef]
- Gil, F.J.; Manzanares, N.; Badet, A.; Aparicio, C.; Ginebra, M.P. Biomimetic treatment on dental implants for short-term bone regeneration. Clin. Oral Investig. 2018, 18, 59–66. [Google Scholar] [CrossRef] [PubMed]
Ti alloys | E (GPa) |
---|---|
Ti-6Al-4V | 113 ± 3 |
Ti cp | 107 ± 3 |
Ti-15Zr | 103 ± 2 |
Ti-19.1Nb-8.8Zr | 74 ± 2 |
Ti-41.2Nb-6.1Zr | 67 ± 2 |
Ti-25Hf-25Ta | 53 ± 3 |
Ti Alloys | Before | Shot Blasting | After | Shot Blasting |
---|---|---|---|---|
Ra (µm) | Pc (cm−1) | Ra (µm) | Pc (cm−1) | |
Ti-6Al-4V | 0.56 ± 0.14 | 8.2 ± 0.3 | 1.99 ± 0.41 | 98.3 ± 2.4 |
Ti cp | 0.43 ± 0.11 | 9.9 ± 1.2 | 2.33 ± 0.54 | 70.9 ± 9.2 |
Ti-15Zr | 0.33 ± 0.07 | 8.4 ± 1.7 | 2.23 ± 0.76 | 88.1 ± 11.1 |
Ti-19.1Nb-8.8Zr | 0.44 ± 0.10 | 7.3 ± 1.6 | 1.74 ± 0.25 | 82.1 ± 10.0 |
Ti-41.2Nb-6.1Zr | 0.33 ± 0.07 | 8.8 ± 1.2 | 1.83 ± 0.33 | 92.1 ± 13.0 |
Ti-25Hf-25Ta | 0.23 ± 0.05 | 6.9 ± 2.2 | 2.33 ± 0.53 | 70.9 ± 9.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brizuela, A.; Herrero-Climent, M.; Rios-Carrasco, E.; Rios-Santos, J.V.; Pérez, R.A.; Manero, J.M.; Gil Mur, J. Influence of the Elastic Modulus on the Osseointegration of Dental Implants. Materials 2019, 12, 980. https://doi.org/10.3390/ma12060980
Brizuela A, Herrero-Climent M, Rios-Carrasco E, Rios-Santos JV, Pérez RA, Manero JM, Gil Mur J. Influence of the Elastic Modulus on the Osseointegration of Dental Implants. Materials. 2019; 12(6):980. https://doi.org/10.3390/ma12060980
Chicago/Turabian StyleBrizuela, Aritza, Mariano Herrero-Climent, Elisa Rios-Carrasco, Jose Vicente Rios-Santos, Roman A. Pérez, Jose Maria Manero, and Javier Gil Mur. 2019. "Influence of the Elastic Modulus on the Osseointegration of Dental Implants" Materials 12, no. 6: 980. https://doi.org/10.3390/ma12060980
APA StyleBrizuela, A., Herrero-Climent, M., Rios-Carrasco, E., Rios-Santos, J. V., Pérez, R. A., Manero, J. M., & Gil Mur, J. (2019). Influence of the Elastic Modulus on the Osseointegration of Dental Implants. Materials, 12(6), 980. https://doi.org/10.3390/ma12060980