Investigations of Machining Characteristics in the Upgraded MQL-Assisted Turning of Pure Titanium Alloys Using Evolutionary Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Tools
2.2. Turning Experiments and MQL Parameters
2.3. Measurements
2.4. Experimental Design
3. Results
3.1. Optimization
3.2. Parametric Optimization Using Desirability Function Approach
3.3. Parametric Optimization Using PSO, BFO, and TLBO
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abbas, A.; Pimenov, D.; Erdakov, I.; Taha, A.M.; Soliman, M.; El Rayes, M. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs. Materials 2018, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Pimenov, D.; Erdakov, I.; Taha, M.; El Rayes, M.; Soliman, M. Artificial Intelligence Monitoring of Hardening Methods and Cutting Conditions and Their Effects on Surface Roughness, Performance, and Finish Turning Costs of Solid-State Recycled Aluminum Alloy 6061 Chips. Metals 2018, 8, 394. [Google Scholar] [CrossRef]
- Mia, M.; Dhar, N.R. Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy. J. Mater. Process. Technol. 2018, 252, 688–696. [Google Scholar] [CrossRef]
- Mia, M.; Dhar, N.R. Response surface and neural network based predictive models of cutting temperature in hard turning. J. Adv. Res. 2016, 7, 1035–1044. [Google Scholar] [CrossRef]
- Ghosh, S.; Rao, P.V. Application of sustainable techniques in metal cutting for enhanced machinability: A review. J. Clean. Prod. 2015, 100, 17–34. [Google Scholar]
- Goldberg, M. Improving productivity by using innovative metal cutting solutions with an emphasis on green machining. Int. J. Mach. Mach. Mater. 2012, 12, 117–125. [Google Scholar] [CrossRef]
- Gupta, M.K.; Sood, P. Machining comparison of aerospace materials considering minimum quantity cutting fluid: A clean and green approach. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 1445–1464. [Google Scholar] [CrossRef]
- Mia, M.; Gupta, M.K.; Singh, G.; Królczyk, G.; Pimenov, D.Y. An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. J. Clean. Prod. 2018, 187, 1069–1081. [Google Scholar] [CrossRef]
- Gupta, M.K.; Sood, P.; Sharma, V.S. Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J. Clean. Prod. 2016, 135, 1276–1288. [Google Scholar] [CrossRef]
- Mia, M.; Morshed, M.S.; Kharshiduzzaman, M.; Razi, M.H.; Mostafa, M.R.; Rahman, S.M.S.; Ahmad, I.; Hafiz, M.T.; Kamal, A.M. Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel. Measurement 2018, 118, 43–51. [Google Scholar] [CrossRef]
- Attanasio, A.; Gelfi, M.; Giardini, C.; Remino, C. Minimal quantity lubrication in turning: Effect on tool wear. Wear 2006, 260, 333–338. [Google Scholar] [CrossRef]
- Kalita, P.; Malshe, A.P.; Arun Kumar, S.; Yoganath, V.G.; Gurumurthy, T. Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J. Manuf. Process. 2012, 14, 160–166. [Google Scholar] [CrossRef]
- Ji, X.; Li, B.; Zhang, X.; Liang, S.Y. The effects of minimum quantity lubrication (MQL) on machining force, temperature, and residual stress. Int. J. Precision Eng. Manuf. 2014, 15, 2443–2451. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Feldshtein, E.; Pusavec, F.; Szydlowski, M.; Legutko, S.; Sobczak-Kupiec, A. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int. J. Precis. Eng. Manuf. 2016, 100, 81–92. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Feldshtein, E.; Nieslony, P.; Tyliszczak, B.; Pusavec, F. Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear 2017, 372–373, 54–67. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Nieslony, P.; Wojciechowski, S.; Michalski, M.; Legutko, S. The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J. Manuf. Process. 2016, 24, 107–115. [Google Scholar] [CrossRef]
- Balan, A.; Vijayaraghavan, L.; Krishnamurthy, R. Minimum quantity lubricated grinding of Inconel 751 alloy. Mater. Manuf. Process. 2013, 28, 430–435. [Google Scholar] [CrossRef]
- Amini, S.; Khakbaz, H.; Barani, A. Improvement of near-dry machining and its effect on tool wear in turning of AISI 4142. Mater. Manuf. Process. 2015, 30, 241–247. [Google Scholar] [CrossRef]
- Selek, M.; Tasdemir, S.; Dincer, K.; Baskaya, S. Experimental examination of the cooling performance of Ranque-Hilsch vortex tube on the cutting tool nose point of the turret lathe through infrared thermography method. Int. J. Refrig. 2011, 34, 807–815. [Google Scholar] [CrossRef]
- Liu, J.; Chou, Y.K. On temperatures and tool wear in machining hypereutectic Al–Si alloys with vortex-tube cooling. Int. J. Mach. Tools Manuf. 2007, 47, 635–645. [Google Scholar] [CrossRef]
- Mia, M.; Singh, G.; Gupta, M.K.; Sharma, V.S. Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precis. Eng. 2018, 53, 289–299. [Google Scholar] [CrossRef]
- Hussain, M.; Siemers, C.; Rösler, J. Development of a free-machining (α + β) titanium alloy based on Ti-6Al-2Sn-4Zr-6Mo. Mater. Manuf. Process. 2013, 28, 545–549. [Google Scholar] [CrossRef]
- Priarone, P.C.; Rizzuti, S.; Rotella, G.; Settineri, L. Tool wear and surface quality in milling of a gamma-TiAl intermetallic. Int. J. Adv. Manuf. Technol. 2012, 61, 25–33. [Google Scholar] [CrossRef]
- Ramana, M.V.; Rao, G.K.M.; Rao, D.H. Optimization and effect of process parameters on tool wear in turning of titanium alloy under different machining conditions. Int. J. Mater. Mech. Manuf. 2014, 2, 272–277. [Google Scholar]
- Jawaid, A.; Che-Haron, C.; Abdullah, A. Tool wear characteristics in turning of titanium alloy Ti-6246. J. Mater. Process. Technol. 1999, 92, 329–334. [Google Scholar] [CrossRef]
- Pervaiz, S.; Rashid, A.; Deiab, I.; Nicolescu, M. Influence of tool materials on machinability of titanium-and nickel-based alloys: A review. Mater. Manuf. Process. 2014, 29, 219–252. [Google Scholar] [CrossRef]
- Wu, H.; Guo, L. Machinability of titanium alloy TC21 under orthogonal turning process. Mater. Manuf. Process. 2014, 29, 1441–1445. [Google Scholar] [CrossRef]
- Sharma, V.S.; Singh, G.; Sørby, K. A review on minimum quantity lubrication for machining processes. Mater. Manuf. Process. 2015, 30, 935–953. [Google Scholar] [CrossRef]
- Hegab, H.; Umer, U.; Deiab, I.; Kishawy, H. Performance evaluation of Ti–6Al–4V machining using nano-cutting fluids under minimum quantity lubrication. Int. J. Adv. Manuf. Technol. 2018, 95, 4229–4241. [Google Scholar] [CrossRef]
- Hegab, H.; Kishawy, H.; Gadallah, M.; Umer, U.; Deiab, I. On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication. Int. J. Adv. Manuf. Technol. 2018, 97, 1593–1603. [Google Scholar] [CrossRef]
- Hegab, H.; Darras, B.; Kishawy, H. Sustainability assessment of machining with nano-cutting fluids. Procedia Manuf. 2018, 26, 245–254. [Google Scholar] [CrossRef]
- Khatri, A.; Jahan, M.P. Investigating tool wear mechanisms in machining of Ti-6Al-4V in flood coolant, dry and MQL conditions. Procedia Manuf. 2018, 26, 434–445. [Google Scholar] [CrossRef]
- Mia, M.; Gupta, M.K.; Lozano, J.A.; Carou, D.; Pimenov, D.Y.; Królczyk, G.; Khan, A.M.; Dhar, N.R. Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. J. Clean. Prod. 2019, 210, 121–133. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Wojciechowski, S.; Zak, K.; Habrat, W.; Nieslony, P. Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. J. Mech. Sci. Technol. 2018, 32, 1585–1591. [Google Scholar] [CrossRef]
- Maruda, R.W.; Feldshtein, E.; Legutko, S.; Krolczyk, G.M. Research on emulsion mist generation in the conditions of Minimum Quantity Cooling Lubrication (MQCL). Teh. Vjesn.-Tech. Gaz. 2015, 22, 1213. [Google Scholar]
- Wojtewicz, M.; Nadolny, K.; Kapłonek, W.; Rokosz, K.; Matýsek, D.; Ungureanu, M. Experimental studies using minimum quantity cooling (MQC) with molybdenum disulfide and graphite-based microfluids in grinding of Inconel® alloy 718. Int. J. Adv. Manuf. Technol. 2019, 101, 637–661. [Google Scholar] [CrossRef]
- Yıldırım, Ç.V.; Sarıkaya, M.; Kıvak, T.; Şirin, Ş. The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribol. Int. 2019, 134, 443–456. [Google Scholar] [CrossRef]
- Karkalos, N.; Galanis, N.; Markopoulos, A. Surface roughness prediction for the milling of Ti–6Al–4V ELI alloy with the use of statistical and soft computing techniques. Measurement 2016, 90, 25–35. [Google Scholar] [CrossRef]
- Gupta, M.K.; Sood, P.K.; Sharma, V.S. Machining Parameters Optimization of Titanium Alloy using Response Surface Methodology and Particle Swarm Optimization under Minimum-Quantity Lubrication Environment. Mater. Manuf. Process. 2016, 31, 1671–1682. [Google Scholar] [CrossRef]
- Raju, M.; Gupta, M.K.; Bhanot, N.; Sharma, V.S. A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters. J. Intell. Manuf. 2018. [Google Scholar] [CrossRef]
- Singh, G.; Gupta, M.K.; Mia, M.; Sharma, V.S. Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. Int. J. Adv. Manuf. Technol. 2018, 97, 481–494. [Google Scholar] [CrossRef]
- Yusup, N.; Zain, A.M.; Hashim, S.Z.M. Overview of PSO for optimizing process parameters of machining. Procedia Eng. 2012, 29, 914–923. [Google Scholar] [CrossRef]
- Pawar, P.J.; Rao, R.V. Parameter optimization of machining processes using teaching–learning-based optimization algorithm. Int. J. Adv. Manuf. Technol. 2013, 67, 995–1006. [Google Scholar] [CrossRef]
- Venkata Rao, R.; Kalyankar, V.D. Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 2013, 26, 524–531. [Google Scholar] [CrossRef]
- Dubar, L.; Pruncu, C.I.; Dubois, A.; Dubar, M. Effects of Contact Pressure, Plastic Strain and Sliding Velocity on Sticking in Cold Forging of Aluminium Billet. Procedia Eng. 2014, 81, 1842–1847. [Google Scholar] [CrossRef]
- Pruncu, C.I.; Braic, M.; Dearn, K.D.; Farcau, C.; Watson, R.; Constantin, L.R.; Balaceanu, M.; Braic, V.; Vladescu, A. Corrosion and tribological performance of quasi-stoichiometric titanium containing carbo-nitride coatings. Arab. J. Chem. 2017, 10, 1015–1028. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, V.S. Analyzing machining parameters for commercially puretitanium (Grade 2), cooled using minimum quantity lubrication assisted by a Ranque-Hilsch vortex tube. Int. J. Adv. Manuf. Technol. 2017, 88, 2921–2928. [Google Scholar] [CrossRef]
- Stachurski, W.; Midera, S.; Kruszy, B. Determination of mathematical formulae for the cutting force FC during the turning of C45 steel. Mech. Mech. Eng. 2012, 16, 73–79. [Google Scholar]
- De Agustina, B.; Bernal, C.; Camacho, A.; Rubio, E. Experimental analysis of the cutting forces obtained in dry turning processes of UNS A97075 aluminium alloys. Procedia Eng. 2013, 63, 694–699. [Google Scholar] [CrossRef]
- An, Q.; Fu, Y.; Xu, J. Experimental study on turning of TC9 titanium alloy with cold water mist jet cooling. Int. J. Mach. Tools Manuf. 2011, 51, 549–555. [Google Scholar] [CrossRef]
- Mia, M.; Dhar, N.R. Influence of single and dual cryogenic jets on machinability characteristics in turning of Ti-6Al-4V. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 711–726. [Google Scholar] [CrossRef]
Composition or Properties | Data |
---|---|
C | <0.12% |
Fe | <0.33% |
H | <0.015% |
N | <0.034% |
O | <0.24% |
Ti (balance) (%) | 98.8% |
Density | 4500 Kg/m3 |
Specific heat | 520 J/(Kg·K) |
Thermal conductivity | 16 W/(m·K) |
Serial Number | Cutting Speed, vc (m/min) | Feed Rate, f (mm/rev) | Depth of Cut, ae (mm) | Cooling Condition | Surface Roughness, Ra (µm) | Cutting Force, Fc (N) | Power Consumption (Watts) | Tool wear, VBmax (µm) |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | MQL | 0.49 | 156 | 716 | 221.82 |
2 | 0 | 1 | 1 | MQL | 0.34 | 94 | 390 | 134.39 |
3 | −1 | −1 | 0 | MQL | 0.75 | 165 | 825 | 224.11 |
4 | 1 | 1 | 0 | MQL | 1.13 | 154 | 704 | 177.86 |
5 | 0 | 0 | 0 | MQL | 0.42 | 80 | 399 | 160.95 |
6 | 1 | 0 | 1 | MQL | 0.44 | 102 | 467 | 176 |
7 | 1 | −1 | 0 | MQL | 0.46 | 94 | 468 | 175.82 |
8 | 0 | −1 | 1 | MQL | 0.27 | 68 | 344 | 157.57 |
9 | 1 | 0 | −1 | MQL | 0.47 | 85 | 354 | 175.17 |
10 | 0 | 0 | 0 | MQL | 0.7 | 115 | 528 | 208.71 |
11 | 0 | −1 | −1 | MQL | 0.45 | 115 | 526 | 179.64 |
12 | 0 | 0 | 0 | MQL | 0.58 | 126 | 525 | 180.25 |
13 | −1 | 0 | −1 | MQL | 0.9 | 150 | 683 | 197.4 |
14 | 0 | 1 | −1 | VMQL | 0.35 | 121 | 504 | 147.54 |
15 | 0 | 0 | 0 | VMQL | 0.52 | 140 | 699 | 189.14 |
16 | −1 | 0 | 1 | VMQL | 0.42 | 95 | 435 | 168.06 |
17 | −1 | 1 | 0 | VMQL | 0.35 | 74 | 372 | 148 |
18 | −1 | 0 | 1 | VMQL | 0.6 | 135 | 610 | 176.17 |
19 | 1 | 1 | 0 | VMQL | 0.4 | 110 | 506 | 140.24 |
20 | 0 | 0 | 0 | VMQL | 0.5 | 135 | 675 | 179.24 |
21 | 0 | −1 | 1 | VMQL | 0.38 | 104 | 479 | 142.65 |
22 | 1 | −1 | 0 | VMQL | 0.35 | 97 | 404 | 145.74 |
23 | −1 | 1 | 0 | VMQL | 0.28 | 96 | 402 | 81.86 |
24 | 0 | 0 | 0 | VMQL | 0.55 | 121 | 604 | 133.32 |
25 | 0 | 1 | 1 | VMQL | 0.22 | 58 | 265 | 170.84 |
26 | 0 | 1 | −1 | VMQL | 0.42 | 89 | 444 | 150.41 |
Factors | Responses | |||
---|---|---|---|---|
Cutting Force, Fc (N) | Tool Wear, VBmax (µm) | Surface Roughness, Ra (µm) | Power Consumption (Watts) | |
R-square | 0.8867 | 0.6362 | 0.56 | 0.8957 |
Adjusted R-Square | 0.8651 | 0.5669 | 0.4762 | 0.8758 |
Predicted R-Square | 0.8225 | 0.4312 | 0.3148 | 0.8364 |
Adequate Decision | 22.129 | 10.164 | 8.97 | 22.089 |
Model F-Value | 41.08 | 9.18 | 6.68 | 45.07 |
Cutting Speed (m/min) | Feed Rate (mm/rev) | Depth of Cut (mm) | Cooling Condition | Combined Objective | Desirability |
---|---|---|---|---|---|
255 | 0.07 | 0.31 | VMQL | 1.26708 | 0.906 |
250 | 0.05 | 0.40 | VMQL | 1.27166 | 0.906 |
Parameters | Values |
---|---|
Number of variates | 5 |
Number of particles | 55 |
Number of iterations | 120 |
Inertial weight (W) | 0.7 |
Rate of learning | - |
C1max = C2max | 1.7 |
C1min = C2min | 0.5 |
C1 = C2 = Cmin + R × (Cmax − Cmin) | Where R = current iterations/total iterations |
Xmin | [250 0.05 0.3 MQL] |
Xmax | [300 0.13 0.5 VRHVT] |
Input Parameters | Value of Parameters |
---|---|
p, search area dimension | 4 |
S, number of bacteria | 55 |
Nc, number of chemotactic steps | 120 |
Nre, number of reproduction steps | 5 |
Ned, number of elimination-dispersal events | 5 |
Ns, maximum swim steps | 4 |
Ped, probability of elimination and dispersal | 0.1 |
Cmax, run length (maximum) | 0.2 |
Cmin, run length (minimum) | 0.01 |
, Upper search space constraints | [250 0.05 0.3 MQL] |
, Lower search space constraints | [300 0.13 0.5 RHVT] |
dattract = drepellent, depth of attractant and repellent signals | 0.1 |
wattract, attractant signal width | 0.1 |
wrepellent, repellent signal width | 0.1 |
Technique | Best Case | Worst Case | Average Reading | Time Taken | Success (%) |
---|---|---|---|---|---|
PSO | 1.049 | 1.056 | 1.053 | 6.40 | 60 |
BFO | 1.056 | 1.057 | 1.058 | 14.70 | 50 |
TLBO | 1.042 | 1.049 | 1.045 | 1.09 | 90 |
Desirability Function | 1.267 |
Parameters | Cutting Speed (m/min) | Feed Rate (mm/rev) | Depth of Cut (mm) | Cooling Mode | CO |
---|---|---|---|---|---|
PSO | 255 | 0.07 | 0.31 | VMQL | 1.053 |
BFO | 255 | 0.07 | 0.31 | VMQL | 1.058 |
TLBO | 255 | 0.07 | 0.31 | VMQL | 1.044 |
Desirability | 255 | 0.07 | 0.31 | VMQL | 1.267 |
Experimental | 255 | 0.07 | 0.31 | VMQL | 1.042 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, G.; Pruncu, C.I.; Gupta, M.K.; Mia, M.; Khan, A.M.; Jamil, M.; Pimenov, D.Y.; Sen, B.; Sharma, V.S. Investigations of Machining Characteristics in the Upgraded MQL-Assisted Turning of Pure Titanium Alloys Using Evolutionary Algorithms. Materials 2019, 12, 999. https://doi.org/10.3390/ma12060999
Singh G, Pruncu CI, Gupta MK, Mia M, Khan AM, Jamil M, Pimenov DY, Sen B, Sharma VS. Investigations of Machining Characteristics in the Upgraded MQL-Assisted Turning of Pure Titanium Alloys Using Evolutionary Algorithms. Materials. 2019; 12(6):999. https://doi.org/10.3390/ma12060999
Chicago/Turabian StyleSingh, Gurraj, Catalin Iulian Pruncu, Munish Kumar Gupta, Mozammel Mia, Aqib Mashood Khan, Muhammad Jamil, Danil Yurievich Pimenov, Binayak Sen, and Vishal S. Sharma. 2019. "Investigations of Machining Characteristics in the Upgraded MQL-Assisted Turning of Pure Titanium Alloys Using Evolutionary Algorithms" Materials 12, no. 6: 999. https://doi.org/10.3390/ma12060999
APA StyleSingh, G., Pruncu, C. I., Gupta, M. K., Mia, M., Khan, A. M., Jamil, M., Pimenov, D. Y., Sen, B., & Sharma, V. S. (2019). Investigations of Machining Characteristics in the Upgraded MQL-Assisted Turning of Pure Titanium Alloys Using Evolutionary Algorithms. Materials, 12(6), 999. https://doi.org/10.3390/ma12060999