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Abstract: As natural frequencies can be easily and accurately measured, structural damage evaluation
by frequency changes is very common in engineering practice. However, this type of method is
often limited by data, such as when the available natural frequencies are very few or contaminated.
Although much progress has been made in frequency-based methods, there is still much room
for improvement in calculation accuracy and efficiency. To this end, an enhanced singular value
truncation method is proposed in this paper to evaluate structural damage more effectively by
using a few lower order natural frequencies. The main innovations of the enhanced singular value
truncation method lie in two aspects: The first is the normalization of linear systems of equations;
the second is the multiple computations based on feedback evaluation. The proposed method is
very concise in theory and simple to implement. Two numerical examples and an experimental
example are employed to verify the proposed method. In the numerical examples, it was found that
the proposed method can successively obtain more accurate damage evaluation results compared
with the traditional singular value truncation method. In the experimental example, it was shown
that the proposed method possesses more precise and fewer calculations compared with the existing
optimization algorithms.

Keywords: non-destructive evaluation; structural damage; natural frequency; singular value
truncation; multiple feedbacks; data noise

1. Introduction

Structural damage often leads to changes in the dynamic response parameters of a structure.
By testing the vibration parameters and observing their changes, structural damages can be monitored
in a timely manner to avoid disastrous consequences. In recent decades, structural damage evaluation
has become a key issue in the field of civil engineering, mechanical engineering, aerospace engineering
and so on. The method based on natural frequency changes [1–11] is one of the mainstream methods
for structural damage evaluation, since the natural frequencies are most easily and accurately measured
in comparison with other dynamic characteristics of a structure. Messina et al. [3] proposed a
damage detection method termed the multiple damage location assurance criterion by using the
natural frequency sensitivity analysis. Yu et al. [4] made use of natural frequency perturbation
theory and artificial neural network to detect small structural damage. Yang and Liu [5] proposed
a frequency-based method with added masses to identify damages of the symmetrical structures.
Khiem and Toan [6] proposed a method to calculate the natural frequencies of a multiple-cracked
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beam and detect an unknown number of multiple cracks from the measured natural frequencies.
Ding et al. [7] presented an improved artificial bee colony algorithm for crack identification in beam
structure. Krishnanunni et al. [8] defined an objective function using the frequency sensitivity equation
and minimized it using a cuckoo search algorithm to evaluate structural damage. Choi and Han [9]
studied frequency-based damage detection in cantilever beam by using a vision-based monitoring
system with a motion magnification technique. Pan et al. [10] proposed a novel concept of noise
response rate (NRR) to evaluate the sensitivity of each mode of the frequency shift to noise. It was
shown that selecting vibration modes with low NRR values improves the prediction accuracy of
frequency-based damage detection. Ercolani et al. [11] studied the inverse method of damage detection
from the measurement of the first three natural frequencies of vibration on two experimental beams.

Although much progress has been made in frequency-based methods, there is still much room
for improvement in the calculation accuracy and efficiency since the available natural frequencies
are very few and contaminated. For the damage identification problem, the damaged elements in
the structure are often only a small minority because the actual damage usually occurs only in a few
local areas. This particularity of damage identification has not been fully utilized in the previous
frequency-based methods. In this paper, an enhanced singular value truncation (ESVT) method is
proposed for structural damage evaluation by using only a few natural frequencies. Central to the
proposed method is the normalization of linear systems of equations and the multiple computations
based on feedback evaluation. The above particularity of damage detection is fully utilized in the
proposed procedure by removing many undamaged elements in each computation according to the
feedback evaluation. This operation can significantly reduce the computational complexity and obtain
more accurate damage evaluation results. The presentation of this work is organized as follows.
In Section 2, the natural frequency sensitivity theory is brief reviewed and then an enhanced singular
value truncation method is proposed for structural damage evaluation. Two numerical examples and
an experimental example are used to demonstrate the feasibility and superiority of the developed
method in Sections 3 and 4, respectively. From the numerical results, it was found that the proposed
method can successively obtain more accurate damage evaluation results compared with the traditional
singular value truncation method. From the experimental results, it was shown that the proposed
method possesses more precise and fewer calculations compared with the existing optimization
algorithms. The conclusions of this work are summarized in Section 5.

2. Theoretical Development

2.1. Natural Frequency Sensitivity for Damage Detection

As is well known, the low-order natural frequencies of structural vibration can be easily and
accurately measured in engineering practice. Thus the natural frequency is the most commonly
used parameter in structural model updating or damage detection. In this section, the basis for the
natural frequency sensitivity technique [1–5] is briefly reviewed. According to the vibration theory, the
modes of structural free vibration can be obtained theoretically by solving the following generalized
eigenvalue problem:

Kφj = λj Mφj (1)

where M and K are the mass and stiffness matrices of the structure, and λj and φj are the jth eigenvalue
and eigenvector, respectively. Note that the eigenvalue λj can be obtained from the corresponding
natural frequency f j by

λj = (2π · f j)
2 (2)

Generally, the mass matrix Mis assumed constant in model updating or damage detection.
Then the first-order sensitivity of the jth eigenvalue λj can be computed by

∂λj

∂xi
= φT

j Kiφj (3)
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where xi and Ki are the ith elemental stiffness perturbed parameter (also called as damage parameter)
and stiffness matrix, respectively. The goal of model updating or damage detection is to obtain the
values of these stiffness perturbed parameters by the changes between the measured eigenvalues and
the theoretical eigenvalues. Assuming λ∗j is the jth measured eigenvalue, the eigenvalue change ∆λj
can be calculated as

∆λj = λ∗j − λj (4)

On the other hand, the eigenvalue change ∆λj can be approximated using Taylor’s series
expansion and linear superposition principle as

∆λj =
N

∑
i=1

xi
∂λj

∂xi
(5)

where N is the number of total elements in structural finite element model (FEM). For m measured
eigenvalues, the first-order sensitivity equation of natural frequencies can be obtained as

A · x = b (6)

A =


∂λ1
∂x1

· · · ∂λ1
∂xN

...
. . .

...
∂λm
∂x1

· · · ∂λm
∂xN

 (7)

x =


x1
...

xN

 (8)

b =


∆λ1

...
∆λm

 (9)

By solving the linear Equation (6), the unknown stiffness perturbed parameters αi can be
obtained, which will be used for model updating or damage evaluation. For example, the generalized
inverse [12–15] is used in many cases to compute x in Equation (6), that is

x = A+b (10)

where the superscript “+” denotes the Moore–Penrose generalized inverse [16].

2.2. Enhanced Singular Value Truncation Method

In engineering practice, only a few lower order natural frequencies with noise can be obtained
through structural vibration testing [17–20]. Thus the results obtained by Equation (10) are often very
unstable and inaccurate. This leads to the failure of model updating and damage detection. Therefore
it is very necessary to develop a new computational method to compute the stiffness perturbed
parameters more reliably. Traditionally, the singular value truncation (SVT) method [21–28] can be
used to replace the generalized inverse to solve Equation (6) more effectively. However, as will be
shown in the next example, the results obtained by the common SVT are still undesirable for many
cases. In view of this, an ESVT method is proposed in this section to obtain more accurate x for
structural damage evaluation. The proposed ESVT method is very concise in theory and very easy
in calculation. The innovations of the ESVT method lie in two aspects: (1) Normalization of linear
systems of equations; (2) multiple computations based on feedback evaluation. The ESVT method is
illustrated in detail as follows.
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Using the similar idea of the total least squares method [29–33], the linear systems of Equation (6)
can be normalized by the division operation as

A∗x = 1v (11)

1v =


1
...
1

 (12)

A∗ =


a11
b1
· · · a1N

b1
...

. . .
...

am1
bm

· · · amN
bm

 (13)

where aij denotes the (i, j)th coefficient of A and bi denotes the ith coefficient of b in Equation (6).
The advantage of this normalization is that all errors, including measurement errors and model errors,
are placed in the new coefficient matrix A∗. It will be found that this normalization process can improve
the accuracy and robustness of the solution for the linear systems of equations. After the normalization
process, Equation (11) can then be solved through the singular value truncation technique as follows.
Performing the singular value decomposition on A∗ in Equation (11), one has

UΛVT · x = 1v (14)

U = [u1, u2, · · · , un] (15)

V = [v1, v2, · · · , vN ] (16)

Λ =

[
Z 0
0 0

]
, Z = diag(σ1, σ2, · · · , σt) (17)

where U and V are the orthogonal matrices, and σ1, σ2, · · · , σt are the nonzero singular values of A∗

with σ1 ≥ σ2 ≥ · · · ≥ σt. By ignoring some smaller singular values, the singular value truncation
solution of x for the first time can be obtained from Equation (14) as

x = (
s

∑
y=1

σ−1
y vyuT

y ) · 1v (18)

where s is the number of remained singular values, s ≤ t. The suitable value of s is determined by
the L-curve method [34–36]. The main steps of the L-curve method are as follows: (1) Compute all
possible solutions of x by Equation (18) when s is taken from 1 to t. (2) For each solution of x, calculate
the 2-norm of x and Ax− b(or A∗x− 1v). (3) Draw the scatter plot with ‖Ax− b‖2 as abscissa and
‖x‖2 as ordinate (‖ · ‖2 denotes the 2-norm). (4) Connect the resulting scatters with straight lines to
form the L-curve. (5) Determine the suitable value of s according to the inflection point of the L-curve.
The L-curve method will be further illustrated in Section 3.1.

For the damage evaluation problem, the perturbed elements in the FEM due to damages are often
only a small minority. This particularity of damage detection problem has not been fully utilized in the
published frequency-based algorithms. This particularity results in the existence of a large number of
coefficients close to zero in the x obtained by Equation (18). Thus these coefficients close to zero in x
should be seen as a product of data noise and set to zeros to simplify the equation (11) for the next
recalculation. Generally, those values in x that satisfy xi

max(x) ≤ 0.05 should be deemed to correspond
to those undamaged elements in the structure. Then Equation (11) can be further simplified for the
recalculation by removing some column vectors in A∗ and coefficients in x corresponding to those
undamaged elements. That is

A∗2 · x′ = 1v (19)
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where A∗2 is the remained matrix of A∗ after removing some column vectors related to those
undamaged elements, x2 is the remained vector of x after removing the corresponding coefficients.
From Equation (19), the solution of x′ can be obtained again using the similar singular value truncation
progress between Equations (14) and (18) as

x′ = (
s′

∑
y=1

σ
′−1
y v′yu

′T
y ) · 1v (20)

Note that the result obtained by Equation (20) is maybe still not the final solution. When x′ is the
same as the corresponding coefficients in x, the x′ in Equation (20) is the final solution of the damage
parameters. If not, the above recalculation process should be repeated and the new solution x′′ of
the stiffness perturbed parameters can be obtained. The above process should be repeated until the
solutions of the two adjacent cases are exactly the same (for example, x′′ = x′). At the last, structural
damage evaluation can be carried out according to the final result. In the above process, it is important
to note that the computational complexity of each computation in ESVT gradually decreases since the
number of unknowns decreases gradually.

3. Numerical Examples

3.1. A Truss Structure

A cantilever truss structure as shown in Figure 1 was taken as the numerical example to
demonstrate the effectiveness of the proposed method. The basic parameters of the structure were
as follows: Young’s modulus E = 200 GPa, density ρ = 7.8× 103 kg/m3, and cross-sectional area
A = 3.14× 10−4 m2. Two damage cases were studied in the example. The first one was a single
damage case where element 10 has a 20% stiffness reduction. The second was a multiple damage case
where elements 7 and 18 have 15% and 20% stiffness reductions, respectively. Only the first six natural
frequencies (shown in Table 1) of the undamaged and damaged structures were used in the structural
damage evaluation.
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Figure 1. A cantilever truss structure (L = 0.5 m).

Table 1. The first six natural frequencies of the undamaged and damaged truss structures.

Natural Frequencies Undamaged Structure Damage Case 1 Damage Case 2

1 24.034 23.8588 23.9621

2 119.9908 119.3298 117.8529

3 195.9065 193.7641 194.9649

4 274.2121 273.7942 270.9942

5 436.9691 436.5461 436.3045

6 569.0272 568.812 565.0954

For each of damage cases, the evaluation results obtained by the SVT and ESVT are both given
to illustrate the superiority of the ESVT method. For case 1, the SVT method was firstly employed to
compute the damage parameters. As stated before, the suitable value of s in the computation process
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is determined by the L-curve as shown in Figure 2. Note that the scatters from right to left in Figure 2
correspond to s = 1, s = 2, etc. One can see from Figure 2 that the inflection point of the L-curve just
corresponded to s = 5. Subsequently Figure 3 presents the damage evaluation result obtained by SVT
method with s = 5. One can see from Figure 3 that the result was not satisfactory since element 10
cannot be uniquely determined as the damage element. Using the proposed ESVT method, Figures 4–8
give the damage evaluation results of the first to fifth calculations in ESVT. Apparently, the accuracy of
damage evaluation result in Figures 4–8 was improving gradually and Figure 8 was the final result.
It can be seen from Figure 8 that, after five operations, element 10 could be uniquely determined as the
damage element. It was thus shown that the proposed ESVT method can achieve higher evaluation
accuracy than the traditional SVT method.
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method, Figures 10–14 provide the damage evaluation results of the first to fifth calculations in 
ESVT. It was clear that the accuracy of damage evaluation result in Figures 10–14 was improving 
gradually and Figure 14 was the final result for this case. The final result of Figure 14 clearly 
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Figure 8. Damage evaluation result by the fifth computation of ESVT for case 1 (element 10 had 20%
stiffness reduction).

For the second damage case, Figure 9 presents the damage evaluation result obtained by the
traditional SVT method. From Figure 9, it was found that the result was not satisfactory since many
elements besides 7 and 18 were determined as the damaged elements. Using the proposed ESVT
method, Figures 10–14 provide the damage evaluation results of the first to fifth calculations in ESVT.
It was clear that the accuracy of damage evaluation result in Figures 10–14 was improving gradually
and Figure 14 was the final result for this case. The final result of Figure 14 clearly indicated that
elements 7 and 18 were the true damaged elements. These results again show that the proposed ESVT
method can achieve higher evaluation accuracy than the traditional SVT method.
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Next, Figures 15–17 present damage evaluation results using the first three, four and five 
frequencies to investigate the effect of the frequency number on the calculation results. From Figure 
15, one can see that the result was not satisfactory when only three frequencies were used since 
element 10 cannot be uniquely determined as the damaged element in the final result of Figure 15e. 
From Figure 16, the result was also not satisfactory when only four frequencies were used since 
element 10 cannot be uniquely determined as the damage element in the final result of Figure 16f. 
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Next, Figures 15–17 present damage evaluation results using the first three, four and five
frequencies to investigate the effect of the frequency number on the calculation results. From Figure 15,
one can see that the result was not satisfactory when only three frequencies were used since element 10
cannot be uniquely determined as the damaged element in the final result of Figure 15e. From Figure 16,
the result was also not satisfactory when only four frequencies were used since element 10 cannot be
uniquely determined as the damage element in the final result of Figure 16f. When five frequencies
were used, it can be seen from Figure 17 that the result was satisfactory since element 10 can be uniquely
determined as the damaged element after six computations. It was thus shown that the results of
damage evaluation become more accurate as the number of used frequencies increases. For this
example, at least five frequencies were needed to obtain sufficient accurate damage evaluation results.
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Figure 15. Damage evaluation results of the first to fifth computations in ESVT using the first three 
frequencies (element 10 had 20% stiffness reduction). (a)Result of the first computation in ESVT; (b) 
Result of the second computation in ESVT; (c)Result of the third computation in ESVT; (d)Result of 
the fourth computation in ESVT; (e)Result of the fifth computation in ESVT. 
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(2) Result of the second computation in ESVT
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(a) (b) 

Figure 15. Damage evaluation results of the first to fifth computations in ESVT using the first three
frequencies (element 10 had 20% stiffness reduction). (a) Result of the first computation in ESVT;
(b) Result of the second computation in ESVT; (c) Result of the third computation in ESVT; (d) Result
of the fourth computation in ESVT; (e) Result of the fifth computation in ESVT.
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Figure 15. Damage evaluation results of the first to fifth computations in ESVT using the first three 
frequencies (element 10 had 20% stiffness reduction). (a)Result of the first computation in ESVT; (b) 
Result of the second computation in ESVT; (c)Result of the third computation in ESVT; (d)Result of 
the fourth computation in ESVT; (e)Result of the fifth computation in ESVT. 
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(2) Result of the second computation in ESVT
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Figure 16. Cont.
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Figure 16. Damage evaluation results of the first to sixth computations in ESVT using the first four 
frequencies (element 10 had 20% stiffness reduction). (a) Result of the first computation in ESVT; (b) 
Result of the second computation in ESVT; (c) Result of the third computation in ESVT; (d) Result of 
the fourth computation in ESVT; (e) Result of the fifth computation in ESVT; (f) Result of the sixth 
computation in ESVT. 
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(2) Result of the second computation in ESVT
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(3) Result of the third computation in ESVT
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(4) Result of the fourth computation in ESVT
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Figure 16. Damage evaluation results of the first to sixth computations in ESVT using the first four
frequencies (element 10 had 20% stiffness reduction). (a) Result of the first computation in ESVT;
(b) Result of the second computation in ESVT; (c) Result of the third computation in ESVT; (d) Result
of the fourth computation in ESVT; (e) Result of the fifth computation in ESVT; (f) Result of the sixth
computation in ESVT.
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Figure 18. A plate structure. 

Figure 17. Damage evaluation results of the first to sixth computations in ESVT using the first five
frequencies (element 10 had 20% stiffness reduction). (a) Result of the first computation in ESVT;
(b) Result of the second computation in ESVT; (c) Result of the third computation in ESVT; (d) Result
of the fourth computation in ESVT; (e) Result of the fifth computation in ESVT; (f) Result of the sixth
computation in ESVT.

3.2. A Plate Structure

A plate structure as shown in Figure 18 was used as the second example to verify the proposed
method. The main purpose of using this example was to verify the effectiveness of the proposed
method for structures that require solid finite elements. The modulus of elasticity, mass density, and
Poisson’s ratio of this steel material were 200 GPa, 7800 kg/m3, and 0.3, respectively. The plate was
modeled using 50 identical solid elements as shown in Figure 18. In the following damage simulation,
it was assumed that elements 12 and 20 had 20% and 15% stiffness reductions, respectively. Using the
first eight frequencies, damage evaluation results obtained by the proposed ESVT method are shown
in Figure 19. One can see from Figure 19 that the solution accuracy of the first to sixth computations
was improving gradually and the sixth solution was the final result. The final result in Figure 19
clearly indicated that elements 12 and 20 were the true damaged elements. These results show that the
proposed ESVT method can also be used successfully in structures that require solid finite elements.
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Figure 19. Damage evaluation results of the first to sixth computations in ESVT for the plate 
structure. (a) Result of the first computation in ESVT; (b) Result of the second computation in ESVT; 
(c) Result of the third computation in ESVT; (d) Result of the fourth computation in ESVT; (e) Result 
of the fifth computation in ESVT; (f) Result of the sixth computation in ESVT. 

4. Experimental Validation 

In this section, the experimental beam conducted by Yang et al. [37] was used as an example to 
verify the proposed method. As shown in Figure 20a, the length, width and height of the intact 
beam were 495.3 mm, 25.4 mm and 6.35 mm, respectively. The modulus of elasticity and mass 
density of this aluminium material were 71 GPa and 2210 kg/m3, respectively. The beam was 
modeled using 20 equal-length elements and the damage was induced in the ninth element by a 
saw cut as shown in Figure 20b. The analytical and experimental values of the first six natural 
frequencies for the undamaged and damaged structures are all shown in Table 2. 

Figure 19. Damage evaluation results of the first to sixth computations in ESVT for the plate structure.
(a) Result of the first computation in ESVT; (b) Result of the second computation in ESVT; (c) Result of
the third computation in ESVT; (d) Result of the fourth computation in ESVT; (e) Result of the fifth
computation in ESVT; (f) Result of the sixth computation in ESVT.

4. Experimental Validation

In this section, the experimental beam conducted by Yang et al. [37] was used as an example to
verify the proposed method. As shown in Figure 20a, the length, width and height of the intact beam
were 495.3 mm, 25.4 mm and 6.35 mm, respectively. The modulus of elasticity and mass density of
this aluminium material were 71 GPa and 2210 kg/m3, respectively. The beam was modeled using
20 equal-length elements and the damage was induced in the ninth element by a saw cut as shown
in Figure 20b. The analytical and experimental values of the first six natural frequencies for the
undamaged and damaged structures are all shown in Table 2.
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Figure 20. Configuration of the experimental beam [37]. (a) Undamaged structure; (b) Damage structure.

Table 2. The first six natural frequencies of the undamaged and damaged beams [37].

Natural
Frequencies

Analytical Values
(Hz)

Experimental Values
(Undamaged)

Experimental Values
(Damaged)

1 23.7 19.53 19.00

2 148.5 122.05 115.85

3 415.7 339.26 332.36

4 814.2 661.73 646.91

5 1345.3 1085.22 1037.46

6 2008.7 1594.59 1591.36

From columns 2 and 3 in Table 2, one can see that the differences between the analytical values
obtained by FEM and the experimental values obtained by dynamic testing of the undamaged beam
were very large. This means that the original FEM constructed by the software was not accurate
enough to represent the undamaged beam. Thus the FEM of the undamaged beam was firstly
corrected according to the natural frequency changes between the analytical values and the undamaged
experimental values. Only the modified FEM could be used in the subsequent evaluation of structural
damage. Note that the natural frequency sensitivity technique introduced in Section 2.1 can be
used not only in damage evaluation but also in model updating. It should also be noted that
the stiffness perturbed parameters of the modified FEM were computed only by one calculation
process of the ESVT method in the model updating. This is the difference between the model
updating problem and the damage identification problem. From the variations between column
2 and column 3 in Table 2, Figure 21 presents the stiffness perturbed parameters of the modified FEM
and Table 3 gives the analytical values of the first six natural frequencies obtained by the modified
FEM. From Table 3, one can see that the analytical values of the modified FEM were much closer to
the undamaged experimental values than those of the original FEM. After model updating, structural
damage evaluation can be subsequently carried out based on the modified FEM by using the gradual
ESVT method. Figures 22–26 give the damage evaluation results of the first to fifth calculations in the
ESVT. It was obvious that the accuracy of damage evaluation result in Figures 22–26 was improving
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gradually and Figure 26 was the final evaluation result. The final evaluation result of Figure 26 was
very good since the true damage was correctly detected in element 9. For comparisons, the damage
detection results reported by Krishnanunni et al. [8] and Hao et al. [38] are presented in Figure 27,
obtained by Cuckoo Search algorithm (CSA) and Genetic algorithm (GA), respectively. Meanwhile,
the result of Figure 26 is also shown in Figure 27 for easy comparison. From Figure 27, one can see that
the damage evaluation result obtained by the proposed ESVT method had the highest accuracy among
the three methods. Moreover, the computational complexity of the ESVT method was significantly
lower compared to the other methods because both CSA and GA needed many iterations for good
convergence. For example, the computation process using CSA reported by Krishnanunni et al. [8]
was iterated 65,000 times for good convergence. Note that the proposed ESVT method only needed
five calculations and the complexity of each calculation decreased gradually.

Materials 2018, 11, x FOR PEER REVIEW  16 of 20 

 

Figures 22–26 was improving gradually and Figure 26 was the final evaluation result. The final 
evaluation result of Figure 26 was very good since the true damage was correctly detected in 
element 9. For comparisons, the damage detection results reported by Krishnanunni et al. [8] and 
Hao et al. [38] are presented in Figure 27, obtained by Cuckoo Search algorithm (CSA) and Genetic 
algorithm (GA), respectively. Meanwhile, the result of Figure 26 is also shown in Figure 27 for easy 
comparison. From Figure 27, one can see that the damage evaluation result obtained by the 
proposed ESVT method had the highest accuracy among the three methods. Moreover, the 
computational complexity of the ESVT method was significantly lower compared to the other 
methods because both CSA and GA needed many iterations for good convergence. For example, 
the computation process using CSA reported by Krishnanunni et al. [8] was iterated 65,000 times 
for good convergence. Note that the proposed ESVT method only needed five calculations and the 
complexity of each calculation decreased gradually. 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Element number

S
t
i
f
f
n
e
s
s 
p
e
r
t
u
r
b
e
d

p
a
r
a
m
et
e
r

 
Figure 21. The stiffness perturbed parameters of the modified finite element model (FEM). 
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1 23.7 (21.4%*) 19.53 19.0 (2.7%) 
2 148.5 (21.7%) 122.05 119.8 (1.8%) 
3 415.7 (22.5%) 339.26 333.7 (1.6%) 
4 814.2 (23.0%) 661.73 651.2 (1.6%) 
5 1345.3 (24.0%) 1085.22 1068.7 (1.5%) 
6 2008.7 (26.0%) 1594.59 1582.6 (0.8%) 

* The data in brackets denote the relative errors between analytical and experimental values. 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Element number

D
a
m
a
g
e
 
pa
r
a
m
e
t
e
r

 
Figure 22. Damage evaluation result by the first computation of ESVT for the experimental beam. 

Figure 21. The stiffness perturbed parameters of the modified finite element model (FEM).

Table 3. Comparisons of natural frequencies obtained by the original FEM, the modified FEM and
the experiment.

Natural
Frequencies

Analytical Values of
Original FEM (Hz)

Experimental Values
(Undamaged Beam)

Analytical Values of
Modified FEM (Hz)

1 23.7 (21.4%*) 19.53 19.0 (2.7%)

2 148.5 (21.7%) 122.05 119.8 (1.8%)

3 415.7 (22.5%) 339.26 333.7 (1.6%)

4 814.2 (23.0%) 661.73 651.2 (1.6%)

5 1345.3 (24.0%) 1085.22 1068.7 (1.5%)

6 2008.7 (26.0%) 1594.59 1582.6 (0.8%)

* The data in brackets denote the relative errors between analytical and experimental values.
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Figure 22. Damage evaluation result by the first computation of ESVT for the experimental beam. 
Figure 22. Damage evaluation result by the first computation of ESVT for the experimental beam.
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Figure 24. Damage evaluation result by the third computation of ESVT for the experimental beam. 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Element number

D
a
m
a
g
e
 
pa
r
a
m
e
t
e
r

 
Figure 25. Damage evaluation result by the fourth computation of ESVT for the experimental beam. 

Figure 23. Damage evaluation result by the second computation of ESVT for the experimental beam.
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Figure 27. Comparison of damage evaluation results by the three methods. 

5. Conclusions 

For the damage evaluation problem, the damaged elements in the structure are often only a 
small minority because the actual damage usually occurs only in a few local areas. Using this 
particularity of damage evaluation, an ESVT method was proposed in this paper for structural 
damage detection using only a few lower order natural frequencies. Central to the ESVT method is 
the normalization of linear systems of equations and multiple computations based on feedback 
evaluation. In each computation of ESVT, many undamaged elements are removed according to the 
feedback evaluation to reduce the number of unknowns. This operation can significantly reduce the 
computational complexity and obtain more accurate damage evaluation results. The proposed 
method is very concise in theory and simple to implement. Two numerical examples and an 
experimental example were used to demonstrate the proposed method. From the numerical 
examples, it was found that the proposed method can successively obtain more accurate damage 
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5. Conclusions

For the damage evaluation problem, the damaged elements in the structure are often only a small
minority because the actual damage usually occurs only in a few local areas. Using this particularity of
damage evaluation, an ESVT method was proposed in this paper for structural damage detection using
only a few lower order natural frequencies. Central to the ESVT method is the normalization of linear
systems of equations and multiple computations based on feedback evaluation. In each computation
of ESVT, many undamaged elements are removed according to the feedback evaluation to reduce
the number of unknowns. This operation can significantly reduce the computational complexity and
obtain more accurate damage evaluation results. The proposed method is very concise in theory
and simple to implement. Two numerical examples and an experimental example were used to
demonstrate the proposed method. From the numerical examples, it was found that the proposed
method can successively obtain more accurate damage evaluation results compared with the traditional
SVT method. From the experimental example, it was shown that the proposed method possesses
more precise and fewer calculations compared with the existing optimization algorithms. It was
shown that the proposed ESVT method may be a promising technique in non-destructive evaluation
of structural damage. In practical applications, the proposed method can be applied to various types
of structural damage such as reduction in elastic modulus and cracks, as long as these damages can
cause observable frequency changes. Specific examples of crack detection by the proposed method
will be further studied in the future.
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