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Abstract: An automated corrosion monitor, named the Internet of Things atmospheric corrosion
monitor (IoT ACM) has been developed. IoT ACM is based on electrical resistance sensor and enables
accurate and continuous measurement of corrosion data of metallic materials. The objective of this
research is to study the characteristics of atmospheric corrosion by analyzing the acquired corrosion
data from IoT ACM. Employing data processing and data analysis methods to research the acquired
corrosion data of steel, the atmospheric corrosion characteristics implied in the corrosion data can
be discovered. Comparing the experiment results with the phenomenon of previous laboratory
experiment and conclusions of previously published reports, the research results are tested and
verified. The experiment results show that the change regulation of atmospheric corrosion data in
the actual environment is reasonable and normal. The variation of corrosion depth is obviously
influenced by relative humidity, temperature and part of air pollutants. It can be concluded that IoT
ACM can be well applied to the conditions of atmospheric corrosion monitoring of metallic materials
and the study of atmospheric corrosion by applying IoT ACM is effective and instructive under an
actual atmospheric environment.

Keywords: corrosion monitoring; IoT ACM; electrical resistance sensor; steel; atmospheric corrosion;
corrosion data

1. Introduction

Real-time and on-line corrosion monitoring are some of the focuses of scientific research in
informatics for materials corrosion and protection [1]. Acquiring accurate corrosion data in an actual
atmospheric environment rather than a laboratory environment is the priority and difficulty in the
corrosion monitoring engineering. Researchers can analyze corrosion data acquired by appropriate
technology and device to discover corrosion characteristics [2,3]. In off-line monitoring techniques the
time interval of weight measurement and thickness loss measurement is long, so off-line monitoring
techniques are incapable of revealing unforeseeable changes which could develop during corrosion
progress [4,5]. On-line monitoring techniques, such as electrochemical impedance measurement,
electrochemical frequency modulation, polarization resistance measurement, microwave imaging
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technology, photoacoustic sensor, fiber grating sensor and fiber optic sensor [6–12] are all delicate and
expensive because they require auxiliary experimental equipment and special experimental conditions.
The above-mentioned techniques can obtain excellent measurement results in a laboratory environment,
but in an actual monitoring environment the measurement results would be not satisfactory. Electrical
resistance sensor is another on-line monitoring technique which provides a simple and efficient
measurement method for real-time corrosion monitoring [13–15]. With the rapid development of
design philosophy and technology, state-of-the-art electrical resistance sensor can not only accurately
acquire corrosion data, but also adapt to a variety of corrosion monitoring conditions, including the
actual atmospheric environment.

Nowadays, some mature atmospheric corrosion monitor (ACM) products based on electrical
resistance sensor have been developed and the most representative ones are AirCorr and
GR6000 [16–19]. However, there have been no reports of these products being used in a real and severe
atmospheric environment and the above products have some defect, such as restricted measurement
conditions and poor degree of automatic and information. Besides, in a harsh outdoor environment,
atmospheric corrosion of metallic materials will be severe, it is inconvenient for researchers to
continuously carry out corrosion monitoring work in this situation at a long time. Considering
all the above problems, our research team has invented a new device based on a state-of-the-art
electrical resistance sensor, which adopts a new design concept and integrates the advantages of
advanced sensing technology, intelligent control technology and IoT technology. So IoT ACM has
the ability to accurately and continuously acquire massive corrosion data and transmit them through
the Internet in real time. Our purpose of developing IoT ACM is to make up for the shortcomings
in existing products of the same type. IoT ACM can break through the limitation of time and space
for atmospheric corrosion monitoring progress and IoT ACM is able to provide an automatic and
professional measurement approach.

In this study, characteristics of atmospheric corrosion of Q235 steel under actual atmospheric
environment was analyzed by researching acquired corrosion data from IoT ACM. Firstly, denoising
corrosion data to remove the high frequency noise and then study the change regulation to analyze
some common phenomena of corrosion data in the case of using IoT ACM in an actual atmospheric
environment. This experiment can provide new and effective corrosion data processing and research
method and can prove the change regulation of corrosion data is reasonable and normal. Secondly,
researching the correlational relationship between corrosion depth and atmospheric environmental
elements data by visualization analysis and data mining methods and then discover the implied
relationship between atmospheric corrosion of steel and the atmospheric environment. Through the
analysis of the experimental results, the extent of influence of atmospheric environmental elements on
atmospheric corrosion of steel can be obtained.

2. Experimental Principle and Details

2.1. Experimental Overview

In this study, research of atmospheric corrosion by IoT ACM is planned to be carried out in an
actual atmospheric environment. IoT ACM will acquire the atmospheric corrosion data of Q235 steel by
electrical resistance sensor. Then the corrosion data will be transmitted to a customized database server
through the Internet and the data will be used to discover atmospheric corrosion characteristics of
Q235 steel by data processing and data analysis methods. The schematic illustration of this experiment
is shown in Figure 1.

2.2. Electrical Resistance Sensor

Electrical resistance sensor is an important component of IoT ACM. This sensor is a kind of
state-of-the-art patented product, which can eliminate the influence of temperature change, obtain
higher measurement accuracy and ensure uniform corrosion as much as possible. According to the
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ASTM standard B 829-09(2015) [20], the electrical resistance sensor is made of a comb shaped Q235
steel that is inlaid in a plastic plate. Selecting an appropriate initial dimension of Q235 steel, the
electrical resistance sensor can be applicable in various monitoring conditions and the service life
of electrical resistance sensor means the time to corrode a half of the thickness of the Q235 steel.
In this sensor one part of the steel is covered by a plastic mask which provides a good seal to prevent
steel from directly attacking in atmospheric conditions. In the monitoring progress, the covered part
performs as a reference for evaluating changes in the uncovered part. The ratio of voltage ((VA/VB),
hereinafter, corrosion data) about the series voltage of covered part and uncovered part (expressed
as VA) to the voltage of the uncovered part (expressed as VB) provides a measurement of the amount
of Q235 steel that has reacted with atmospheric environment, which provides a measurement of
atmospheric corrosion [13,14,17]. In the actual measurement process, the electrical resistance sensor is
powered by a constant current source, so the resistance of Q235 steel is proportional to the resistance
voltage. And taking advantage of the form of voltage ratio, the corrosion data acquired by an electrical
resistance sensor can eliminate the influence caused by the change of temperature and have a function
of temperature compensation. Figure 2 shows a schematic illustration of the electrical resistance sensor.
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Figure 2. The schematic illustration of an electrical resistance sensor. (a) The appearance of an electrical
resistance sensor; (b) Schematic diagram of detection principle of electrical resistance sensor.

The purpose of measurement on corrosion data is to calculate the corrosion depth ∆h of Q235
steel and ∆h can be expressed according to the following formula

∆h = (1− K0
Kt
)h0

k0 =
VB0

VA0−VB0
=

Rcorr,init
Rref,init

kt =
VBt

VAt−VBt
= Rcorr,t

Rref,t

(1)
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where h0 is the initial thickness of Q235 steel at the beginning of measurement, K0 is the value of
initial voltage ratio and it is a constant value, Kt is the value of current voltage ratio. VA0 is the initial
measured series voltage of uncovered part and covered part, VB0 is the initial measured voltage of the
uncovered part, Rcorr,init is the initial resistance of the uncovered part, Rref,init is the initial resistance of
the covered part. VAt is the current measured series voltage of uncovered part and covered part, VBt is
the current measured voltage of the uncovered part, Rcorr,t is the current resistance of the uncovered
part and Rref,t is the current resistance of the covered part.

There is a physical phenomenon that the resistance of Q235 steel will be affected by temperature
and the formula of resistance changing with temperature is shown in Equation (2)

Rt = (1 + αT)R0 (2)

where R0 is the initial resistance of Q235 steel, Rt is the current resistance of Q235 steel, T is the
temperature and α is the temperature coefficient of resistance of steel. Besides, the covered part
and the uncovered part are all in the same temperature condition, so the form of voltage ratio in
the measurement progress can play an important role in temperature compensation to eliminate
the influence caused by the change of temperature. According to the principle of temperature
compensation, the Equation (1) can be expressed by the following equation,

∆h = (1 − Rcorr,init

Rref,init
·
Rref,init

Rcorr
)h0 = (1− Rcorr,init

Rcorr
) (3)

2.3. IoT ACM

IoT ACM is the latest patented product and it consists of a key controlling hardware device, a
data acquisition system, a data transmission system and a power supply system. Figure 3 shows the
block diagram of IoT ACM. The core component of IoT ACM is the key controlling hardware device
which integrates the functions, including core control, data acquisition, data transmission, power
supply and so on. And the hardware device has the ability to complete the established functions
of IoT ACM, which are reflected in real time, high precision and high efficiency. For the purpose of
protecting hardware device in IoT ACM, an industrial-grade double layer protective shell is designed,
of which the outer shell is made of aluminum alloy and the inner one is made of plastic. So the
protective shell can prevent the hardware from external impact, moisture and dust in the environment.
The corrosion data will be acquired by an electrical resistance sensor via the lead wire connected with
the key controlling hardware device and recorded in a logger at an interval of one hour. Besides, for
the comprehensiveness of science research, a humidity and temperature sensor is also installed in IoT
ACM and the temperature (hereinafter, T) data and relative humidity (hereinafter, RH) data will also
be acquired using the same method. There are two ways to export the data collected in the logger
of IoT ACM. The first one is using the mobile mass storage SD card implanted in IoT ACM. And
the second one is embodying the design concept of IoT ACM. Using a 4G network communication
module, IoT ACM can transmit data stably and quickly via a 4G mobile network, especially for the
simultaneous transmission of massive data. Through the Internet, corrosion data will be shorted
in a customized database server to support sharing corrosion data from a scientific research data
management platform [21]. The power supply system consists of an industrial-grade power supply
module using the urban electricity supply and an auxiliary solar power supply battery. Therefore, the
power supply system ensures the all-weather uninterrupted operation of IoT ACM in the monitoring
progress at any field test sites [22].

2.4. Field Test Details

An IoT ACM was placed in Qingdao, eastern China [23]. The continuous monitoring of
atmospheric corrosion of Q235 steel went on for more than three months in the vicinity of the fourth
quarter in 2017 (from September 24th to December 31st). Electrical resistance sensor was installed in a
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professional exposure frame by some dielectric clips, which faced the sun and inclined at a 45-degree
angle to the horizontal. IoT ACM was placed approximately 10 meters near the exposure frame.
IoT ACM and electrical resistance sensor were connected by industrially advanced lead wires to ensure
the validity of transmission of acquired corrosion data. Figure 4 shows the field test details. In this
study, the dimensions about Q235 steel of electrical resistance sensor were 70 mm × 70 mm × 0.15 mm
(length × width × height), for which the electrical resistance sensor had a high origin resistance that
could resist the influence of circuit in IoT ACM during the measurement progress and had the ability
to achieve uniform corrosion and avoid the generation about local corrosion as much as possible.
Besides, the dimensions of the plastic mask were 129 mm×129 mm×14 mm and the dimensions of
the plastic mask were 129 mm × 65 mm × 5 mm. The plastic plate and plastic mask were fastened by
some screws and the gaps between them were sealed with a silicone seal to prevent the covered part of
Q235 steel in the sensor from the atmospheric corrosion conditions.

In Qingdao the air pollution also might have a serious impact on the atmospheric corrosion of
steel [24–26]. Therefore, in this research, collecting contaminants (PM2.5, PM10, SO2, NO2) data of
air pollution from Qingdao Laoshan District Substation of the National Urban Air Quality Real-time
Publishing Platform during the progress of atmospheric corrosion monitoring experiment to discover
the correlation between corrosion of Q235 steel and the air pollution [27]. The distance between air
pollution measurement unit and field test site is 5.4 km. The field test site is within the monitoring
range of the air pollution measurement unit in the substation, so the collected contaminants (PM2.5,
PM10, SO2, NO2) data of air pollution can be used in this study.
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3. Results and Discussions

3.1. Study on the Change Regulation of Atmospheric Corrosion Data

The change regulation of corrosion data could imply some characteristics of atmospheric corrosion.
The characteristics of atmospheric corrosion of metallic materials can be obtained by analyzing the
variation of corrosion data. According to Equations (1) and (3), in the corrosion progress the thickness
of the uncovered part decreases and the resistance of it increases, which could result in a continuous
decrease in the value of corrosion data. The appearance of an electrical resistance sensor of IoT ACM
after the experiment under actual atmospheric environment is shown in Figure 5. A large amount of
red rust is observed on the uncovered part in the sensor. This phenomenon can indicate the change
trend presented by the corrosion data is normal. In Figure 5, it is obvious that the plastic mask is
intact and there is no lifting, misalignment or damage and it can be proved that the corrosion data
acquired by IoT ACM is reliable and effective. However, the corrosion data collected by the IoT ACM
in the actual environment still have quasi-periodic pulses which are similar to the phenomenon in
the previous laboratory environment. In the laboratory environment, Q235 steel is only affected by
temperature, so quasi-periodic pulses in corrosion data are considered to be caused by the change
of temperature in one day [28]. In an actual atmospheric environment, atmospheric environmental
elements (RH, T and air pollutants) may also have an impact on the cause of quasi-periodic pulses, so
this section is to research characteristics of acquired data to verify the change regulation of atmospheric
corrosion data is correct and normal.
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Data smoothing method is often used in practical engineering application to deal with corrosion
data acquired by electrical resistance sensor [29], but it could omit some detailed information, such
as the pulses appearing as a quasi-periodic form. Taking into account the characteristics of corrosion
data, the high frequency noise caused by electronic components must be removed firstly, so that
the quasi-periodic pulses could clearly emerge. In order to accurately remove the interference of
high frequency noise and prevent important information from destructing, the common low pass
filter is not selected in this study. Therefore, an adaptive data denoised method based on variational
mode decomposition (VMD) is used in this research, Figure 6 shows the flowchart of this method.
VMD is a modern time series data (herein, corrosion data essentially belongs to time series data)
decompose technique and has complete mathematical theory, explicit physical meaning and good
practicality. The decomposition process is essentially a special iteration solving variational mode and
can non-cursively decompose a multicomponent time series data into series of band-limited intrinsic
mode functions (BLIMFs). In order to establish a variational model of time series data decomposition,
the VMD defines the BLIMF as the amplitude modulation-frequency modulation (AM-FM) and the
core principles are expressed as follows:

uk(t) = Ak(t)cos(ϕ k(t))
ωk(t) = dϕk(t)/dt ≥ 0

min
{uk},{ωk}

{
K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
∗uk(t)e−jωkt

]
‖

2

2

}
K
∑

k=1
uk(t) = f (t)

x(t) = f (t) + λ(t)

(4)

where Ak(t) is the instantaneous amplitude of uk(t) and ϕk(t) is the instantaneous phase of uk(t),
ϕk(t) is the reduction function that instantaneous frequency ωk(t)= dϕk(t)/dt ≥ 0. On the basis
of this definition, the VMD assumes that the input time series data x(t) is composed of finite BLIMF
components with different center frequencies and limited bandwidths and the minimum sum of
the estimated bandwidth of each BLIMF component is almost equal to the input time series data
x(t). K is the number of BLIMF component, {uk} = {u1, u2, . . . , uK} are BLIMF components and
{ωk} = {ω1,ω2, . . . , ωK} are center frequencies of uk(t). δ(t) is Dirichlet function, ∗ symbol is
convolution symbol and λ(t) is the residue which has less information of x(t) [30].

The processing result of the VMD method will be not ideal for denoising low signal to noise ratio
(SNR) data and the outliers could have a devastating effect on the decomposition result. Therefore,
it is important to remove the background noise and outlier interference in time series data using the
preprocessing method [31]. For the purpose of getting the optimal data processing effect, the VMD
method decomposes time series data after preprocessing into 10 number of BLIMFs, for which it is
mostly suitable for acquired corrosion data. From BLIMF1 to BLIMF10, the center frequencies of
them gradually increase, the BLIMF1 is the basis-frequency BLIMF. A mathematical index described
as long-range correlation provides an effective way to quantify the noise containing condition in
each BLIMF. Comparing the calculation results with a specified threshold, it is possible to judge
whether a BLIMF is seriously influenced by noise interference or not. The value of the threshold is
usually set to 0.5, if the value of mathematical index < 0.5, it indicates the BLIMF contains more noise
interference, if the value ≥0.5, it indicates that the BLIMF can be considered as no noise interference
vice versa [32]. The calculation results show that BLIMF1, BLIMF2 and BLIMF3 have such excellent
quality. Reconstructing them with the residue can obtain removed high-frequency noise corrosion data
and the detailed results are shown in Figure 7.
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Comparing with Figure 7b,e, the high-frequency noise has been removed. But in Figure 7c, there
are obvious quasi-periodic pulses in the denoised corrosion data and the detailed information about
the period of each pulse, shown in Figure 7d, is almost close to 24h. In the actual environment, the
variation of atmospheric environmental elements will exhibit a certain periodicity, such as the cycle
of days, weeks and months. So it is very significant to analyze the impact of cyclical atmospheric
environmental elements on the corrosion data. Selecting a piece of denoised corrosion data which has
no obvious inherent trend of the corrosion data (the denoised corrosion data is selected from sampling
point 1500 to the end). In this paper, the two-dimension correlation coefficient (TDC) is used to analyze
the relationship between corrosion data and atmospheric environmental data and investigate which
atmospheric environmental elements for a period of days, weeks and months may cause quasi-periodic
pulses in the denoised corrosion data [33]. For computational requirements of TDC method, splitting
the experimental data (herein, denoised corrosion data and atmospheric environmental elements data
are all selected from sampling point 1500 to the end) in days (weeks or months) and create m × n
matrix, of which m represents how many days (weeks or months) and n represents how many hours in
one day (one week or one month). The calculation principle of TDC is as follow:

rh =
∑m ∑n(Amn−Am)(Bmn−Bm)√[

∑m ∑n(Amn−Am)
2]√[

∑m ∑n(Bmn−Bm)
2]

rv =
∑m ∑n(Amn−An)(Bmn−Bn)√[

∑m ∑n(Amn−An)
2]√[

∑m ∑n(Bmn−Bn)
2]

(5)

where rh is the horizontal correlation and rv is the vertical correlation between matrix A and B which
have the same size. The Am is the average of mth row of matrix A and the An is the average of
nth column of matrix A. The Bm is the average of mth row of matrix B and the Bn is the average
of nth column of matrix B. The values of rh and rv can take values from −1 to +1. The greater the
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absolute values of rh and rv are greater the correlation can be reflected [25]. In the results of TDC,
the following symbols are used to analyze the relationship between corrosion data and atmospheric
environmental elements in different time units (day, week and month). For example, the change of one
of the atmospheric environmental elements in one day can be expressed as Xdata, in one week can be
expressed as Xweek and in one month can be expressed as Xmonth, where X can represent T, RH, PM2.5,
PM10, SO2 and NO2 in this paper.

In this paper, the value of rh index indicates whether the atmospheric environmental elements
can cause the occurrence of quasi-period pulses or not, the value of rv index reveals what atmospheric
environmental elements influence the amplitude of pulses in the corrosion data (except for the condition
of monthly). The results of TDC analysis for a of days, shown in Table 1, the absolute value of rh
and rv about Tday are evidently higher than the calculating result of other atmospheric environmental
elements. The results of TDC analysis for a period of weeks, shown in Table 2, the absolute value of rh
about Tweek and rv about RHweek are evidently higher than the calculating result of other atmospheric
environmental elements. According to the comprehensive analysis of the above experimental results,
in Table 1, it can be concluded that the quasi-periodic pulses are most likely caused by Tday in the
atmospheric environment and the experimental result is consistent with results of IoT ACM in previous
laboratory experiment and the transmission delay of temperature on the steel of sensor could generate
quasi-periodic pulses. In Table 2, when atmospheric environment elements change for a period as
weeks, Tweek may cause fluctuations in corrosion data, but such fluctuations are reflected in the
average T during this period. In general, an increase in T within a certain range will accelerate
atmospheric corrosion of carbon steel and vice versa. In addition, the RHweek has a great influence
on the corrosion rate in the initial stage of atmospheric corrosion of carbon steel. In Table 3, when
atmospheric environment elements change for a period as months (due to the amount of data, only one
month’s data was used in this experiment, so rv cannot be calculated), similar to the results in Table 2,
the overall changes in RHmonth and Tmonth may have an impact on the corrosion data. However,
changes on a weekly or monthly basis will affect the overall corrosion rate more and will not affect the
cause of quasi-periodic pulse of corrosion data, which the period of them is almost closed to 24h.

Table 1. The result of two-dimension correlation coefficient (TDC) analysis (day).

Tday RHday PM2.5day PM10day SO2,day NO2,day

rh −0.262 −0.044 0.092 0.041 0.027 0.028
rv 0.846 0.336 −0.147 −0.122 −0.274 −0.133

Table 2. The result of TDC analysis (week).

Tweek RHweek PM2.5week PM10week SO2,week NO2,week

rh −0.314 −0.252 0.116 0.110 0.030 0.115
rv 0.165 0.372 0.016 0.021 −0.017 0.089

Table 3. The result of TDC analysis (month).

Tmonth RHmonth PM2.5month PM10month SO2,month NO2,month

rh 0.172 −0.201 0.025 0.020 −0.083 −0.040
rv – – – – – –

It can be known from the above analysis that the change regulation of the corrosion data conforms
to common sense, so the corrosion data collected under the actual environment is effective and normal
and can be used for scientific research.
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3.2. Study on the Influence of Atmospheric Environmental Elements on Corrosion

In this paper, this part of the experimental results is used as an example application of
continuous monitoring by IoT ACM. Atmospheric environmental elements have the ability to influence
atmospheric corrosion of steel and atmospheric corrosion characteristics can be obtained by studying
the relationship between corrosion data and environmental data. By analyzing the relationship between
atmospheric environmental elements and corrosion data in this special experimental environment
and time, it is possible to find out the characteristics of atmospheric corrosion of steel under a certain
circumstance. Data visualization analysis is an intuitive method to study the correlation between
corrosion data and atmospheric environmental elements. Using data visualization method can discover
the relationship between atmospheric environmental elements and processed corrosion data which is
smoothed by standard smoothing algorithm ‘RLOESS’ provided by MATLAB R2014a to smooth the
quasi-periodic pulses.

In the atmospheric corrosion progress of steel, RH is one of the major influence factors [13,17,34].
RH has a critical point, the atmospheric corrosion will happen when the value of RH is higher than the
critical point. Generally speaking, RH critical point of metallic materials is in a range between 50% to
70% and the critical point of steel is 65% in particular, but when encountering some case of serious
air pollution, the value of critical point will decrease [35]. Atmospheric corrosion of steel is progress
evidently reflected by the change of RH and it tends to exhibit a higher corrosion rate under higher
RH conditions in the initial stage [36].

The processed corrosion data can be converted into the form of corrosion depth and the corrosion
depth has a rapidly increase phase and mildly increase phase. According to the analysis of Figure 8,
it can be concluded that, when RH value is high, the corrosion depth changes dramatically, when
the RH value is low, the corrosion depth hardly changes substantially. By comparing it with existing
knowledge, in the initial stage of atmospheric corrosion of steel, when RH value is higher than 65%
and it lasts in a long time, the corrosion depth will be in the rapidly increase phase and the corrosion
rate will accelerate and reach the crest value. Besides, when RH value is lower than 65%, but higher
than 50%, the corrosion depth will begin to mildly increase and when the RH value is lower than 50%,
the corrosion depth will hardly increase.
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In addition to RH, other atmospheric environmental elements are used data visualization method
to analyze the relationship between them and atmospheric corrosion. According to Figure 9a, it is
evident that T and corrosion depth have a strong correlation and this analysis result is similar to
the public awareness [24]. But in Figure 9b–e, the corrosive gas (SO2, NO2) and particulate matters
(PM2.5, PM10) show no obvious changes and perform as a form of white noise. So the visualization
analysis results about the corrosive gas and particulate matters have an unobvious relationship with
corrosion depth and the existing research results have no ability to provide a clear assessment about
the visualization result [37–39]. Therefore, it is possible that the relationship between these elements
and corrosion depth cannot be obtained by simple visualization analysis.



Materials 2019, 12, 1065 12 of 16
Materials 2019, 12, x FOR PEER REVIEW 12 of 15 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 9. Detailed information about corrosion depth and atmospheric environmental elements. (a) 
The relationship between corrosion depth and T; (b) The relationship between corrosion depth and 
SO2; (c) The relationship between corrosion depth and NO2; (d) The relationship between corrosion 
depth and PM2.5; (e) The relationship between corrosion depth and PM10. 

In order to carry out deeper research, atmospheric environment elements are used to establish 
correlation models with corrosion depth to discover the implied information that is unable to 
observed by visualization analysis. Maximal information coefficient (MIC) is a modern correlation 
analysis method and it can measure all linear and nonlinear relationship between two variables [40]. 
The principle of MIC is expressed as Equation (6) 

M(A,B|D)i,j = I*(A,B,D,i,j)
log min(i,j)

 

MIC(A,B|D) =  max
i×j<B(n)

{M(A,B|D)i,j} 
(6)

where gives a finite set D of ordered pairs about two variables A and B, parting the a-value of 𝐷 
into a bins and the b-value of D into b bins, which allows empty bins. Such a pair of partitions is 

Figure 9. Detailed information about corrosion depth and atmospheric environmental elements. (a)
The relationship between corrosion depth and T; (b) The relationship between corrosion depth and
SO2; (c) The relationship between corrosion depth and NO2; (d) The relationship between corrosion
depth and PM2.5; (e) The relationship between corrosion depth and PM10.

In order to carry out deeper research, atmospheric environment elements are used to establish
correlation models with corrosion depth to discover the implied information that is unable to
observed by visualization analysis. Maximal information coefficient (MIC) is a modern correlation
analysis method and it can measure all linear and nonlinear relationship between two variables [40].
The principle of MIC is expressed as Equation (6)

M(A, B|D)i,j =
I∗(A,B,D,i,j)
logmin(i,j)

MIC(A, B|D) = max
i×j<B(n)

{M(A, B|D) i,j}
(6)
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where gives a finite set D of ordered pairs about two variables A and B, parting the a-value of D
into a bins and the b-value of D into b bins, which allows empty bins. Such a pair of partitions is
called an a-by-b grid G. I(A, B, D|G , i, j) denotes the mutual information of random variables A and B
over grids G with i rows and j columns. The characteristic matrix M(D) of a set D of two variables A
and B is an infinite matrix with entries (i, j) and I∗(A, B, D, i, j)= maxI( A, B, D|G, i, j) is the maximum
mutual information of random variables A and B over all grids G with i rows and j columns. At the
same time, the calculated value of MIC is between 0 and 1, 0 means completely independent and 1
means completely dependent or not independent [41]. A correlation analysis experiment is designed
using corrosion depth and atmospheric environmental elements. In this experiment, MIC is used
to analyze the implied information about all corrosion depth (Part 1), part of the rapidly increasing
phase of corrosion depth (Part 2) and part of the mildly increasing phase of corrosion depth (Part 3),
respectively. Table 4 shows the results of this experiment.

Table 4. The result of maximal information coefficient (MIC).

T RH PM2.5 PM10 SO2 NO2

Part 1 0.979 0.724 0.506 0.509 0.488 0.464
Part 2 0.999 0.983 0.696 0.761 0.717 0.605
Part 3 0.947 0.524 0.404 0.379 0.347 0.379

Through comprehensive analysis of the experiment results, it can be concluded that in the
progress of application of continuous monitoring by IoT ACM, MIC could reflect the characteristics
of atmospheric corrosion of steel in the initial stage, especially the influence of RH and T. In other
words, among all the atmospheric environmental elements, RH and T play a leading role. Besides,
the atmospheric pollutants, including SO2, NO2, PM2.5 and PM10 all have impacts on atmospheric
corrosion of Q235 steel and the MIC analysis results are similar, which means that they may have
same important to contribution for corrosion progress. SO2 is an important atmospheric corrosive
gas. Under the same conditions, the influence of SO2 on atmospheric corrosion of steel is far more
than that of NO2 [42]. However, in the application of continuous monitoring with IoT ACM, under
the special urban environment and time conditions, the content of SO2 in the atmosphere is lower
than that of NO2 and the corrosion effect under low SO2 content may be closed to that under high
NO2 content [38,42]. In addition, the corrosion effect of SO2 and NO2 may be enhanced under the
condition that they are mixed in an actual atmospheric environment [43]. PM2.5 and PM10 are the
main components of haze which are a serious environmental problem. As particulate matters, they are
easy to settle to the surface of steel [38]. PM2.5 and PM10 can increase the surface humidity through
moisture absorption, promote the dissolution of soluble salts in particulate matter, release corrosive
ions and so on to promote the atmospheric corrosion of carbon steel [39]. Therefore, in this monitoring
progress, the corrosion contribution of PM2.5, PM10, SO2 and NO2 may be the same.

4. Conclusion

The atmospheric corrosion of Q235 steel is analyzed by using IoT ACM under an outdoor actual
atmospheric environment. The remarkable findings obtained in this study are summarized as follows.

• Corrosion data acquired by IoT ACM is effective and normal, which can be used for researching
atmospheric corrosion of metallic materials after proper processing methods.

• The results about the study of atmospheric corrosion of metallic materials using IoT ACM
are consistent with the phenomenon of previous laboratory experiment and conclusions of
previously published reports. Using corrosion data can quantify the extent to which atmospheric
environmental elements affect the atmospheric corrosion of metallic materials in the initial stage
under an actual atmospheric environment.
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• IoT ACM can realize real-time and on-line remote monitoring of corrosion data in any atmospheric
environment and can replace the metallic material of the electrical resistance sensor to measure
atmospheric corrosion data of different metals. Using IoT ACM can provide a new approach for
corrosion monitoring, accelerate the progress of scientific research and anticorrosive work and
save experiment and engineering cost.

Author Contributions: Conceptualization, D.F. and J.M.; Methodology, Y.L., G.W., Z.Y., G.D. and J.Z.;
Investigation, Z.L.; Writing–Original Draft Preparation, Z.L.; Writing–Review and Editing, Z.L., D.F. and D.Z.;
Supervision and Fund Acquisition, D.F.; Software, Z.L.

Funding: This research was funded by the National Key Research and Development Program of China (Grant No.
2017YFB0702104) and Other Projects of the Ministry of Science and Technology of China (Grant No. 2012FY113000).

Acknowledgments: Authors would like to thank Corrosion and Protection Center of University of Science and
Technology Beijing for helping to carry out this experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, X. Informatics for Materials Corrosion and Protection: The Fundamentals and Applications of Materials Genome
Initative in Corrosion and Protection; Chinese Chemical Industry Press: Beijing, China, 2014; pp. 46–53.

2. Morcillo, M.; Chico, B.; Díaz, I.; Cano, H.; de la Fuente, D. Atmospheric corrosion data of weathering steels.
A review. Corros. Sci. 2013, 77, 6–24. [CrossRef]

3. Chico, B.; de la Fuente, D.; Díaz, I.; Simances, J.; Morcillo, M. Annual atmospheric corrosion of carbon steel
worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases. Materials 2017, 10, 601.
[CrossRef] [PubMed]

4. Rao, J.; Ratassepp, M.; Lisevych, D.; Caffoor, M.H.; Fan, Z. On-Line corrosion monitoring of plate structures
based on guided wave tomography using piezoelectric sensors. Sensors 2017, 17, 2882. [CrossRef] [PubMed]

5. Melchers, R. Long-term corrosion of cast irons and steel in marine and atmospheric environments. Corros.
Sci. 2013, 68, 186–194. [CrossRef]

6. Fu, X.; Dong, J.; Han, E.; Ke, W. A new experimental method for in situ corrosion monitoring under alternate
wet-dry conditions. Sensors 2009, 9, 10400–10410. [CrossRef]

7. Abdel-Rehim, S.; Khaled, K.; Abd-Elshafia, N. Electrochemical frequency modulation as a new technique
for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. Corros. Sci. 2006, 51,
3269–3277. [CrossRef]

8. Liang, P.; Li, X.; Du, C.; Chen, X. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil
solution. Mater. Des. 2009, 30, 1712–1717. [CrossRef]

9. Zhang, H.; He, Y.; Gao, B.; Tian, G.; Xu, L.; Wu, R. Evaluation of atmospheric corrosion on coated steel using
K-band sweep frequency microwave imaging. IEEE Sens. J. 2016, 16, 3025–3033. [CrossRef]

10. Li, W.; Xu, C.; Ho, S.; Wang, B.; Song, G. Monitoring concrete deterioration due to reinforcement corrosion
by integrating acoustic emission and FBG strain measurements. Sensors 2017, 17, 657. [CrossRef]

11. Huang, Y.; Gao, Z.; Chen, G.; Xiao, H. Long period fiber grating sensors coated with nano iron/silica particles
for corrosion monitoring. Smart Mater. Struct. 2013, 22, 075018. [CrossRef]

12. Fan, L.; Bao, Y.; Chen, G. Feasibility of distributed fiber optic sensor for corrosion monitoring of steel bars
embedded in concrete. Sensors 2018, 18, 3722. [CrossRef]

13. Li, S.; Kim, Y.; Jung, S.; Song, H.; Lee, S. Application of steel thin film electrical resistance sensor for in situ
corrosion monitoring. Sens. Actuators B Chem. 2007, 120, 368–377. [CrossRef]

14. Legat, A. Monitoring of steel corrosion in concrete by electrode arrays and electrical resistance probes.
Eletrochim. Acta 2007, 52, 7590–7598. [CrossRef]

15. Marja-Aho, M.; Rajala, P.; Huttunen-Saarivirta, E.; Legat, A.; Kranjc, A.; Kosee, T.; Carpéna, L. Copper
corrosion monitoring by electrical resistance probes in anoxic groundwater environment in the presence and
absence of sulfate reducing bacteria. Sens. Actuators A Phys. 2018, 274, 252–261. [CrossRef]

16. Prosek, T.; Kouril, M.; Hilbert, L.; Degres, Y.; Blazek, V.; Thierry, D.; Hansen, M. Real time corrosion
monitoring in atmosphere using automated battery driven corrosion loggers. Corros. Eng. Sci. Technol. 2008,
43, 129–133. [CrossRef]

http://dx.doi.org/10.1016/j.corsci.2013.08.021
http://dx.doi.org/10.3390/ma10060601
http://www.ncbi.nlm.nih.gov/pubmed/28772966
http://dx.doi.org/10.3390/s17122882
http://www.ncbi.nlm.nih.gov/pubmed/29231848
http://dx.doi.org/10.1016/j.corsci.2012.11.014
http://dx.doi.org/10.3390/s91210400
http://dx.doi.org/10.1016/j.electacta.2005.09.018
http://dx.doi.org/10.1016/j.matdes.2008.07.012
http://dx.doi.org/10.1109/JSEN.2016.2522983
http://dx.doi.org/10.3390/s17030657
http://dx.doi.org/10.1088/0964-1726/22/7/075018
http://dx.doi.org/10.3390/s18113722
http://dx.doi.org/10.1016/j.snb.2006.02.029
http://dx.doi.org/10.1016/j.electacta.2007.06.060
http://dx.doi.org/10.1016/j.sna.2018.03.018
http://dx.doi.org/10.1179/174327808X286374


Materials 2019, 12, 1065 15 of 16

17. Prosek, T.; Kouril, M.; Dubus, M.; Taube, M.; Hubert, V.; Scheffel, B.; Degres, Y.; Jouannic, M.; Thierry, D.
Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical
resistance sensors. Stud. Conserv. 2013, 58, 117–128. [CrossRef]

18. Prosek, T.; Taube, M.; Dubois, F.; Thierry, D. Application of automated electrical resistance sensors for
measurement of corrosion rate of copper, bronze and iron in model indoor atmospheres containing
short-chain volatile carboxylic acids. Corros. Sci. 2014, 87, 376–382. [CrossRef]

19. Chen, F. Design and Application of Electrical Resistance Probe for Natural Environment Corrosion
Monitoring. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2017.

20. Standard Test Method for Monitoring Atmospheric Corrosion Tests by Electrical Resistance Probes; B826-09 (2015);
ASTM International: West Conshohocken, PA, USA, 2015.

21. Li, X.; Zhang, D.; Liu, Z.; Li, Z.; Du, C.; Dong, C. Share corrosion data. Nature 2015, 527, 441–442. [CrossRef]
[PubMed]

22. Haight, R.; Haensch, W.; Friedman, D. Solar-powering the Internet of Things. Science 2016, 353, 124.
[CrossRef] [PubMed]

23. Li, L.; Yan, D.; Xu, S.; Huang, M.; Wang, X.; Xie, S. Characteristics and source distribution of air pollution in
winter in Qingdao, eastern China. Environ. Pollut. 2017, 224, 44–53. [CrossRef] [PubMed]

24. Dai, N.; Zhang, J.; Chen, Q.; Yi, B.; Cao, F.; Zhang, J. Effect of the direct current electric field on the initial
corrosion of steel in simulated industrial atmospheric environment. Corros. Sci. 2015, 99, 295–303. [CrossRef]

25. Shi, Y.; Fu, D.; Zhou, X.; Yang, T.; Zhi, Y.; Pei, Z.; Zhang, D.; Shao, L. Data mining to online galvanic current
of zinc/copper internet atmospheric corrosion monitor. Corros. Sci. 2018, 133, 443–450. [CrossRef]

26. Mizuno, D.; Suzuki, S.; Fujita, S.; Hara, N. Corrosion monitoring and materials selection for automotive
environments by using atmospheric corrosion monitor (ACM) sensor. Corros. Sci. 2014, 83, 217–225.
[CrossRef]

27. National Urban Air Quality Real-time Release Platform. Available online: http://106.37.208.233:20035/
(accessed on 20 April 2018).

28. Zhang, H.; Fu, D. Self-adaptive denoising of carbon steel corrosion monitoring signal based on EMD and
wavelet. Equip. Environ. Eng. 2018, 15, 44–49.

29. Zheng, L. Data errors analysis of real-time electrical resistance probe and treatment. Corros. Prot. Pet. Ind.
2017, 27, 31–34.

30. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544.
[CrossRef]

31. Tracey, B.; Miller, E. Nonlocal means denoising of ECG signals. IEEE Trans. Bio-Med. Eng. 2012, 59, 2383–2386.
[CrossRef] [PubMed]

32. Liu, Y.; Wang, J.; Li, Y.; Zhao, H.; Chen, S. Feature extraction method based on VMD and MFDFA for fault
diagnosis of reciprocating compressor valve. J. Vibroeng. 2017, 19, 6007–6020.
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