Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries
Abstract
:1. Introduction
2. Processing of Agricultural Wastes for Concrete Production and General Properties
2.1. Palm Oil Fuel Ash (POFA)
2.2. Rice Husk Ash (RHA)
2.3. Sugarcane Bagasse Ash
2.4. Bamboo Leaf Ash
3. Agricultural Wastes as Cement or Aggregate Replacement in Concrete
3.1. Palm Oil Fuel Ash
3.2. Rice Husk Ash
3.3. Sugarcane Bagasse Ash
3.4. Bamboo Leaf Ash
4. Challenges for Use of Agricultural Waste in Concrete Production
5. Summary, Conclusions, and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Available online: http://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management (accessed on 4 February 2019).
- Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 4 February 2019).
- Obi, F.; Ugwuishiwu, B.; Nwakaire, J. Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 2016, 35, 957–964. [Google Scholar] [CrossRef]
- Nagendran, R. Agricultural waste and pollution. In Waste; Academic Press: Cambridge, MA, USA, 2011; pp. 341–355. [Google Scholar]
- Available online: http://www.wexfordtidytowns.com/waste-reduction/ (accessed on 4 February 2019).
- Shafigh, P.; Mahmud, H.B.; Jumaat, M.Z.; Zargar, M. Agricultural wastes as aggregate in concrete mixtures—A review. Constr. Build. Mater. 2014, 53, 110–117. [Google Scholar] [CrossRef]
- Aprianti, E. A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production—A review Part II. J. Clean. Prod. 2017, 142, 4178–4194. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Yap, S.P.; Lee, S.C. Green concrete partially comprised of farming waste residues: A review. J. Clean. Prod. 2016, 117, 122–138. [Google Scholar] [CrossRef]
- Kajaste, R.; Hurme, M. Cement industry greenhouse gas emissions–management options and abatement cost. J. Clean. Prod. 2016, 112, 4041–4052. [Google Scholar] [CrossRef]
- Mikulčić, H.; Klemeš, J.J.; Vujanović, M.; Urbaniec, K.; Duić, N. Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process. J. Clean. Prod. 2016, 136, 119–132. [Google Scholar] [CrossRef]
- Cai, B.; Wang, J.; He, J.; Geng, Y. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Appl. Energy 2016, 166, 191–200. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Snellings, R.; Mertens, G.; Elsen, J. Supplementary cementitious materials. Rev. Mineral. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]
- Juenger, M.C.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Carr, N.N. Biomass Derived Binder: Development of the Scientific Basis for Methodologies That Enable the Production of Renewable Sustainable Cement Based on Ashes Derived from the Conversion of Biomass Residues as Determined by Qualitative Mineralogical Analysis. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar]
- Stevulova, N.; Cigasova, J.; Schwarzova, I.; Sicakova, A.; Junak, J. Sustainable bio-aggregate-based composites containing hemp hurds and alternative binder. Buildings 2018, 8, 25. [Google Scholar] [CrossRef]
- Son, N.K.; Toan, N.P.A.; Dung, T.T.T.; Huynh, N.N.T. Investigation of Agro-concrete using by-products of Rice Husk in Mekong Delta of Vietnam. Procedia Eng. 2017, 171, 725–733. [Google Scholar] [CrossRef]
- Brzyski, P.; Barnat-Hunek, D.; Fic, S.; Szeląg, M. Hydrophobization of lime composites with lignocellulosic raw materials from flax. J. Nat. Fibers 2017, 14, 609–620. [Google Scholar] [CrossRef]
- Tay, J.-H. Ash from oil-palm waste as a concrete material. J. Mater. Civ. Eng. 1990, 2, 94–105. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Johari, M.A.M.; Tayeh, B.A.; Yusuf, M.O. Pozzolanic reactivity of ultrafine palm oil fuel ash waste on strength and durability performances of high strength concrete. J. Clean. Prod. 2017, 144, 511–522. [Google Scholar] [CrossRef]
- Tay, J.-H.; Show, K.-Y. Use of ash derived from oil-palm waste incineration as a cement replacement material. Resour. Conserv. Recycl. 1995, 13, 27–36. [Google Scholar] [CrossRef]
- Sata, V.; Jaturapitakkul, C.; Kiattikomol, K. Utilization of palm oil fuel ash in high-strength concrete. J. Mater. Civ. Eng. 2004, 16, 623–628. [Google Scholar] [CrossRef]
- Al-mulali, M.Z.; Awang, H.; Khalil, H.A.; Aljoumaily, Z.S. The incorporation of oil palm ash in concrete as a means of recycling: A review. Cem. Concr. Compos. 2015, 55, 129–138. [Google Scholar] [CrossRef]
- Aslam, M.; Shafigh, P.; Jumaat, M.Z. Oil-palm by-products as lightweight aggregate in concrete mixture: A review. J. Clean. Prod. 2016, 126, 56–73. [Google Scholar] [CrossRef]
- Awang, H.; Al-Mulali, M.Z.; Khalil, H.A.; Aljoumaily, Z. Utilisation of oil palm ash in foamed concrete. Web Conf. 2014, 15, 01033. [Google Scholar] [CrossRef]
- Kanadasan, J.; Razak, H.A. Engineering and sustainability performance of self-compacting palm oil mill incinerated waste concrete. J. Clean. Prod. 2015, 89, 78–86. [Google Scholar] [CrossRef]
- Abdullahi, M.; Al-Mattarneh, H.; Hassan, A.A.; Hassan, M.H.; Mohammed, B. Trial mix design methodology for Palm Oil Clinker (POC) concrete. In Proceedings of the International Conference on Construction and Building Technology, Kuala Lumpur, Malaysia, 16–23 June 2008. [Google Scholar]
- Mohammed, B.S.; Al-Ganad, M.A.; Abdullahi, M. Analytical and experimental studies on composite slabs utilising palm oil clinker concrete. Constr. Build. Mater. 2011, 25, 3550–3560. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Noor, N.M. Physical properties of local palm oil clinker and fly ash. In Proceedings of the 1st Engineering Conference, Kuching, Malaysia, 27–28 December 2007; p. 162. [Google Scholar]
- Tangchirapat, W.; Saeting, T.; Jaturapitakkul, C.; Kiattikomol, K.; Siripanichgorn, A. Use of waste ash from palm oil industry in concrete. Waste Manag. 2007, 27, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.D. Rice Husk Ash as a Mineral Admixture for High Performance Concrete. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2001. [Google Scholar]
- Govindarao, V.M. Utilization of rice husk—A preliminary-analysis. J. Sci. Ind. Res. 1980, 39, 495–515. [Google Scholar]
- Karera, A.; Nargis, S.; Patel, M. Silicon-based materials from rice husk. J. Sci. Ind. Res. 1986, 45, 441–448. [Google Scholar]
- Krishnarao, R.; Godkhindi, M. Distribution of silica in rice husks and its effect on the formation of silicon carbide. Ceram. Int. 1992, 18, 243–249. [Google Scholar] [CrossRef]
- Liou, T.-H.; Chang, F.-W. The nitridation kinetics of pyrolyzed rice husk. Ind. Eng. Chem. Res. 1996, 35, 3375–3383. [Google Scholar] [CrossRef]
- Gonçalves, M.; Bergmann, C. Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure. Constr. Build. Mater. 2007, 21, 2059–2065. [Google Scholar] [CrossRef]
- Nguyen, V.T. Rice Husk Ash as a Mineral Admixture for Ultra High Performance Concrete. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2011. [Google Scholar]
- Masood, I.; Mehhrotra, S. Rice Husk Ash Based Lime Cement. Res. Ind. 1981, 26, 4–8. [Google Scholar]
- Singh, N.; Bhattacharjee, K.; Shukla, A. Hydration of Portland blended cements. Cem. Concr. Res. 1995, 25, 1023–1030. [Google Scholar] [CrossRef]
- Shah, R.; Khan, A.; Choudhry, M.; Qaiser, M. Utilization of RHA for the Production of cement like Materials in Rural Areas. Pak. J. Sci. Ind. Res. 1981, 24, 91–126. [Google Scholar]
- Boateng, A.; Skeete, D. Incineration of rice hull for use as a cementitious material: The Guyana experience. Cem. Concr. Res. 1990, 20, 795–802. [Google Scholar] [CrossRef]
- Siddique, R. Rice husk ash. In Waste Materials and by-Products in Concrete; Springer: Berlin/Heidelberg, Germany, 2008; pp. 235–264. [Google Scholar]
- Kang, S.-H.; Hong, S.-G.; Moon, J. The use of rice husk ash as reactive filler in ultra-high performance concrete. Cem. Concr. Res. 2019, 115, 389–400. [Google Scholar] [CrossRef]
- Korotkova, T.G.; Ksandopulo, S.J.; Donenko, A.P.; Bushumov, S.A.; Danilchenko, A.S. Physical properties and chemical composition of the rice husk and dust. Orient. J. Chem. 2016, 32, 3213–3219. [Google Scholar] [CrossRef]
- Bouzoubaâ, N.; Fournier, B. Concrete Incorporating Rice-Husk Ash: Compressive Strength and Chloride-Ion Penetrability; Materials Technology Laboratory: Dübendorf, Switzerland, 2001. [Google Scholar]
- Malhotra, V. Role of silica fume in concrete: A review. In Advances in Concrete Technology; Elsevier Science: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Zhang, M.-H.; Malhotra, V.M. High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Mater. J. 1996, 93, 629–636. [Google Scholar]
- Chandrasekhar, S.; Satyanarayana, K.; Pramada, P.; Raghavan, P.; Gupta, T. Review processing, properties and applications of reactive silica from rice husk—An overview. J. Mater. Sci. 2003, 38, 3159–3168. [Google Scholar] [CrossRef]
- Mehta, P. Rice husk ash—A unique supplementary material. In Advances in Concrete Technology; Malhorta, V.M., Ed.; CANMET: Ottawa, ON, Canada, 1994; pp. 419–443. [Google Scholar]
- Cook, D. Rice-Husk Ash Cements: Their Development and Applications; United Nations Industrial Development Organization: Vienna, Austria, 1984. [Google Scholar]
- Le, H.T.; Ludwig, H.-M. Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete. Mater. Des. 2016, 89, 156–166. [Google Scholar] [CrossRef]
- George, P.A.O.; Eras, J.J.C.; Gutierrez, A.S.; Hens, L.; Vandecasteele, C. Residue from sugarcane juice filtration (filter cake): Energy use at the sugar factory. Waste Biomass Valoriz. 2010, 1, 407–413. [Google Scholar] [CrossRef]
- Payá, J.; Monzó, J.; Borrachero, M.V.; Díaz-Pinzón, L.; Ordonez, L.M. Sugar-cane bagasse ash (SCBA): Studies on its properties for reusing in concrete production. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2002, 77, 321–325. [Google Scholar] [CrossRef]
- Frías, M.; Villar, E.; Savastano, H. Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 2011, 33, 490–496. [Google Scholar] [CrossRef]
- Bahurudeen, A.; Kanraj, D.; Dev, V.G.; Santhanam, M. Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cem. Concr. Compos. 2015, 59, 77–88. [Google Scholar] [CrossRef]
- Jagadesh, P.; Ramachandramurthy, A.; Murugesan, R. Overview on properties of sugarcane bagasse ash (SCBA) as Pozzolan. Indian J. Geo Mar. Sci. 2018, 47, 1934–1945. [Google Scholar]
- Cordeiro, G.; Toledo Filho, R.; Tavares, L.; Fairbairn, E. Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Compos. 2008, 30, 410–418. [Google Scholar] [CrossRef]
- Bahurudeen, A.; Santhanam, M. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem. Concr. Compos. 2015, 56, 32–45. [Google Scholar] [CrossRef]
- Asha, P.; Salman, A.; Kumar, R.A. Experimental study on concrete with bamboo leaf ash. Int. J. Eng. Adv. Technol. 2014, 3, 46–51. [Google Scholar]
- Dwivedia, V.; Singhb, N.; Dasa, S.; Singha, N. A new pozzolanic material for cement industry: Bamboo leaf ash. Int. J. Phys. Sci. 2006, 1, 106–111. [Google Scholar]
- Singh, N.; Das, S.; Singh, N.; Dwivedi, V. Hydration of bamboo leaf ash blended Portland cement. Indian J. Eng. Mater. Sci. 2007, 14, 69–76. [Google Scholar]
- Villar-Cociña, E.; Morales, E.V.; Santos, S.F.; Savastano Jr, H.; Frías, M. Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters. Cem. Concr. Compos. 2011, 33, 68–73. [Google Scholar] [CrossRef]
- Ademola, S.; Buari, T. Behaviour of bamboo leaf ash blended cement concrete in sulphate environment. IOSR J. Eng. 2014, 4, 1–8. [Google Scholar]
- Awal, A.A.; Shehu, I. Evaluation of heat of hydration of concrete containing high volume palm oil fuel ash. Fuel 2013, 105, 728–731. [Google Scholar] [CrossRef]
- Chandara, C.; Azizli, K.A.M.; Ahmad, Z.A.; Hashim, S.F.S.; Sakai, E. Heat of hydration of blended cement containing treated ground palm oil fuel ash. Constr. Build. Mater. 2012, 27, 78–81. [Google Scholar] [CrossRef]
- Awal, A.A.; Hussin, M.W. Effect of palm oil fuel ash in controlling heat of hydration of concrete. Procedia Eng. 2011, 14, 2650–2657. [Google Scholar] [CrossRef]
- Tangchirapat, W.; Jaturapitakkul, C.; Chindaprasirt, P. Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Constr. Build. Mater. 2009, 23, 2641–2646. [Google Scholar] [CrossRef]
- Mannan, M.; Ganapathy, C. Long-term strengths of concrete with oil palm shell as coarse aggregate. Cem. Concr. Res. 2001, 31, 1319–1321. [Google Scholar] [CrossRef]
- Mannan, M.; Neglo, K. Mix design for oil-palm-boiler clinker (OPBC) concrete. J. Sci. Technol. (Ghana) 2010, 30, 111–118. [Google Scholar] [CrossRef]
- Teo, D.; Mannan, M.A.; Kurian, V.; Ganapathy, C. Lightweight concrete made from oil palm shell (OPS): Structural bond and durability properties. Build. Environ. 2007, 42, 2614–2621. [Google Scholar] [CrossRef]
- Islam, M.M.U.; Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. Durability properties of sustainable concrete containing high volume palm oil waste materials. J. Clean. Prod. 2016, 137, 167–177. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rukzon, S.; Sirivivatnanon, V. Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Constr. Build. Mater. 2008, 22, 932–938. [Google Scholar] [CrossRef]
- Rukzon, S.; Chindaprasirt, P. Strength and chloride resistance of blended Portland cement mortar containing palm oil fuel ash and fly ash. Int. J. Miner. Metall. Mater. 2009, 16, 475–481. [Google Scholar] [CrossRef]
- Ranjbar, N.; Behnia, A.; Alsubari, B.; Moradi Birgani, P.; Jumaat, M.Z. Durability and mechanical properties of self-compacting concreteincorporating palm oil fuel ash. J. Clean. Prod. 2016, 112, 723–730. [Google Scholar] [CrossRef]
- Johari, M.M.; Zeyad, A.; Bunnori, N.M.; Ariffin, K. Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash. Constr. Build. Mater. 2012, 30, 281–288. [Google Scholar] [CrossRef]
- Tangchirapat, W.; Jaturapitakkul, C. Strength, drying shrinkage, and water permeability of concrete incorporating ground palm oil fuel ash. Cem. Concr. Compos. 2010, 32, 767–774. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Johari, M.M.; Tayeh, B.A.; Yusuf, M.O. Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete. Constr. Build. Mater. 2016, 125, 1066–1079. [Google Scholar] [CrossRef]
- Jaturapitakkul, C.; Kiattikomol, K.; Tangchirapat, W.; Saeting, T. Evaluation of the sulfate resistance of concrete containing palm oil fuel ash. Constr. Build. Mater. 2007, 21, 1399–1405. [Google Scholar] [CrossRef]
- Awal, A.A.; Hussin, M.W. The effectiveness of palm oil fuel ash in preventing expansion due to alkali-silica reaction. Cem. Concr. Compos. 1997, 19, 367–372. [Google Scholar] [CrossRef]
- Van Tuan, N.; Ye, G.; Van Breugel, K.; Copuroglu, O. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash. Cem. Concr. Res. 2011, 41, 1104–1111. [Google Scholar] [CrossRef]
- Xu, W.; Lo, T.Y.; Memon, S.A. Microstructure and reactivity of rich husk ash. Constr. Build. Mater. 2012, 29, 541–547. [Google Scholar] [CrossRef]
- Nair, D.G.; Fraaij, A.; Klaassen, A.A.; Kentgens, A.P. A structural investigation relating to the pozzolanic activity of rice husk ashes. Cem. Concr. Res. 2008, 38, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Nair, D.G.; Jagadish, K.; Fraaij, A. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cem. Concr. Res. 2006, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.-H.; Lastra, R.; Malhotra, V. Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cem. Concr. Res. 1996, 26, 963–977. [Google Scholar] [CrossRef]
- Hesami, S.; Ahmadi, S.; Nematzadeh, M. Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Constr. Build. Mater. 2014, 53, 680–691. [Google Scholar] [CrossRef]
- Givi, A.N.; Rashid, S.A.; Aziz, F.N.A.; Salleh, M.A.M. Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Constr. Build. Mater. 2010, 24, 2145–2150. [Google Scholar] [CrossRef]
- Chopra, D.; Siddique, R. Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst. Eng. 2015, 130, 72–80. [Google Scholar] [CrossRef]
- El-Dakroury, A.; Gasser, M. Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures. J. Nucl. Mater. 2008, 381, 271–277. [Google Scholar] [CrossRef]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Constr. Build. Mater. 2008, 22, 1675–1683. [Google Scholar] [CrossRef]
- Mahmud, H.B.; Bahri, S.; Yee, Y.W.; Yeap, Y.T. Effect of rice husk ash on the strength and durability of high strength high performance concrete. Int. Sch. Sci. Res. Innov. 2016, 10, 390–395. [Google Scholar]
- Raman, S.N.; Ngo, T.; Mendis, P.; Mahmud, H. High-strength rice husk ash concrete incorporating quarry dust as a partial substitute for sand. Constr. Build. Mater. 2011, 25, 3123–3130. [Google Scholar] [CrossRef]
- Habeeb, G.A.; Mahmud, H.B. Study on properties of rice husk ash and its use as cement replacement material. Mater. Res. 2010, 13, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Kunchariyakun, K.; Asavapisit, S.; Sombatsompop, K. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cem. Concr. Compos. 2015, 55, 11–16. [Google Scholar] [CrossRef]
- Gastaldini, A.; Isaia, G.; Gomes, N.; Sperb, J. Chloride penetration and carbonation in concrete with rice husk ash and chemical activators. Cem. Concr. Compos. 2007, 29, 176–180. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Homwuttiwong, S.; Jaturapitakkul, C. Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash. Constr. Build. Mater. 2007, 21, 1492–1499. [Google Scholar] [CrossRef]
- Zareei, S.A.; Ameri, F.; Dorostkar, F.; Ahmadi, M. Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties. Case Stud. Constr. Mater. 2017, 7, 73–81. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Kanchanda, P.; Sathonsaowaphak, A.; Cao, H. Sulfate resistance of blended cements containing fly ash and rice husk ash. Constr. Build. Mater. 2007, 21, 1356–1361. [Google Scholar] [CrossRef]
- De Sensale, G.R. Effect of rice-husk ash on durability of cementitious materials. Cem. Concr. Compos. 2010, 32, 718–725. [Google Scholar] [CrossRef]
- Le, H.T.; Siewert, K.; Ludwig, H.-M. Alkali silica reaction in mortar formulated from self-compacting high performance concrete containing rice husk ash. Constr. Build. Mater. 2015, 88, 10–19. [Google Scholar] [CrossRef]
- Rößler, C.; Bui, D.-D.; Ludwig, H.-M. Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete. Cem. Concr. Compos. 2014, 53, 270–278. [Google Scholar]
- Lim, J.L.G.; Raman, S.N.; Lai, F.-C.; Zain, M.F.M.; Hamid, R. Synthesis of nano cementitious additives from agricultural wastes for the production of sustainable concrete. J. Clean. Prod. 2018, 171, 1150–1160. [Google Scholar] [CrossRef]
- Paul, S.C.; Šavija, B.; Babafemi, A.J. A comprehensive review on mechanical and durability properties of cement-based materials containing waste recycled glass. J. Clean. Prod. 2018. [Google Scholar]
- Paul, S.C.; van Rooyen, A.S.; van Zijl, G.P.; Petrik, L.F. Properties of cement-based composites using nanoparticles: A comprehensive review. Constr. Build. Mater. 2018, 189, 1019–1034. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.d.M.R. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 2009, 39, 110–115. [Google Scholar] [CrossRef]
- Cordeiro, G.; Toledo Filho, R.; Fairbairn, E. Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 2009, 23, 3301–3303. [Google Scholar] [CrossRef]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 2009, 23, 3352–3358. [Google Scholar] [CrossRef]
- Sampaio, Z.; Souza, P.; Gouveia, B. Analysis of the influence of the sugar cane bagasse ashes on mechanical behavior of concrete. Revista IBRACON de Estruturas e Materiais 2014, 7, 626–647. [Google Scholar] [CrossRef]
- Rauf, N.; Damayanti, M.; Pratama, S. The influence of sugarcane bagasse ash as fly ash on cement quality. AIP Conf. Proc. 2017, 1801, 040009. [Google Scholar]
- Priya, K.L.; Ragupathy, R. Effect of sugarcane bagasse ash on strength properties of concrete. Int. J. Res. Eng. Technol. 2016, 5, 159–164. [Google Scholar]
- Mangi, S.A.; Jamaluddin, N.; Ibrahim, M.W.; Abdullah, A.H.; Awal, A.A.; Sohu, S.; Ali, N. Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271, 012001. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, V.C. High-early-strength engineered cementitious composites for fast, durable concrete repair-material properties. ACI Mater. J. 2011, 108, 3. [Google Scholar]
- Seehra, S.; Gupta, S.; Kumar, S. Rapid setting magnesium phosphate cement for quick repair of concrete pavements—Characterisation and durability aspects. Cem. Concr. Res. 1993, 23, 254–266. [Google Scholar] [CrossRef]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr. Compos. 2007, 29, 515–524. [Google Scholar] [CrossRef]
- Modani, P.O.; Vyawahare, M. Utilization of bagasse ash as a partial replacement of fine aggregate in concrete. Procedia Eng. 2013, 51, 25–29. [Google Scholar] [CrossRef]
- Utodio, N.; Ekandem, E.; Egege, C.; Ocholi, M.; Atakpu, O.; Nwaigwe, D. Investigation of the effect of bamboo leaf ash blended cement on engineering properties of lateritic blocks. J. Sustain. Dev. Stud. 2015, 8. [Google Scholar]
- Olutoge, F.; Oladunmoye, O. Bamboo leaf ash as supplementary cementitious material. Am. J. Eng. Res. 2017, 14, 1–8. [Google Scholar]
- Dhinakaran, G.; Gangava, H.C. Compressive strength and durability of bamboo leaf ash concrete. Jordan J. Civ. Eng. 2016, 10, 279–289. [Google Scholar]
- Frías, M.; Savastano, H.; Villar, E.; de Rojas, M.I.S.; Santos, S. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Compos. 2012, 34, 1019–1023. [Google Scholar] [CrossRef]
- Martirena, F.; Monzó, J. Vegetable ashes as supplementary cementitious materials. Cem. Concr. Res. 2018, 114, 57–64. [Google Scholar] [CrossRef]
Major Chemical Composition % | Cement | POFA |
---|---|---|
Silicon Dioxide (SiO2) | 19.98 | 66.64 |
Aluminium Oxide (Al2O3) | 5.17 | 3.82 |
Iron Oxide (Fe2O3) | 3.27 | 3.70 |
Calcium Oxide (CaO) | 63.17 | 5.23 |
Magnesium Oxide (MgO) | 0.79 | 2.29 |
Sulfur Trioxide (SO3) | 2.38 | 0.43 |
Loss on Ignition (LOI) | 2.5 | 2.32 |
Type | Remarks |
---|---|
Appearance | Brown to light brown colored liquid |
Total solids (%) | 40 |
PH solution | 7.5 to 8.0 |
Salt content | Max. 5% |
Insoluble materials | Negligible |
Chlorides as NaCl | Nil |
Authors | Size of POFA | Bulk Density (kg/m3) | Specific Gravity | Moisture Content (%) | Water Absorption (%) |
---|---|---|---|---|---|
Kanadasan & Razak [26] | Fine | - | 1.97 | 0.5 ± 0.25 | 10 ± 5 |
Coarse | - | 1.73 | 1.0 ± 0.5 | 3 ± 2 | |
Abdullahi et al. [27] | Fine | 1120 | 1.8 | - | 14.3 |
Coarse | 790 | 1.7 | - | 5.4 | |
Mohammed et al. [28] | Fine | 1120 | 2.0 | 0.11 | 26.4 |
Coarse | 780 | 1.8 | 0.07 | 4.4 | |
Ahmad et al. [29] | Fine | 1040 | 2.2 | - | - |
Coarse | 860 | 1.8 | - | 4.6 |
Chemical Composition (%) (Minor Constituents not Given) | |||||
---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O |
93.4 | 0.05 | 0.06 | 0.31 | 0.35 | 1.4 |
Physical properties | |||||
Fineness—median particle size (µm) | 8.6 | ||||
Specific gravity | 2.05 | ||||
Pozzolanic activity index (%) | 99 | ||||
Water absorption (%) | 104 |
Chemical Composition (%) (Minor Constituents not Given) | |||||
---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O |
65.3 | 6.9 | 3.7 | 4.0 | 1.1 | 2.0 |
Physical properties | |||||
Fineness—median particle size (µm) | 5.1 | ||||
Specific gravity | 1.8 | ||||
Blaine fineness (m2/kg) | 900 |
Major Chemical Composition (%) (Minor Constituents not Given) | |||||
---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O |
75.9 | 4.13 | 1.22 | 7.47 | 1.85 | 5.62 |
Physical properties | |||||
Specific gravity | 2.25 | ||||
Moisture content (%) | 0.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra Paul, S.; Mbewe, P.B.K.; Kong, S.Y.; Šavija, B. Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries. Materials 2019, 12, 1112. https://doi.org/10.3390/ma12071112
Chandra Paul S, Mbewe PBK, Kong SY, Šavija B. Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries. Materials. 2019; 12(7):1112. https://doi.org/10.3390/ma12071112
Chicago/Turabian StyleChandra Paul, Suvash, Peter B.K. Mbewe, Sih Ying Kong, and Branko Šavija. 2019. "Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries" Materials 12, no. 7: 1112. https://doi.org/10.3390/ma12071112
APA StyleChandra Paul, S., Mbewe, P. B. K., Kong, S. Y., & Šavija, B. (2019). Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries. Materials, 12(7), 1112. https://doi.org/10.3390/ma12071112