Hemp-Straw Composites: Gluing Study and Multi-Physical Characterizations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Developed Materials
2.2. Characterization Methods
2.2.1. Van Soest Method
2.2.2. Surface Morphology by Scanning Electron Microscopy
2.2.3. Mechanical Characterization
2.2.4. Thermal Characterization
3. Results
3.1. Binding Component: Treated Wheat Straw
3.1.1. Chemical Composition
3.1.2. Surface Morphology by Scanning Electron Microscopy
3.2. Developed Composites
3.2.1. Surface Morphology by Scanning Electron Microscopy
3.2.2. Mechanical Characterization
3.2.3. Thermal Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MBV | Moisture Buffer Value |
SEM | Scanning Electron Microscopy |
References
- ISOBIO, Naturally High Performance Insulation. Available online: http://isobioproject.com/ (accessed on 11 April 2019).
- Viel, M.; Collet, F.; Lanos, C. Chemical and multi-physical characterization of agro-resources’ by-product as a possible raw building material. Ind. Crops Prod. 2018, 120, 214–237. [Google Scholar] [CrossRef]
- Jiang, Y.; Lawrence, M.; Ansell, M.P.; Hussain, A. Cell wall microstructure, pore size distribution and absolute density of hemp shiv. R. Soc. Open Sci. 2018, 5, 171945. [Google Scholar] [CrossRef]
- Amziane, S.; Collet, F. (Eds.) Bio-Aggregates Based Building Materials; RILEM State-of-the-Art Reports; Springer: Amsterdam, The Netherlands, 2017; ISBN 978-94-024-1031-0. [Google Scholar]
- Amziane, S.; Arnaud, L. (Eds.) Bio-Aggregate-Based Building Materials: Applications to Hemp Concretes; Civil Engineering and Geomechanics Series; Wiley-ISTE: London, UK, 2013; ISBN 978-1-848-21404-0. [Google Scholar]
- Pleiksnis, S.; Sinka, M.; Sahmenko, G. Experimental justification for sapropel and hemp shives use as a thermal insulation in Latvia. In Proceedings of the 10th International Scientific and Practical Conference I, Rezekne, Latvia, 18–20 June 2015; pp. 175–181. [Google Scholar]
- Mazhoud, B.; Collet, F.; Pretot, S.; Lanos, C. Development and hygric and thermal characterization of hemp-clay composite. Eur. J. Environ. Civ. Eng. 2018, 22, 1511–1521. [Google Scholar] [CrossRef]
- Busbridge, R. Hemp-Clay: An Initial Investigation into the Thermal, Structural and Environmental Credentials of Monolithic Clay and Hemp Walls. Master’s Thesis, University of East London, London, UK, January 2009. [Google Scholar]
- Kremensas, A.; Kairytė, A.; Vaitkus, S.; Vėjelis, S.; Balčiūnas, G. Mechanical performance of biodegradable thermoplastic polymer-based biocomposite boards from hemp shivs and corn starch for the building industry. Materials 2019, 12, 845. [Google Scholar] [CrossRef]
- Umurigirwa, B.S.; Vroman, I.; Mai, T.H.; Maalouf, C. Influence of chemical modification on hemp–starch concrete. Constr. Build. Mater. 2015, 81, 208–215. [Google Scholar] [CrossRef]
- Bourdot, A.; Moussa, T.; Gacoin, A.; Maalouf, C.; Vazquez, P.; Thomachot-Schneider, C.; Bliard, C.; Merabtine, A.; Lachi, M.; Douzane, O.; et al. Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy Build. 2017, 153, 501–512. [Google Scholar] [CrossRef]
- Glassco, R.B.; Noble, R.L. Modular building construction and method of building assembly, international Classification E04B1/12. E04C2/16; Cooperative Classification E04C2/16; European Classification E04C2/16 (May 1987). Available online: http://www.google.fr/patents/WO1987003031A1 (accessed on 19 March 2017).
- Sun, R.-C.; Tomkinson, J. Appendix 1: Essential guides for isolation/purification of polysaccharides, in: Encyclopedia of Separation Science. Acad. Press 2000, 6, 4568–4574. [Google Scholar]
- Collet, F.; Prétot, S.; Lanos, C. Hemp-straw composites: Thermal and hygric performances. Energy Procedia 2017, 139, 294–300. [Google Scholar] [CrossRef]
- Collet, F.; Prétot, S.; Mazhoud, B.; Bessette, L.; Lanos, C. Comparing hemp composites made with mineral or organic binder on thermal, hygric and mechanical point of view. In Proceedings of the First International Conference on Bio-based Building Materials, ICBBM 2015, Clermont-Ferrand, France, 22–24 June 2015. [Google Scholar]
- Tran Le, A.D. Étude des transferts hygrothermiques dans le béton de chanvre et leur application au bâtiment (sous titre: simulation numérique et approche expérimentale). Ph.D. Thesis, Université de Reims-Champagne Ardenne, Reims, France, November 2010. [Google Scholar]
- Rode, C.; Peuhkuri, R.H.; Mortensen, L.H.; Hansen, K.K.; Time, B.; Gustavsen, A.; Ojanen, T.; Ahonen, J.; Svennberg, K.; Harderup, L.E.; et al. Moisture Buffering of Building Materials, Technical Report; Technical University of Denmark, Department of Civil Engineering: Kongens Lyngby, Denmark, 2005. [Google Scholar]
- Collet, F.; Chamoin, J.; Pretot, S.; Lanos, C. Comparison of the hygric behaviour of three hemp concretes. Energy Build. 2013, 62, 294–303. [Google Scholar] [CrossRef]
- Aliments des animaux - Détermination Séquentielle des Constituants Pariétaux - Méthode par Traitement aux Détergents Neutre et Acide et à l’acide Sulfurique; NF V18-122m; AFNOR: La Plaine Saint-Denis, France, August 1997.
- Carrier, M.; Loppinet-Serani, A.; Denux, D.; Lasnier, J.-M.; Ham-Pichavant, F.; Cansell, F.; Aymonier, C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 2011, 35, 298–307. [Google Scholar] [CrossRef]
- Contreras, L.; Gutièrrez Chavez, D.; Valdivia Macedo, I.; Govea Casares, R.; Ramirez Carrillo, J. Two techniques for measuring neutral detergent (NDF) and acid detergent fibers (ADF) in forages and by-products. Arch. Zootecnia 1999, 48, 351–354. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Produits Isolants Thermiques Destinés aux Applications du Bâtiment—Détermination du Comportement en Compression; NF EN 826; AFNOR: La Plaine Saint-Denis, France, May 2013.
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Merali, Z.; Ho, J.D.; Collins, S.R.A.; Gall, G.L.; Elliston, A.; Käsper, A.; Waldron, K.W. Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresour. Technol. 2013, 131, 226–234. [Google Scholar] [CrossRef]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Hydrothermal processing of lignocellulosic materials. Holz Roh Werkstoff 1999, 57, 191–202. [Google Scholar] [CrossRef]
- Xiao, L.-P.; Shi, Z.-J.; Xu, F.; Sun, R.-C. Hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 2012, 118, 619–623. [Google Scholar] [CrossRef]
- Rajput, A.A.; Zeshan; Visvanathan, C. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. J. Environ. Manag. 2018, 221, 45–52. [Google Scholar] [CrossRef]
- Ran, G.; Li, D.; Zheng, T.; Liu, X.; Chen, L.; Cao, Q.; Yan, Z. Hydrothermal pretreatment on the anaerobic digestion of washed vinegar residue. Bioresour. Technol. 2018, 248, 265–271. [Google Scholar] [CrossRef]
- Merle, J.; Birot, M.; Deleuze, H.; Mitterer, C.; Carré, H.; Bouhtoury, F.C.-E. New biobased foams from wood byproducts. Mater. Des. 2016, 91, 186–192. [Google Scholar] [CrossRef]
- Balčiūnas, G.; Žvironaitė, J.; Vėjelis, S.; Jagniatinskis, A.; Gaidučis, S. Ecological, thermal and acoustical insulating composite from hemp shives and sapropel binder. Ind. Crops Prod. 2016, 91, 286–294. [Google Scholar] [CrossRef]
- De Bruijn, P.; Johansson, P. Moisture fixation and thermal properties of lime–hemp concrete. Constr. Build. Mater. 2013, 47, 1235–1242. [Google Scholar] [CrossRef]
- Isolants Thermiques Destinés au Bâtiment-Définition; NF P75-101; AFNOR: La Plaine Saint-Denis, France, October 1983.
Composites | A | B | C | D |
---|---|---|---|---|
Hemp shiv | 192 | 192 | 192 | 190 |
Wheat straw | 48 | 48 | 30 | - |
Processing | Milled | Infused and Extracts | Extracts | - |
Polysaccharides | - | - | - | 20 |
Water | 240 | 360 | 320 | 200 |
Composites | A | B | C | D |
---|---|---|---|---|
(kg/m) | 179.8 ± 13.2 | 187.9 ± 3.6 | 165.9 ± 3.4 | 181.6 ± 2.8 |
(kg/m) | 166.5 ± 12.1 | 174.1 ± 3.3 | 153.9 ± 3.4 | 168.8 ± 2.7 |
(kg/m) | 1529.4 ± 6.0 | 1509.8 ± 16.9 | 1496.7 ± 21.2 | 1475.8 ± 8.0 |
89.1% | 88.5% | 89.7% | 88.6% | |
MBV (g/(m%RH)) | 2.23 ± 0.02 | 2.17 ± 0.03 | 2.21 ± 0.02 | 2.36 ± 0.01 |
MBV (g/(m%RH)) | 2.30 ± 0.02 | 2.23 ± 0.02 | 2.24 ± 0.01 | 2.47 ± 0.01 |
MBV (g/(m%RH)) | 2.27 ± 0.02 | 2.20 ± 0.03 | 2.22 ± 0.02 | 2.42 ± 0.01 |
Agro-Resources | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Soluble (%) | Ash (%) |
---|---|---|---|---|---|
Without treatment | 38.56 ± 1.47 | 32.45 ± 0.54 | 4.43 ± 0.26 | 22.38 ± 0.89 | 1.11 ± 0.15 |
Hydrothermal treatment 1 | 44.44 ± 1.26 | 33.11 ± 0.62 | 5.26 ± 0.55 | 15.54 ± 0.98 | 1.14 ± 0.12 |
Hydrothermal treatment 2 | 44.52 ± 1.07 | 33.45 ± 0.42 | 5.49 ± 0.48 | 16.51 ± 1.94 | 1.16 ± 0.22 |
Composites | A | B | C | D |
---|---|---|---|---|
(kg/m) | 179.84 ± 13.22 | 187.85 ± 3.63 | 165.92 ± 3.40 | 181.57 ± 2.81 |
(kPa) | 260.72 ± 10.49 | 339.07 ± 5.35 | 276.62 ± 12.71 | 298.05 ± 5.99 |
(%) | 0.19 | 0.15 | 0.16 | 0.16 |
Composites | A | B | C | D |
---|---|---|---|---|
(kg/m) | 166.5 ± 5.2 | 174.1 ± 1.4 | 153.9 ± 1.5 | 168.8 ± 1.2 |
(mW/(mK)) | 69.0 ± 1.3 | 69.3 ± 1.6 | 66.8 ± 1.8 | 67.9 ± 1.0 |
(kg/m) | 181.1 ± 5.8 | 188.0 ± 1.4 | 165.7 ± 1.4 | 181.9 ± 1.3 |
(mW/(mK)) | 74.7 ± 1.6 | 75.9 ± 1.9 | 71.4 ± 1.3 | 73.5 ± 1.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viel, M.; Collet, F.; Prétot, S.; Lanos, C. Hemp-Straw Composites: Gluing Study and Multi-Physical Characterizations. Materials 2019, 12, 1199. https://doi.org/10.3390/ma12081199
Viel M, Collet F, Prétot S, Lanos C. Hemp-Straw Composites: Gluing Study and Multi-Physical Characterizations. Materials. 2019; 12(8):1199. https://doi.org/10.3390/ma12081199
Chicago/Turabian StyleViel, Marie, Florence Collet, Sylvie Prétot, and Christophe Lanos. 2019. "Hemp-Straw Composites: Gluing Study and Multi-Physical Characterizations" Materials 12, no. 8: 1199. https://doi.org/10.3390/ma12081199
APA StyleViel, M., Collet, F., Prétot, S., & Lanos, C. (2019). Hemp-Straw Composites: Gluing Study and Multi-Physical Characterizations. Materials, 12(8), 1199. https://doi.org/10.3390/ma12081199