A Fast Sparse Recovery Algorithm for Compressed Sensing Using Approximate l0 Norm and Modified Newton Method
Abstract
:1. Introduction
2. Fast Sparse Recovery Algorithm Using Approximate l0 Norm
2.1. Implementation of the Algorithm
2.2. Algorithm Description
2.3. Computational Complexity Analysis of FAL0
3. Computer Simulation Experiments and Analysis
3.1. Simulation Experiments on Random Sparse Signal Recovery
3.2. Simulation Experiments on Image Denoising
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simon, F.; Holger, R. A mathematical introduction to compressive sensing. In Applied and Numerical Harmonic Analysis; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Jin, D.; Yang, Y.; Luo, Y.; Liu, S. Lens distortion correction method based on cross-ratio invariability and compressed sensing. Opt. Eng. 2018, 57, 054103. [Google Scholar] [CrossRef]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian compressive sensing using Laplace priors. J. IEEE Trans. Image Process. 2010, 19, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Cheng, L.; Chen, D. A simulated annealing algorithm for sparse recovery by l0 minimization. Neurocomputing 2014, 131, 98–104. [Google Scholar] [CrossRef]
- Mashud, H.; Mahata, K. An approximate L0 norm minimization algorithm for compressed sensing. In Proceedings of the IEEE International Conference on Acoustics, Taipei, Taiwan, 19–24 April 2009. [Google Scholar]
- Candes, E.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 51, 4203–4215. [Google Scholar] [CrossRef] [Green Version]
- Davis, G. Adaptive Greedy Approximations. Constr. Approx. 1997, 13, 57–98. [Google Scholar] [CrossRef]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic Decomposition by Basis Pursuit. SIAM Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Gorodnitsky, I.F.; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 2002, 45, 600–616. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Mcclure, M.R.; Carin, L. Matching pursuits with a wave-based dictionary. IEEE Trans. Signal Process. 1997, 45, 2912–2927. [Google Scholar] [CrossRef]
- Zhang, C.; Song, S.; Wen, X.; Yao, L.; Long, Z. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from MRI data. J. Neurosci. Methods 2015, 245, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Mohimani, H.; Babaie-Zadeh, M.; Jutten, C. A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed l0 Norm. IEEE Trans. Signal Process. 2009, 57, 289–301. [Google Scholar] [CrossRef]
- Elad, M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing; Springer: New York, NY, USA, 2010. [Google Scholar]
- Lukas, M.A. Asymptotic optimality of generalized cross-validation for choosing the regularization parameter. Numer. Math. 1993, 66, 41–66. [Google Scholar] [CrossRef]
- Nocedal, J.; Stephen, W. Numerical Optimization; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Altman, T.; Boulos, P.F. Convergence of Newton method in nonlinear network analysis. Math. Comput. Model. 1995, 21, 35–41. [Google Scholar] [CrossRef]
- Jin, D.; Yang, Y. Sensitivity analysis of the error factors in the binocular vision measurement system. Opt. Eng. 2018, 57, 104109. [Google Scholar] [CrossRef]
- Li, S.; Qi, H. A Douglas-Rachford Splitting Approach to Compressed Sensing Image Recovery Using Low-Rank Regularization. IEEE Trans. Image Process. 2015, 24, 4240–4249. [Google Scholar] [CrossRef] [PubMed]
Algorithm: FAL0 |
Input: A, y, λ, h, K, and the termination condition: δmin = 10−3δ0; Output: The recovery signal x*; Initialization: x0 = AT(AAT)y, δ0 = 1; Step 1: Step 2: Update d according to Equation (16); Step 3: Iterate, Step 4: Update δ, δk+1 = 0.7δk; Step 5: If δ < δmin, output to x*, or else go to Step 1 and continue iterating. |
Image | Algorithm | SNR (dB) | Time (s) | Memory Usage (MB) |
---|---|---|---|---|
CT | MP | 26.30 | 46.58 | 65.76 |
OMP | 26.19 | 43.72 | 60.58 | |
BP | 28.32 | 78.33 | 101.75 | |
FAL0 | 33.19 | 10.79 | 22.37 | |
AL0 | 34.01 | 22.24 | 36.68 | |
AL0-L | 32.17 | 15.76 | 33.52 | |
Fundus | MP | 27.52 | 44.57 | 68.32 |
OMP | 26.88 | 42.16 | 61.07 | |
BP | 29.11 | 81.15 | 112.59 | |
FAL0 | 33.12 | 11.70 | 20.45 | |
AL0 | 33.45 | 21.12 | 37.95 | |
AL0-L | 32.77 | 15.69 | 36.58 | |
Lena | MP | 28.22 | 49.02 | 68.70 |
OMP | 27.73 | 46.33 | 59.42 | |
BP | 29.45 | 85.19 | 127.34 | |
FAL0 | 33.20 | 11.15 | 26.82 | |
AL0 | 31.54 | 23.56 | 38.96 | |
AL0-L | 32.54 | 18.77 | 35.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Yang, Y.; Ge, T.; Wu, D. A Fast Sparse Recovery Algorithm for Compressed Sensing Using Approximate l0 Norm and Modified Newton Method. Materials 2019, 12, 1227. https://doi.org/10.3390/ma12081227
Jin D, Yang Y, Ge T, Wu D. A Fast Sparse Recovery Algorithm for Compressed Sensing Using Approximate l0 Norm and Modified Newton Method. Materials. 2019; 12(8):1227. https://doi.org/10.3390/ma12081227
Chicago/Turabian StyleJin, Dingfei, Yue Yang, Tao Ge, and Daole Wu. 2019. "A Fast Sparse Recovery Algorithm for Compressed Sensing Using Approximate l0 Norm and Modified Newton Method" Materials 12, no. 8: 1227. https://doi.org/10.3390/ma12081227
APA StyleJin, D., Yang, Y., Ge, T., & Wu, D. (2019). A Fast Sparse Recovery Algorithm for Compressed Sensing Using Approximate l0 Norm and Modified Newton Method. Materials, 12(8), 1227. https://doi.org/10.3390/ma12081227