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Abstract: Coral aggregate has been widely used for island construction because of its local availability.
However, the addition of coral aggregate exaggerates the brittle nature of cement-based materials
under dynamic loading. In this study, polyvinyl alcohol (PVA) fiber was used to improve dynamic
mechanical behavior of seawater coral mortars (SCMs). The effects of coral aggregate and PVA fiber
on the workability, static mechanical strengths, and dynamic mechanical behavior of fiber-reinforced
SCMs were investigated. Results showed that the workability of the SCM decreased with increasing
coral aggregate replacement rate and PVA fiber content. Mechanical strengths of the SCM increased
with increasing PVA fiber content, but decreased with increasing coral aggregate replacement
rate. Dynamic mechanical behavior at varying coral aggregate replacement rates was analyzed by
combining dynamic mechanical analysis and micro-scale elastic modulus experiment. With increasing
coral aggregate replacement rate, the storage modulus, loss factor, and elastic modulus of the interfacial
transition zone in the SCM decreased. Nevertheless, with the incorporation of PVA fibers (1 vol.%),
the storage modulus and loss factor were improved dramatically by 151.9 and 73.3%, respectively,
compared with the reference group. Therefore, fiber-reinforced coral mortars have a great potential
for use in island construction, owing to the excellent anti-vibrational performance.
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1. Introduction

Sustainable island construction remains a challenge because transportation for large amounts
of aggregates and fresh water from land to ocean construction sites is uneconomical. Therefore, the
reasonable exploitation of marine resources (e.g., dead coral reefs and seawater) is significant. A recent
Nature report showed that raising sea surface temperatures have increased the frequency and intensity
of coral bleaching events. It also predicted that most coral reefs in tropical oceans would die within
the next 80 years [1]. Such a huge amount of dead coral reefs can be expected to be used as locally
available aggregates in concrete, to solve the transportation problem.

A coral reef, the main mineral components of which are aragonite and high-magnesium calcite, is
made up of thin layers of over 95% calcium carbonate [2]. Compared with natural aggregates, coral reef
aggregates have rough surface, irregular shape, and high porosity [3]. As early as the Second World
War, corals have been used as a concrete ingredient to build airports, roads, and architecture in Pacific
Atolls [4]. In 1991, Rick [5] investigated three coral concrete structures at Bikini Atoll. Results showed
that the strength of coral concrete increased by 55–60% after 11 years, confirming that high-quality
coral concrete exhibits long-term stability. Lyu et al. [6] found that coral aggregates can absorb more
water than natural aggregates due to the major difference between the surface morphology and internal
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porosity. Guo et al. [7] reported that the compressive and flexural strengths of coral concrete are much
lower than those of ordinary concrete. However, adding supplementary cementitious materials can
solve this problem. Cheng et al. [8] found that the 28-day mechanical strength of coral concrete is
higher than that of ordinary concrete, owing to the incorporation of metakaolin and blast furnace
slag. Furthermore, the workability, volume stability, and durability of coral concrete has also been
studied [9–13]. Xu et al. [9] found that the workability of concrete gradually decreased with an increase
in the replacement rate of coral reef sand; when the replacement rate was 100%, the slump was reduced
to about 80 mm. Liu et al. [10] used pre-wetted coral aggregates to prepare ultra-high performance
concrete (UHPC) and studied their effect on autogenous shrinkage. Results showed that the addition
of saturated coral aggregates into UHPC can help decrease the autogenous shrinkage, regardless of the
aggregate content. Cheng et al. [11] revealed that river sand concrete exhibits lower impermeability
than coral sand concrete at all tested ages. In addition, they found that adding metakaolin and blast
furnace slag can help reduce the drying shrinkage of coral sand concrete. According to previous
studies, coral aggregate concrete can be used as a building material.

Dynamic mechanical properties refer to the stress–strain curve of a material under dynamic
loading. Notably, marine concrete structures need to withstand different types of dynamic loads such
as from waves, typhoons, and earthquakes. They undergo severe corrosion due to waves, leading to a
deterioration in the vibrational capacity during their long-term service period [14]. Long-term dynamic
loads have a negative impact on the service life of marine concrete structures, particularly when exposed
to salt efflorescence and transverse cracking [15]. Dynamic mechanical properties of the mortars were
assessed by measuring their storage modulus and loss factors. A higher loss factor suggests a greater
phase displacement between the given stress and measured strain of the seawater coral mortar (SCM)
specimens, implying an improved damping property. Recently, Long et al. reported that the addition
of graphene oxide to cement paste can enhance the dynamic mechanical properties, and clarified its
reinforcement mechanism [16]. The dynamic mechanical properties of alkali-activated slag mortar
with standard curing were higher than the natural curing at 28 days, and waste rubber tires used as a
substitute for fine aggregates can enhance the dynamic mechanical properties of alkali-activated slag
mortar, explained by series and parallel model mechanism [15,17]. However, studies about dynamic
mechanical properties of coral aggregate cement composites remain scarce.

Reinforcing concrete with fibers is a promising method for improving the dynamic mechanical
properties of concrete structures. The improved toughness, ductility, and energy consumption of
fiber-reinforced concrete can be attributed to the high energy absorption capacity of the strain-hardening
cementitious composites with fibers [18,19]. The extensive plastic deformation of fibers during
protrusion contributes considerably to the energy dissipation of cementitious composites under impact
loading [19]. Zhao et al. [20] reported that fibers in the matrix improve the energy consumption
of concrete and change the failure mode from brittle to ductile. Compared with other fibers such
as polypropylene fiber and polyethylene fiber, polyvinyl alcohol (PVA) fiber has high strength and
elastic modulus, and it has good durability and interfacial bonding strength with cement matrix [21].
Thong et al. [21] found that PVA fiber as a reinforcing material can help significantly improve the
impact resistance. However, the application of PVA fiber to improve the dynamic mechanical properties
of SCM is still limited.

Therefore, the aim of this study was to investigate the workability, static mechanical properties,
and dynamic mechanical behavior of fiber-reinforced seawater coral mortar (SCM) by varying the
aggregate replacement rate (0, 30, 60, and 100 wt.%) and PVA fiber content (0, 0.25, 0.5, and 1.0 vol.%).
Dynamic mechanical properties (i.e., storage modulus and loss factor) of the SCM under varying
temperatures and frequencies were investigated. By using the statistical nanoindentation technique
(SNT), we quantified the microscopic elastic modulus of the interfacial transition zone (ITZ), while the
relationship between the storage modulus and the ITZ elastic modulus was analyzed. Furthermore, the
failure behavior of PVA fiber in the SCM and the effect of the fiber on energy dissipation were evaluated
by scanning electron microscopy (SEM) for revealing the reinforcing mechanism from its addition.
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In addition, we also proposed the mechanism of temperature change on the dynamic mechanical
properties of the SCM. The findings of this study help to not only understand the behavior of marine
structures under dynamic loading, but also demonstrate the application potential of fiber-reinforced
SCM with excellent dynamic mechanical behavior.

2. Materials and Methods

2.1. Raw Materials

Ordinary Portland cement (PI 42.5R) and fly ash (a kind of supplementary cementitious material)
used in this study conformed to the requirements of the Chinese Standard GB175 [22] and GB/T1596 [23],
respectively. Table 1 lists the chemical composition of the cement and fly ash. Sea water was used as
the mixing water, taken from the South China Sea. The major ionic compositions were determined by
inductive coupled plasma mass spectrometry (ICP–MS, Thermo Fisher Scientific, Shenzhen, China), as
listed in Table 2.

Table 1. Chemical compositions of the cement and fly ash used in this study (wt.%).

Ingredient CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O LOI

Cement 64.42 20.52 5.62 3.88 2.11 2.10 0.28 0.20 0.87
Fly ash 7.08 43.34 25.84 5.46 1.17 2.37 1.05 1.13 3.79

Table 2. Ionic compositions of the seawater taken from the South China Sea.

Ion K+ Na+ Ca+ Mg+ Cl− SO42−

Concentration, g/L 0.56 16.00 0.50 2.70 26.00 4.70

The natural river sand used in this study was obtained from Xiamen ISO Standard Co., Ltd
(Xiamen, China); the test results were consistent with the Chinese standards [24]. Coral reef samples
were obtained from the South China Sea. The samples were crushed using a jaw breaker to produce
coral aggregates, which passed meshes with sieve sizes between 0.075 and 4.75 mm. Figure 1 shows
the particle size distribution of the natural river sand and coral sand. Figure 2 shows the morphology
of the coral sand aggregates obtained using SEM, and the surface of the coral sand was porous, rough,
and angular. Table 3 lists the basic physical properties of the coral sand and natural river sand, which
were obtained from the experiment.
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Figure 2. Microstructural morphology of coral sand.

Table 3. Physical properties of coral sand and natural river sand.

Material Characteristics Coral Sand Natural River Sand

Bulk density (kg/m3) 1280 1490
Apparent density (kg/m3) 2740 2630

Water absorption (%) 3.4 0.55

PVA fiber with a length of 12 mm and a tensile strength of 1620 MPa was acquired from Kuraray,
Tokyo, Japan. PVA fibers were surface-treated with surface active agent (i.e., polyethylene glycol
type) in the wet/dry-jet wet spinning production process. The fiber surface was smooth, and the
fibers were held together tightly. Table 4 lists the physical properties of the PVA fiber. To improve
the workability of the freshly prepared mortar, a polycarboxylate-based high-range water reducing
admixture (HRWRA) was employed in this study, consistent with the requirements of the JG/T223
Standard [25].

Table 4. Physical properties of polyvinyl alcohol (PVA) fiber.

Density
(g/cm3)

Tensile
Strength

(MPa)

Elastic
Modulus

(GPa)

Limited
Elongation (%) Length (mm) Diameter (µm)

1.3 1620 42.8 7.8 12 40

2.2. Mortar Preparation

SCM samples with different mixture proportions (Table 5) were prepared. The mortar was mixed
using a high-shear mixer and then cast into a circular truncated cone for the slump flow expansion
measurement. Custom-made cuboid molds with a size of 40 × 40 × 160 mm3 and 40 × 40 × 80 mm3

were used for compressive strengths testing and flexural strengths testing, and cubic molds with a
size of 20 × 20 × 20 mm3 were used for dynamic mechanical property testing. After demolding, the
samples were cured in a standard curing room maintained at a temperature of 20 ◦C and a relative
humidity of 95% for two different curing periods: 7 days and 28 days. The mixing sequence for the
SCM is as follow. First, sand, cement, fly ash, and PVA fiber were mixed and stirred for 1 min in a
high-shear mixer to uniformly disperse the PVA fiber. Thereafter, HRWRA and seawater were blended
and stirred using a glass rod for 30 s and placed in the high-shear mixer. Finally, the materials were
mixed at a low speed for 1 min and then at a high speed for another 1 min.
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Table 5. Mixture proportions of the mortar used in this study.

Sample Cement
(g)

Fly Ash
(g)

Water (g) W/C
Sand (g)

Fiber
(volume%)

HRWR
(g)Standard

Sand
Coral
Sand

SCM-1 727 182 364 0.4 1000 0 0 1.6
SCM-2 727 182 364 0.4 700 300 0 1.6
SCM-3 727 182 364 0.4 400 600 0 1.6
SCM-4 727 182 364 0.4 0 1000 0 1.6
SCM-5 727 182 364 0.4 0 1000 0.25 1.6
SCM-6 727 182 364 0.4 0 1000 0.5 1.6
SCM-7 727 182 364 0.4 0 1000 1 1.6

2.3. Test Methods

2.3.1. Fluidity Test

The effects of aggregate replacement rate and PVA fiber content on the slump flow expansion
were tested, with conformance to GB/T2419-2005 [26]. The cone used for this test had a top diameter of
36 mm, a bottom diameter of 60 mm, and a height of 60 mm.

2.3.2. Flexural and Compressive Strengths Testing

To investigate the effects of aggregate replacement rate and PVA fiber content on the mechanical
properties of the specimens, both flexural and compressive strengths experiments were carried out.
Each group of three samples was examined at 7 and 28 days and the strengths were determined by the
average value. The loading rates were 50 N/s and 2.4 KN/s with conformance to GB/T17671-1999 [27].
In particular, the support distance in terms of the flexural strength test was 100 mm.

2.3.3. Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) was used to characterize the dynamic mechanical properties
of the samples by measuring their storage modulus and loss factors. According to the fundamental
principle of time–temperature superposition, the DMA was performed at a heating rate of 5 ◦C/min,
a vibration frequency range of 0.5–2 Hz, and a temperature range of −30 to 50 ◦C. The maximum
dynamic force applied to the specimens was 80 N, and the static force was −100 N. To avoid the effect
of void water, the samples were dried in a vacuum desiccator at a temperature of 40 ◦C until the weight
remained constant. After 28 days of curing, DMA tests were conducted, and the experimental results
were recorded through a data acquisition system.

2.3.4. Nanoindentation Mechanical Analysis

For the nanoindentation test, we used an optical nanoindenter (Hysitron TI-950 nanoindenter,
Bruker, Shenzhen, China) with a Berkovich probe. The 20-mm cube samples were polished for the
nanoindentation experiments. We referred to the study conducted by Long et al. for details pertaining
to the loading, holding, and rapid unloading phases [28]. The maximum indentation force was 600 µN,
and the indentation depth was less than 300 nm. The indentations were carried out in a grid with an
area of approximately 90 × 90 µm2 and a separation distance of 10 µm. The 100 indentation points on
the 90 × 90 µm2 material were considered to be representative of the cement samples under the optical
microscope. The raw data for each indentation were examined, and the abnormal load–penetration
curve of the polished surface was eliminated [29]. The main cause of the abnormal load–penetration
curve is the unstable contact between the tip and the surface of the specimens or the sudden jump in
the initial loading. The load–depth curves were recorded to obtain the micromechanical properties of
the SCM. To analyze the experiment data, the analytical method proposed by Oliver and Pharr was
used to calculate the elastic modulus from the load–penetration curve [28].
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3. Results and Discussion

3.1. Flow Table

The slump flow expansion of the mortar was tested by conducting mini-slump tests. Figure 3a,b
shows the slump flow diameters measured at varying aggregate replacement rates and fiber contents.
Figure 3a shows that with the increase in the coral sand replacement rate, the slump flow expansions
of the SCM samples decrease. At a constant water–cement ratio of 0.4, the slump flow expansions of
the samples (SCM-1–7) are 16.1, 15.2, 13.9, 13, 12.8, 12.5, and 11.5 cm, respectively. Compared with the
reference sample SCM-1, the workability of SCM-2, SCM-3, and SCM-4 is reduced by 5.5, 13.6, and
19.2%, respectively. This is because the surface of coral aggregates is rougher than that of standard
sand, resulting in an increase in the friction between the cement matrix and the aggregates. In addition,
coral sand probably soaked up a high amount of water and thus the slump flow expansion of the
mixture was reduced.
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Figure 3. Slump flow diameters of seawater coral mortar (SCM) samples at varying (a) coral sand
replacement rates and (b) PVA fiber contents.

Figure 3b shows that the slump flow expansion of the samples slightly decreases with the increase
in the PVA fiber content. This is because the hydrophilic PVA fiber consumes more water in the mixing
stage. In addition, as the proportion of fiber increases, more cement paste is consumed to cover the
fibers, leading to a smaller amount of paste for the slump flow [30].

3.2. Compressive and Flexural Strengths

Figure 4a,b shows the compressive strengths of the samples. The compressive strength increases
with increasing curing age. However, as the coral aggregate replacement rates increases, there is a
negative effect on the compressive strengths development of SCM from day 7 to day 28. With curing
age from 7 to 28 days, the compressive strength of the reference sample (SCM-1) increases by 16.17%,
whereas that of SCM-4 only increases by 11.5%. This is because the coral sand absorbs water in the
early stage of mixing [31,32]. In the process of cement hydration, the release of water from the coral
sand promotes the hydration of the cement around the coral sand aggregates, thus leading to an early
increase in the compressive strength of the coral sand mortar. Figure 4a shows that the compressive
strength of the SCM samples slightly decreases with increasing coral aggregate replacement rate.
In particular, the compressive strengths of SCM-2, SCM-3, and SCM-4 hardened for 28 days are lower
than that of the reference sample (SCM-1) by approximately 3.8, 11.2, and 15.9%, respectively. This can
be attributed to the difference in the aggregate strengths between coral sand and natural river sand,
and this result is consistent with a previous study result [33]. Figure 4b shows that the compressive
strengths of the samples SCM-4–7 (with fiber contents of 0, 0.25, 0.5, and 1%) at 28 days are 44.6, 45, 45.5,
and 46.4 MPa, respectively. Clearly, the addition of PVA fiber has no effect on the compressive strength
of the samples. According to Li et al.’s research, short fibers can increase the compressive strength of
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the matrix. However, containing longer PVA fibers makes the cement matrix more difficult to vibration
and consolidation, which has no positive effect on the increase in compressive strength [34].
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Figure 4. Results of compressive strength tests of SCM samples at varying (a) coral sand replacement
rates and (b) PVA fiber contents.

Figure 5a,b shows the flexural strengths of the samples. Figure 5a shows that the addition of coral
sand has a negative effect on the mortar flexural strength, and the flexural strength of the samples is
minimum compared to the reference sample SCM-1 when the replacement rate of coral sand (SCM-4)
is 100%. The early flexural strength of SCM develops rapidly, and the flexural strength of the 7-day
and 28-day curing age has little effect. Figure 5a shows that the flexural strength decreases when
the coral aggregate is added at 28-day. In Figure 5b, compared with SCM-4, the flexural strengths
of SCM-5, SCM-6, and SCM-7 at 28 days increase by 17, 24, and 32%, respectively. The addition of
PVA fiber significantly increases the flexural strength of the samples. As the fiber content rises, brittle
failure of mortar changes to ductile failure under dynamic loads [35]. This is because the fibers play a
bridging effect, whereby the occurrence and development of microcracks is controlled, thus increasing
the flexural strength [36]. In particular, according to Pakravan et al.’s research, polymer fibers are less
susceptible to the effects of high alkali environment and salt environment [37].
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Figure 5. Results of flexural strength tests of SCM samples at varying (a) coral sand replacement rates
and (b) PVA fiber contents.

3.3. Dynamic Mechanical Behavior

Dynamic mechanical behavior of the mortars was characterized in terms of the loss factor and
storage modulus. A higher loss factor indicates a higher phase displacement between the given stress
and the measured strain, and therefore an improvement in the damping performance [17]. The storage
modulus of the mortar is related to the stiffness and brittleness and is used to characterize the elastic
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behavior of mortars. The higher the storage modulus, the lower the deformation of the material under
a given load.

3.3.1. Influence of Aggregates

Figure 6a,b shows the relationship between the storage modulus and the temperature of SCM-1,
SCM-2, SCM-3, and SCM-4 aged for 7 and 28 days at various frequencies. At the same temperature,
the storage modulus of the samples is optimal at 0.5 Hz. However, the variation trends in the storage
modulus at frequencies of 1, 1.5, and 2 Hz are similar. Comparing Figure 6a,b, we find that the storage
moduli of SCM-1–4 aged for 28 days are higher than those of SCM-1–4 aged for 7 days, probably
because of the higher degree of hydration of the cement matrix and the denser interface between the
aggregate and the matrix.
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Figure 6. Relationship between the storage modulus and temperature of SCM-1, SCM-2, SCM-3, and
SCM-4 at varying frequencies: (a) 7 days; (b) 28 days.

Figure 7a shows the relationship between the storage modulus and the temperature of the samples
aged for 28 days at 0.5 Hz; the addition of coral sand has a negative effect on the mortar storage
modulus, and the storage modulus of the samples is minimum when the replacement rate of coral
sand (SCM-4) is 100%. This is probably because the ITZ of the coral aggregates has a lower elastic
modulus than river sand. This study clarified the mechanism later. Figure 7b shows the loss factors
of the samples SCM-1, SCM-1, SCM-3, and SCM-4 aged for 28 days at 0.5 Hz as a function of the
temperature. It should be noted that the trend of the relationship between temperature and loss factor
is consistent. The loss factor decreases with increasing coral content. This is probably because the
microcracks formed between the river sand and the cement matrix can convert energy into mechanical
energy via the vibration of the aggregates, thus promoting energy consumption.
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Figure 7. Samples under varying coral sand replacement rates and temperature for frequency of 0.5 Hz
at 28 days: (a) Storage modulus; (b) loss factor.
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3.3.2. Influence of PVA Fibers

Figure 8a shows the storage modulus of the SCM-4, SCM-5, SCM-6, and SCM-7 samples aged for
28 days. The storage modulus of the samples without PVA fiber (SCM-4) is lower than those of the
PVA fiber-reinforced samples (SCM-5, SCM-6, and SCM-7) regardless of the temperature. The storage
modulus of SCM-5, SCM-6, and SCM-7 aged at 28 days increase by 28.8, 58.9, and 151.9%, respectively,
with the increase in the PVA fiber content, compared with that of SCM-4. This is because the fibers
hinder the further development of cracks and maintain the toughness of the cement matrix under
dynamic loads. It also can be noted that adding 0.25 and 0.5 wt.% PVA fiber has no significant effect on
the enhancement of storage modulus, but adding 1.0 wt.% PVA fiber, the storage modulus of the SCM
can be significantly enhanced.
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The relationship between the loss factor and the temperature of the specimens aged for 28 days
shows similar variation trends under different vibration frequencies (0.5, 1, 1.5, and 2 Hz). According
to the experimental results, the storage modulus of the SCM is maximum at a frequency of 0.5 Hz,
which then decreases with increasing frequency. As shown in Figure 8b, the loss factors of SCM-5–7
are higher than that of SCM-4 in the temperature range. The loss factors of the mortars containing
0.25, 0.5, and 1% (by volume) PVA fiber measured at a frequency of 0.5 Hz increase by 20.0, 40.0, and
73.3%, respectively, compared with that of the reference sample SCM-4. With the increase in the PVA
fiber content, the loss factor increases. Thus, the addition of PVA fiber has a positive effect on the loss
factor. In fact, there are multiple interfaces between the PVA fiber and the cement matrix, and the fiber
inhibits stress concentration [16]. In the mortar containing PVA fiber under the dynamic loads, the
breakage of PVA fiber consumes part of the energy in the form of mechanical energy. On the other
hand, the thermal energy generated by the slip between the PVA fiber and the cement matrix also
consumes a portion of mechanical energy. Therefore, the addition of PVA fiber to the mortar increase
the value of loss factor because PVA fiber increases part of the energy dissipation.

3.4. Influence of DMA Temperature Changes on Loss Factor of Mortar

The loss factor of the specimens was measured under varying temperatures. Figures 7b and 8b
show the variation in the loss factor of the samples cured for 28 days in the temperature range of −30
to 50 ◦C and at a frequency of 0.5 Hz. The trend in the loss factor at different temperatures is roughly
the same, with the loss factor being minimum at approximately −30 ◦C. There is no significant change
in the loss factor between −30 and 0 ◦C. However, the loss factor increases rapidly with increasing
temperature after 0 ◦C.
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Marine mortar is a porous composite and is affected by temperature changes. When the internal
temperature of the mortar is lower than 0 ◦C, the water in the capillary pores gradually freezes. When
the water in the capillary pores is frozen, some of the internal pores in the mortar are filled with ice.
According to Liu et al. [38], the pressure between the pore walls due to temperature contraction and
the ice lead to excessive stress in the mortar. The excessive stress accelerates the destruction of the
microstructure of the mortar. The loss factor of the marine mortar containing PVA fiber was higher
than that of the reference sample SCM-4 at −30 ◦C, attributed to the bridging effect of the fiber that
reduces the destruction of the microstructure.

3.5. Mechanical Properties of Interfacial Transition Zone

Nanoindentation tests have some drawbacks when it comes to analyzing the results, because
the mortar is a porous material with a pore size usually greater than the diameter of the indenter.
Nevertheless, the microstructure of the mortar can be analyzed based on the nanoindentation results.
The elastic moduli of the different hydration products, anhydrous cement particles, and aggregates are
as follows [39]: Porosity: 0–8 GPa; calcium silicate hydrates and ettringite crystals: 8–30 GPa; calcium
hydroxide crystals: 30–50 GPa; unhydrated cement particles, natural aggregates: ≥50 GPa.

To eliminate the influence between adjacent nanoindentation points, the space was selected as
10 µm. In addition, the indentations of the unhydrated cement particles with a modulus greater than
50 GPa and the indentations of the porosity with a modulus in the range of 0–8 GPa were removed; the
two types of indentations can be easily identified based on the load–penetration depth curve. Figure 9a,b
shows the nanoindentation experimental results of SCM-1 and SCM-4. The nanoindentation data
plotted on the same abscissa were averaged and connected, thus obtaining the trend more intuitively.
The ITZ between the aggregate and the cement matrix can be distinguished from the change in the
elastic modulus. For the natural river sand aggregate–cement matrix system, the aggregate distribution
is in the range of 0–20 µm, and the elastic modulus at the nanoindentation points is greater than
60 GPa. From a test region ranging from 20 to 40 µm for SCM-1, there is a significant drop in the elastic
modulus, which is the minimum value in the entire nanoindentation test region. Therefore, this part is
inferred as the ITZ between the aggregate and the cement matrix. Between 20 and 40 µm for SCM-1,
the elastic modulus range is 10–40 GPa. Similarly, for the coral sand aggregate–cement matrix system,
the aggregate distribution is in the range of 0–20 µm, and the elastic modulus at the nanoindentation
points is greater than 50 GPa. The elastic modulus between 20 and 40 µm also shows a significant drop
for SCM-4, and its elastic modulus range is 9–20 GPa. According to the elastic modulus of the ITZ
under different aggregates, the elastic modulus of the ITZ of the coral mortar is lower than that of the
natural river sand mortar, consistent with the experimental results of the DMA. The storage modulus
of the coral mortar is less than that of the natural river sand mortar. A significant number of ITZs are
observed in the cement-based material between the aggregate and the cement matrix. The mechanical
properties of the ITZ influence the mechanical properties of the samples. As mentioned earlier, the
storage modulus of the SCM can be characterized in terms of the stiffness, which is proportional to the
elastic modulus. In the process of energy transfer, the ITZ acts a propagation medium. An ITZ with a
lower modulus of elasticity has a lower stiffness and a negative effect on energy storage. Therefore, the
multiple ITZs of the coral mortar significantly reduce the storage modulus.
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Figure 9. Results of nanoindentation experiments: (a) SCM-1; (b) SCM-4.

3.6. Effect of Microstructure on the Dynamic Mechanical Behavior of Seawater Coral Mortar

Figure 10a,b shows the microstructures of the SCM samples with and without coral sand cured for
28 days. Among the samples, the reference sample (SCM-1) exhibits the more obvious ITZ between the
river sand and the cement matrix, as shown in Figure 10a. Based on the microstructural morphology
of the coral sand, the coral sand aggregate and matrix in the sample can be distinguished in Figure 10b.
Due to the irregular surface shape of the coral sand, the ITZ between the coral sand and the matrix is
inconspicuous. With the increase in the coral sand replacement rate, the cement matrix became less
compact owing to the pores of the coral sand itself in the hardened mortar. Due to the existence of
such multi-structures between the coral sand and the cement matrix, the density of the samples was
insufficient, and the storage modulus was lower than that of the sample without coral sand.

Figure 10c,d shows the microstructure of the PVA fiber attached to the mortar. A tight connection
between the cement matrix and the PVA fiber can be observed, owing to the hydrophilicity of the
PVA fiber. Figure 10c,d shows the SEM images of the fiber ends after being subjected to a dynamic
load. The SEM results indicate that the failure morphology of the PVA fiber ends in the cement matrix
under dynamic loading can be mainly divided into two types. The width of the fiber channel was
measured by SEM and compared with the diameter of the PVA fiber to confirm that the fiber channel
was formed because of the relative movement between the PVA fiber and the matrix. Figure 10c shows
the frictional damage caused by the PVA fiber under dynamic loading. Another failure morphology
was the direct fracture of the PVA fiber under external loads, as shown in Figure 10d. For the PVA
fiber-reinforced samples, energy was consumed during the friction generated by the fiber and the
matrix and the breakage of the fiber under the action of the external dynamic load. This validates the
DMA results, which showed that the loss factor of the PVA fiber-reinforced samples is higher than that
of the sample without the PVA fiber.
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3.7. Mechanisms on Dynamic Mechanical Properties

The effects of varying coral aggregates replacement rates and PVA fiber contents on dynamic
mechanical properties were discussed. The combination of SNT experiments and SEM experiments
testify the reinforcing mechanism of dynamic mechanical properties.

Aggregate replacement: The storage modulus is usually inversely proportional to the amount
of deformation, which means that the matrix containing coral sand is more likely to deform under
dynamic loading. In other words, the samples containing coral sand are more vulnerable to brittle
failure under dynamic loading, and the ability to store energy is less. This is probably because the ITZ
of the coral aggregates has a weaker energy storage capacity and a lower elastic modulus, as shown in
Figure 11a.

The interface formed between the coral sand and the cement matrix is more compact than that
formed between natural river sand and the cement matrix; this is attributed to the porosity and
irregular shape of the coral sand aggregates. However, the microcracks formed between the river sand
and the cement matrix can convert energy into mechanical energy via the vibration of the aggregates,
thus promoting energy consumption, as shown in Figure 11a. Under cycling loading, the coral sand
mortar loses it carrying capacity faster than the river sand mortar. When the coral sand mortar finally
loses the carrying capacity, it accumulates less damage than the river sand mortar.
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Figure 11. Schematic diagram of the reinforcing mechanism on dynamic mechanical properties of
marine mortar: (a) Coral sand aggregate replacement; (b) PVA fiber reinforcement; (c) after cooling
process (−30 ◦C < T < 0 ◦C); (d) after heating process (0 ◦C < T < 50 ◦C).

Fiber reinforcement: This can be attributed to the fact that the fibers hinder the further
development of cracks and that the stiffness of the cement matrix is greater than that of the reference
sample SCM-4, as shown in Figure 11b. Thus, the addition of PVA fiber has a positive effect on the
SCM storage modulus.

Energy may be partly dissipated at the vicinity of the fiber ends in the form of micro-plastic strain,
and the inherent stress concentration in the cement–matrix could be released [40]. This means that
the PVA fiber in marine mortar is damaged under the dynamic loading. A portion of the energy is
consumed during the elastic deformation and breakage of the PVA fiber; this shows that the fiber-added
marine mortar consumes more energy than the marine mortar without the fiber, as shown in Figure 11b.
The relative displacement between the PVA fiber and the cement matrix produces friction that consumes
a part of the energy during the fiber pull-out process under the load. The presence of fibers increases
the load carrying capacity of the mortar prior to initial cracking, resulting in a continuous uniform
gradient of the stress field [41]. Moreover, they help increase the toughness of the cement matrix
and the load-bearing capacity after cracking. A higher toughness of the cement matrix means higher
deformability. The stress concentration is effectively mitigated, and the shock resistance performance
is improved by absorbing deformation energy and converting it into potential energy [42].

Temperature change: Figure 11c,d shows the mechanism. When the internal temperature of the
mortar is below 0 ◦C, the pressure between the capillary pore walls due to temperature contraction
and the ice expansion lead to excessive stress in the mortar. The microstructure of the cement matrix is
damaged by the excessive stress. Therefore, the loss factor is minimum at −30 ◦C. In addition, when
the internal temperature of the mortar is above 0 ◦C, the ice in the capillary pores gradually melts, so
the stress mitigated due to ice expansion and the medium in which the energy propagates inside the
cement matrix changes. This could explain the rapid increase in the loss energy between 0 and 50 ◦C.

4. Conclusions

This paper reports the workability, mechanical properties, and dynamic mechanical behavior
of seawater coral mortar (SCM) containing varying coral aggregate replacements and PVA fiber
contents at a constant water–cement ratio of 0.4. The following conclusions can be drawn from the
experimental results:
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(1) Compared with the reference sample SCM-1, the slump flow expansion of SCM-4 was reduced
by 19.2%, which was attributed to the rough and multi-angled surface of coral aggregates. With the
incorporation of 1 wt.% PVA fiber, the workability of SCM-4 decreased by 13.0%.

(2) Compared with the reference sample SCM-1, the incorporation of coral aggregates (100%
replacement rate) reduced the compressive and flexural strengths cured for 28 days by 15.9 and 9.0%,
respectively. The incorporation of PVA fibers led to a slight increase in the compressive strength. With
the addition of 1 wt.% PVA fiber, the flexural strengths of the samples cured for 28 days increased by
32.0% compared with that of the reference sample SCM-4.

(3) The storage modulus and loss factor of the SCMs decreased with increasing coral sand
aggregate replacement rates in the temperature range of −30 to 50 ◦C. Notably, the elastic modulus
of the ITZ of coral sand was lower than that of the ITZ of natural river sand. With the addition of 1
wt.% PVA fiber, the storage modulus and loss factors of the SCMs at a frequency of 0.5Hz improved by
151.9% and 73.3%.

(4) The mechanisms of the decreased storage modulus of the SCM-4 can be attributed to the lower
elastic modulus of the ITZ between the coral sand aggregates and the cement matrix. The microcracks
formed between the river sand and the cement matrix can promote energy consumption. Moreover,
the fiber reinforcement mechanisms in storage modulus is attributed to the fibers hindered the
further development of cracks and that the stiffness of the cement matrix was greater than that of the
reference sample SCM-4. The enhancement in the energy dissipating behavior was attributed to the
improved energy consumption of the SCM by generating multiple cracks and fiber deformation under
dynamic loading.

(5) Between −30 and 0 ◦C, the water inside the capillary pores of the mortar may have frozen and
filled the capillary pores, resulting in a stress between the contracted pore walls and ice expansion
that destroyed the matrix and reduced the energy consumption. From 0 to 50 ◦C, the frozen water in
the pores gradually melted, and the presence of air in the pores altered the propagation medium for
energy dissipation.
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