Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH4-H2 Gas Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- May, P.W. Diamond Thin Films: A 21st-Century Material. Philos. Trans. R. Soc. Lond. A 2000, 358, 473–495. [Google Scholar] [CrossRef]
- Coe, S.E.; Sussmann, R.S. Optical, Thermal and Mechanical Properties of CVD Diamond. Diam. Relat. Mater. 2000, 9, 1726–1729. [Google Scholar] [CrossRef]
- Balmer, R.S.; Brandon, J.R.; Clewes, S.L.; Dhillon, H.K.; Dodson, J.M.; Friel, I.; Inglis, P.N.; Madgwick, T.D.; Markham, M.L.; Mollart, T.P.; et al. Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Applications. J. Phys. Condens. Matter 2009, 21, 364221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.-J.; Lin, C.-N.; Shan, C.-X. Optoelectronic Diamond: Growth, Properties, and Photodetection Applications. Adv. Opt. Mater. 2018, 6, 1800359. [Google Scholar] [CrossRef]
- Reineck, I.; Sjöstrand, M.E.; Karner, J.; Pedrazzini, M. Diamond Coated Cutting Tools. Int. J. Refract. Met. Hard Mater. 1996, 14, 187–193. [Google Scholar] [CrossRef]
- Milewska, D.; Karpienko, K.; Jędrzejewska-Szczerska, M. Application of Thin Diamond Films in Low-Coherence Fiber-Optic FabryPérot Displacement Sensor. Diam. Relat. Mater. 2016, 64, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Härtl, A.; Schmich, E.; Garrido, J.A.; Hernando, J.; Catharino, S.C.R.; Walter, S.; Feulner, P.; Kromka, A.; Steinmüller, D.; Stutzmann, M. Protein-Modified Nanocrystalline Diamond Thin Films for Biosensor Applications. Nat. Mater. 2004, 3, 736–742. [Google Scholar] [CrossRef]
- Yang, N.; Yu, S.; Macpherson, J.V.; Einag, Y.; Zhao, H.; Zhao, G.; Greg, M.; Swain, G.M.; Jiang, X. Conductive Diamond: Synthesis, Properties, and Electrochemical Applications. Chem. Soc. Rev. 2019, 48, 157–204. [Google Scholar] [CrossRef]
- Liu, H.; Dandy, D.S. Studies on Nucleation Process in Diamond CVD: An Overview of Recent Developments. Diam. Relat. Mater. 1995, 4, 1173–1188. [Google Scholar] [CrossRef] [Green Version]
- Amaral, M.; Fernandes, A.J.S.; Vila, M.; Oliveira, F.J.; Silva, R.F. Growth Rate Improvements in the Hot-Filament CVD Deposition of Nanocrystalline Diamond. Diam. Relat. Mater. 2006, 15, 1822–1827. [Google Scholar] [CrossRef]
- Hirmke, J.; Schwarz, S.; Rottmair, C.; Rosiwal, S.M.; Singer, R.F. Diamond Single Crystal Growth in Hot Filament CVD. Diam. Relat. Mater. 2006, 15, 536–541. [Google Scholar] [CrossRef]
- Khmelnitskii, R.A. Prospects for the Synthesis of Large Single-Crystal Diamonds. Phys. Uspekhi 2015, 58, 134–149. [Google Scholar] [CrossRef]
- Rebrov, A.K. Possibilities of Gas Phase Synthesis of Diamond Structures From Mixtures of Hydrogen and Hydrocarbons. Phys. Uspekhi 2017, 60, 179–186. [Google Scholar] [CrossRef]
- Kanai, C.; Watanabe, K.; Takakuwa, Y. Ab Initio Calculations on Etching of Graphite and Diamond Surfaces by Atomic Hydrogen. Phys. Rev. B. 2001, 63, 235311. [Google Scholar] [CrossRef]
- Shin, S.-D.; Hwang, N.M.; Kim, D.-Y. High Rate of Diamond Deposition through Graphite Etching in a Hot Filament CVD Reactor. Diam. Relat. Mater. 2002, 11, 1337–1343. [Google Scholar] [CrossRef]
- Tabakoya, T.; Kanada, S.; Wakui, Y.; Takamori, Y.; Yamada, T.; Nagai, M.; Kojima, Y.; Ariyada, O.; Yamasaki, S.; Nebel, C.E.; et al. High-Rate Growth of Single-Crystalline Diamond (100) Films by Hot-Filament Chemical Vapor Deposition with Tantalum Filaments at 3000 °C. Phys. Status Solidi A 2019, 1900244. [Google Scholar] [CrossRef]
- Din, S.H.; Shah, M.A.; Sheikh, N.A.; Butt, M.M. CVD Diamond. Trans. Indian Inst. Met. 2019, 72, 1–9. [Google Scholar] [CrossRef]
- Harada, Y.; Hishinuma, R.; Spătaru, N.; Sakurai, Y.; Miyasaka, K.; Terashima, C.; Uetsuka, H.; Suzuki, N.; Fujishima, A.; Kondo, T.; et al. High-Speed Synthesis of Heavily Boron-Doped Diamond Films by In-Liquid Microwave Plasma CVD. Diam. Relat. Mater. 2019, 92, 41–46. [Google Scholar] [CrossRef]
- Rebrov, A.K.; Andreev, M.N.; B’yadovskiy, T.T.; Kubrak, K.V.; Yudin, I.B. The Reactor–Activator for Gas-Jet Deposition of Diamond Structures. Rev. Sci. Instrum. 2016, 87, 103902. [Google Scholar] [CrossRef]
- Rebrov, A. Gas Jet Deposition of Diamond Structures by Thermal Activation on an Expanded Surface. Diam. Relat. Mater. 2017, 72, 20–25. [Google Scholar] [CrossRef]
- Emel’yanov, A.A.; Rebrov, A.K.; Yudin, I.B. Gas-Jet Synthesis of Diamond-Like Films From an H2+CH4 Gas Mixture Flow. J. Appl. Mech. Tech. Phys. 2014, 55, 270–275. [Google Scholar] [CrossRef]
- Emelyanov, A.A.; Plotnikov, M.Y.; Yudin, I.B. Influence of the Conditions of Methane Decomposition on Gas-Jet Synthesis of Diamond Structures. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1105, p. 012120. [Google Scholar] [CrossRef]
- Rebrov, A.K.; Yudin, I.B. Heterogeneous Physical and Chemical Processes in a Rarefied-Gas Flow in Channels. Dokl. Phys. 2016, 61, 223–226. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Kubrak, K.V.; Bulusheva, L.G.; Maksimovskiy, E.A.; Smirnov, D.A.; Rebrov, A.K.; Okotrub, A.V. Multiscale Characterization of Synthetic Diamonds Obtained by Gas-Jet Deposition. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1105, p. 012132. [Google Scholar] [CrossRef]
- Plotnikov, M.Y.; Shkarupa, E.V. Heterogeneous Activation of Rarefied Hydrogen in Thin Tubes. Vacuum 2016, 129, 31–37. [Google Scholar] [CrossRef]
- Wei, Q.; Yu, Z.M.; Ashfold, M.N.R.; Ye, J.; Ma, L. Synthesis of Micro- or Nano-Crystalline Diamond Films on WC-Co Substrates With Various Pretreatments by Hot Filament Chemical Vapor Deposition. Appl. Surf. Sci. 2010, 256, 4357–4364. [Google Scholar] [CrossRef]
- Feng, J.; Li, S.; Luo, H.; Wei, Q.; Wang, B.; Li, J.; Hu, D.; Mei, J.; Yu, Z. Preparation and Characterization of Ultrananocrystalline Diamond Films in H2/Ar/CH4 Gas Mixtures System With Novel Filament Structure. J. Cent. South Univ. 2015, 22, 4097–4104. [Google Scholar] [CrossRef]
- Mertens, M.; Lin, I.-N.; Manoharan, D.; Moeinian, A.; Brühne, K.; Fecht, H.J. Structural Properties of Highly Conductive Ultra-Nanocrystalline Diamond Films Grown by Hot-Filament CVD. AIP Adv. 2017, 7, 015312. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.; Wu, Y.; Cristea, D.; Liu, L.; Tierean, M.; Wang, Y.; Lu, F.; Wang, H.; Yuan, Z.; Munteanu, D.; et al. Mechanical Properties and Wear Behavior of Multi-Layer Diamond Films Deposited by Hot-Filament Chemical Vapor Deposition. Appl. Surf. Sci. 2019, 494, 411401–411403. [Google Scholar] [CrossRef]
- Hidnert, P.; Gero, W.B. Thermal expansion of molybdenum. Natl. Bur. Stand. Tech. News Bull. 1924, 19, 429–444. [Google Scholar] [CrossRef]
- Moelle, C.; Klose, S.; Szücs, F.; Fecht, H.J.; Johnston, C.; Chalker, P.R.; Werner, M. Measurement and Calculation of the Thermal Expansion Coefficient of Diamond. Diam. Relat. Mater. 1997, 6, 839–842. [Google Scholar] [CrossRef]
- Francois, N.; Kim, S.H.; Park, Y.S.; Lee, J.-W.; Hahn, I.T.; Yun, W.S. Effect of Substrate on the Characteristics of the Interface Between Diamond Film and Substrate. Diam. Relat. Mater. 1997, 61, 959–963l. [Google Scholar] [CrossRef]
- Liu, H.; Dandy, D.S. Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages; Noyes Publications: Park Ridge, NJ, USA, 1995. [Google Scholar]
- Chu, P.K.; Li, L. Characterization of Amorphous and Nanocrystalline Carbon Films. Mater. Chem. Phys. 2006, 96, 253–277. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Pozdnyakov, G.A.; Okotrub, A.V.; Kanygina, M.A.; Nastaushev, Y.V.; Vilkov, O.Y.; Bulusheva, L.G. Effect of Substrate Temperature on the Structure of Amorphous Oxygenated Hydrocarbon Films Grown with a Pulsed Supersonic Methane Plasma Flow. Appl. Surf. Sci. 2016, 385, 464–471. [Google Scholar] [CrossRef]
- Kromka, A.; Breza, J.; Kadlečíá, M.; Janík, J.; Balon, F. Identification of Carbon Phases and Analysis of Diamond/Substrate Interfaces by Raman Spectroscopy. Carbon 2005, 43, 425–429. [Google Scholar] [CrossRef]
- Baranauskas, V.; Peterlevitz, A.C.; Ceragioli, H.J.; Durrant, S.F. Micro-Crystalline Diamond and Nano-Carbon Structures Produced Using a High Argon Concentration in Hot-Filament Chemical Vapor Deposition. J. Vac. Sci. Technol. A 2001, 19, 1057–1062. [Google Scholar] [CrossRef]
- Yang, W.J.; Choa, Y.-H.; Sekino, T.; Shim, K.B.; Niihara, K.; Auh, K.H. Structural Characteristics of Diamond-Like Nanocomposite Films Grown by PECVD. Mater. Lett. 2003, 57, 3305–3310. [Google Scholar] [CrossRef]
- Solin, S.A.; Ramdas, A.K. Raman Spectrum of Diamond. Phys. Rev. B 1970, 1, 1687. [Google Scholar] [CrossRef]
- Dowling, D.P.; Ahern, M.J.; Kelly, T.C.; Meenan, B.J.; Brown, N.M.D.; O’Connor, G.M.; Glynn, T.J. Characterization Study of Diamond and Diamond-Like Carbon. Surf. Coat. Technol. 1992, 53, 177–183. [Google Scholar] [CrossRef]
- Prawer, S.; Nugent, K.W.; Jamieson, D.N.; Orwa, J.O.; Bursill, L.A.; Peng, J.L. The Raman Spectrum of Nanocrystalline Diamond. Chem. Phys. Lett. 2000, 332, 93–97. [Google Scholar] [CrossRef]
- Hung, C.C.; Shih, H.C. Experimental Design Method Applied to Microwave Plasma Enhanced Chemical Vapor Deposition Diamond Films. J. Cryst. Growth 2001, 233, 723–729. [Google Scholar] [CrossRef]
- Coffman, F.L.; Cao, R.; Pianetta, P.A.; Kapoor, S.; Kelly, M.; Terminello, L.J. Near-Edge X-Ray Absorption of Carbon Materials for Determining Bond Hybridization in Mixed sp2/sp3 Bonded Materials. Appl. Phys. Lett. 1996, 69, 568–570. [Google Scholar] [CrossRef]
- Hähner, G. Near Edge X-ray Absorption Fine Structure Spectroscopy as a Tool to Probe Electronic and Structural Properties of Thin Organic Films and Liquids. Chem. Soc. Rev. 2006, 35, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Guenette, M.C.; Deslandes, A.; Samuell, C.M.; Tadich, A.; Thomsen, L.; Cowie, B.C.C.; Corr, C.S.; Riley, D.P. NEXAFS Spectroscopy of CVD Diamond Films Exposed to Fusion Relevant Hydrogen Plasma. Diam. Relat. Mater. 2013, 34, 45–49. [Google Scholar] [CrossRef]
- Wilson, J.I.B.; Walton, J.S.; Beamson, G. Analysis of Chemical Vapour Deposited Diamond Films by X-ray Photoelectron Spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2001, 121, 183–201. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Bulusheva, L.G.; Larionova, I.S.; Kuznetsov, V.L.; Molodtsov, S.L. Surface Electronic Structure of Detonation Nanodiamonds After Oxidative Treatment. Diam. Relat. Mater. 2007, 16, 2090–2092. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Bulusheva, L.G.; Kuznetsov, V.L.; Vyalikh, D.V.; Poyguin, M.V. Electronic Structure of Diamond/Graphite Composite Nanoparticles. Eur. Phys. J. D 2005, 34, 157–160. [Google Scholar] [CrossRef]
- Hamilton, T.; Kurmaev, E.Z.; Shamin, S.N.; Detkov, P.Y.; Chukhaeva, S.I.; Moewes, A. Soft X-ray Absorption and Emission Characterization of Nanodiamond Prepared by Explosive Detonation. Diam. Relat. Mater. 2007, 16, 350–352. [Google Scholar] [CrossRef]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of Electron Inelastic Mean Free Paths. VIII. Data for 15 Elemental Solids Over the 50–2000 eV Range. Surf. Interface Anal. 2005, 36, 1–14. [Google Scholar] [CrossRef]
- Ling, P.X. The Synthesis of Large-Area Diamond Thin Films Using Straight Tungsten Wires Mounted Under Tension as the Filaments. Mater. Sci. Eng. 1992, 14, L15–L19. [Google Scholar] [CrossRef]
- Zemek, J.; Houdkova, J.; Lesiak, B.; Jablonski, A.; Potmesil, J.; Vanecek, M. Electron Spectroscopy of Nanocrystalline Diamond Surfaces. J. Optoelectron. Adv. Mater. 2006, 8, 2133–2138. [Google Scholar]
- Rakha, S.A.; Jianqing, C.; Huihao, X.; Guojun, Y.; Zhu, D.; Gong, J. Incorporation of Hydrogen in Diamond Thin Films. Diam. Relat. Mater. 2009, 18, 1247–1252. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Bulusheva, L.G.; Okotrub, A.V.; Kanygin, M.A.; Gorodetskiy, D.V.; Asanov, I.P.; Vyalikh, D.V.; Puzyr, A.P.; Bondar, V.S. Field Emission Luminescence of Nanodiamonds Deposited on the Aligned Carbon Nanotube Array. Sci. Rep. 2015, 5, 9379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, R.M.; Pandey, M.; Bhattacharyya, D.; Patil, D.S.; Kulkarni, S.K. Diamond Like Carbon Coatings Deposited by Microwave PLasma CVD: XPS and Ellipsometric Studies. Bull. Mater. Sci. 2007, 30, 541–546. [Google Scholar] [CrossRef]
- Humbert, B.; Hellala, N.; Jacques, J.; Barrat, E.; Bauer-grosse, E. X-ray Photoelectron and Raman Studies of Microwave Plasma Assisted ChemicalVapour Deposition (PACVD) Diamond Films. Appl. Surf. Sci. 2008, 254, 6400–6409. [Google Scholar] [CrossRef]
- Song, C.W.; Jin, R.; Yang, J.-W.; Hwang, N.-M.; Kim, K.H. Formation of Pentagonal Dimples in Icosahedral Diamond Crystals Grown by Hot Filament Chemical Vapor Deposition: Approach by Non-Classical Crystallization. Coatings 2019, 9, 269. [Google Scholar] [CrossRef] [Green Version]
Sample | P, W | RH, Sccm | Rm, Sccm | Substrate | Duration, h | |
---|---|---|---|---|---|---|
Diamond Seeds | Ts, K | |||||
Sample 1 | 900 | 1500 | 10 | yes | 1273 | 3 |
Sample 2 | 1700 | 3500 | 30 | no | 1273 | 1.5 |
Sample 3 | 1800 | 3500 | 30 | no | 1073 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedoseeva, Y.V.; Gorodetskiy, D.V.; Baskakova, K.I.; Asanov, I.P.; Bulusheva, L.G.; Makarova, A.A.; Yudin, I.B.; Plotnikov, M.Y.; Emelyanov, A.A.; Rebrov, A.K.; et al. Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH4-H2 Gas Mixture. Materials 2020, 13, 219. https://doi.org/10.3390/ma13010219
Fedoseeva YV, Gorodetskiy DV, Baskakova KI, Asanov IP, Bulusheva LG, Makarova AA, Yudin IB, Plotnikov MY, Emelyanov AA, Rebrov AK, et al. Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH4-H2 Gas Mixture. Materials. 2020; 13(1):219. https://doi.org/10.3390/ma13010219
Chicago/Turabian StyleFedoseeva, Yu.V., D.V. Gorodetskiy, K.I. Baskakova, I.P. Asanov, L.G. Bulusheva, A.A. Makarova, I.B. Yudin, M.Yu. Plotnikov, A.A. Emelyanov, A.K. Rebrov, and et al. 2020. "Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH4-H2 Gas Mixture" Materials 13, no. 1: 219. https://doi.org/10.3390/ma13010219
APA StyleFedoseeva, Y. V., Gorodetskiy, D. V., Baskakova, K. I., Asanov, I. P., Bulusheva, L. G., Makarova, A. A., Yudin, I. B., Plotnikov, M. Y., Emelyanov, A. A., Rebrov, A. K., & Okotrub, A. V. (2020). Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH4-H2 Gas Mixture. Materials, 13(1), 219. https://doi.org/10.3390/ma13010219