Study on the Flexural Performance of Hybrid-Reinforced Concrete Beams with a New Cathodic Protection System Subjected to Corrosion
Abstract
:1. Introduction
2. Experimental Program
2.1. Test Specimens
2.2. Material Properties
2.2.1. Reinforcements
2.2.2. Concrete
2.3. Constant Current Accelerated Corrosion Test
2.3.1. Corrosion Time
2.3.2. Electric Precorrosion Experiment
2.4. Dry–Wet Cycles Accelerate Corrosion
2.5. New ICCP System Experiment
2.6. Three-Point Bending Test
2.7. Derusting and Weighing of the Steel Bar
3. Results and Discussions
3.1. Electrochemical Protection Effect
3.2. Loading Capacity Analysis
3.2.1. Failure Modes
3.2.2. Load-Deflection Curves
3.2.3. Critical Loads
- (1)
- Cracking Load
- (2)
- Yield Load
- (3)
- Ultimate Load
3.3. Crack Analysis
3.4. Line Density Loss of Steel Bar
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gjørv, O.E. Durability Design of Concrete Structures in Severe Environments; CRC Press: Rotterdam, The Netherlands, 2014. [Google Scholar]
- Nóvoa, X. Electrochemical aspects of the steel-concrete system. A review. J. Solid State Electrochem. 2016, 20, 2113–2125. [Google Scholar] [CrossRef]
- Teng, J.; Chen, J.-F.; Smith, S.T.; Lam, L. FRP: Strengthened RC structures; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Huang, X.; Sui, L.; Xing, F.; Zhou, Y.; Wu, Y. Reliability assessment for flexural FRP-Strengthened reinforced concrete beams based on Importance Sampling. Compos. Part B Eng. 2019, 156, 378–398. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, M.; Sui, L.; Xing, F.; Hu, B.; Huang, Z.; Yun, Y. Shear strength components of adjustable hybrid bonded CFRP shear-strengthened RC beams. Compos. Part B Eng. 2019, 163, 36–51. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Tang, W.; Li, B.; Zhang, D. Sample sizes based on Weibull distribution and normal distribution for FRP tensile coupon test. Materials 2019, 12, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Li, S.; Lu, Y.; Yang, T. Reliability analysis of bond behaviour of CFRP–concrete interface under wet–dry cycles. Materials 2018, 11, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollaway, L. The evolution of and the way forward for advanced polymer composites in the civil infrastructure. Constr. Build. Mater. 2003, 17, 365–378. [Google Scholar] [CrossRef]
- Ilg, P.; Hoehne, C.; Guenther, E. High-performance materials in infrastructure: A review of applied life cycle costing and its drivers–the case of fiber-reinforced composites. J. Clean. Prod. 2016, 112, 926–945. [Google Scholar] [CrossRef]
- Wu, G.; Wu, Z.-S.; Luo, Y.-B.; Sun, Z.-Y.; Hu, X.-Q. Mechanical properties of steel-FRP composite bar under uniaxial and cyclic tensile loads. J. Mater. Civ. Eng. 2010, 22, 1056–1066. [Google Scholar] [CrossRef]
- Seo, D.-W.; Park, K.-T.; You, Y.-J.; Lee, S.-Y. Experimental investigation for tensile performance of GFRP-steel hybridized rebar. Adv. Mater. Sci. Eng. 2016, 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zheng, Y.; Pan, J.; Sui, L.; Xing, F.; Sun, H.; Li, P. Experimental investigations on corrosion resistance of innovative steel-FRP composite bars using X-ray microcomputed tomography. Compos. Part B Eng. 2019, 161, 272–284. [Google Scholar] [CrossRef]
- Araba, A.M.; Ashour, A.F. Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams. Compos. Part B Eng. 2018, 154, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; Zhang, X.; Huang, H. Flexural behavior of concrete beams reinforced with hybrid (GFRP and steel) bars. J. Compos. Constr. 2009, 13, 350–359. [Google Scholar] [CrossRef]
- Leung, H.Y.; Balendran, R. Flexural behaviour of concrete beams internally reinforced with GFRP rods and steel rebars. Struct. Surv. 2003, 21, 146–157. [Google Scholar] [CrossRef]
- Lau, D.; Pam, H.J. Experimental study of hybrid FRP reinforced concrete beams. Eng. Struct. 2010, 32, 3857–3865. [Google Scholar] [CrossRef]
- Safan, M.A. Flexural Behavior and Design of Steel-GFRP Reinforced Concrete Beams. ACI Mater. J. 2013, 110. [Google Scholar]
- Hong, D.; Fan, W.; Luo, D.; Ge, Y.; Zhu, Y. Study and application of impressed current cathodic protection technique for atmospherically exposed salt-contaminated reinforced concrete structures. Mater. J. 1993, 90, 3–7. [Google Scholar]
- Christodoulou, C.; Glass, G.; Webb, J.; Austin, S.; Goodier, C. Assessing the long term benefits of Impressed Current Cathodic Protection. Corros. Sci. 2010, 52, 2671–2679. [Google Scholar] [CrossRef] [Green Version]
- Polder, R.; Peelen, W.; Lollini, F.; Redaelli, E.; Bertolini, L. Numerical design for cathodic protection systems for concrete. Mater. Corros. 2009, 60, 130–136. [Google Scholar] [CrossRef]
- Holcomb, G.; Bullard, S.; Covino, B., Jr.; Cramer, S.; Cryer, C.; McGill, G. Electrochemical Aging of Thermal-Sprayed Zinc Anodes on Concrete; Albany Research Center: Albany, OR, USA, 1996. [Google Scholar]
- Jackson, D.R. Performance of a Conductive-Paint Anode in Cathodic Protection Systems for Inland Concrete Bridge Piers in Virginia; Virginia Transportation Research Council: Charlottesville, VA, USA, 1997.
- Shao, Z.-G.; Zhu, F.; Lin, W.-F.; Christensen, P.A.; Zhang, H.; Yi, B. Preparation and characterization of new anodes based on Ti mesh for direct methanol fuel cells. J. Electrochem. Soc. 2006, 153, A1575–A1583. [Google Scholar] [CrossRef]
- Orlikowski, J.; Cebulski, S.; Darowicki, K. Electrochemical investigations of conductive coatings applied as anodes in cathodic protection of reinforced concrete. Cem. Concr. Compos. 2004, 26, 721–728. [Google Scholar] [CrossRef]
- Lee-Orantes, F.; Torres-Acosta, A.; Martínez-Madrid, M.; López-Cajún, C. Cathodic protection in reinforced concrete elements, using carbon fibers base composites. ECS Trans. 2007, 3, 93–98. [Google Scholar]
- Sun, H.; Wei, L.; Zhu, M.; Han, N.; Zhu, J.-H.; Xing, F. Corrosion behavior of carbon fiber reinforced polymer anode in simulated impressed current cathodic protection system with 3% NaCl solution. Constr. Build. Mater. 2016, 112, 538–546. [Google Scholar] [CrossRef]
- Van Nguyen, C.; Lambert, P.; Mangat, P.; O’Flaherty, F.; Jones, G. The performance of carbon fibre composites as iccp anodes for reinforced concrete structures. ISRN Corros. 2012, 2012, 814923. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.-H.; Zeng, C.; Su, M.-N.; Zeng, Z.-W.; Zhu, A. Effectiveness of a dual-functional intervention method on the durability of reinforced concrete beams in marine environment. Constr. Build. Mater. 2019, 222, 633–642. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Su, M.-N.; Huang, J.-Y.; Ueda, T.; Xing, F. The ICCP-SS technique for retrofitting reinforced concrete compressive members subjected to corrosion. Constr. Build. Mater. 2018, 167, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Lambert, P.; Van Nguyen, C.; Mangat, P.S.; O’Flaherty, F.J.; Jones, G. Dual function carbon fibre fabric strengthening and impressed current cathodic protection (ICCP) anode for reinforced concrete structures. Mater. Struct. 2015, 48, 2157–2167. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wei, L.; Moahmoud, H.; Redaelli, E.; Xing, F.; Bertolini, L. Investigation on the dual-functions of CFRP in the varying chloride-contained environments. Constr. Build. Mater. 2017, 151, 127–137. [Google Scholar] [CrossRef]
- Mangat, P.S.; Elgarf, M.S. Flexural strength of concrete beams with corroding reinforcement. Struct. J. 1999, 96, 149–158. [Google Scholar]
- O’Flaherty, F.J.; Mangat, P.S.; Lambert, P.; Browne, E.H. Effect of under-reinforcement on the flexural strength of corroded beams. Mater. Struct. 2008, 41, 311–321. [Google Scholar] [CrossRef]
- Standard, A. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test. Specimens; American Society for Testing and Materials: West Conshohocken, PA, USA, 2011. [Google Scholar]
- EN,B. 12696 (2000), Cathodic Protection of Steel in Concrete; British Standards Institution: London, UK, 2000.
Specimen | Pre-Corrosion | Anode Material | ICCP | Dry–wet Cycles | Time (day) |
---|---|---|---|---|---|
CFRP-RE | 5% | CFRP bar | N | N | 0 |
CFRP-UP | 5% | CFRP bar | N | Y | 180 |
CFRP-CP | 5% | CFRP bar | Y | Y | 180 |
SFCB-RE | 5% | SFCB | N | N | 0 |
SFCB-UP | 5% | SFCB | N | Y | 180 |
SFCB-CP | 5% | SFCB | Y | Y | 180 |
SFCB-S | 0% | - | N | N | N |
CFRP-S | 0% | - | N | N | N |
Steel-S | 0% | - | N | N | N |
Type | d (mm) | εy (%) | fy (MPa) | εu (%) | fu (MPa) | EI (GPa) | EII (GPa) |
---|---|---|---|---|---|---|---|
CFRP bar | 12 | - | - | - | 788.0 | 125.0 | - |
SFCB | 12 | 0.23 | 515.6 | 0.48 | 716.1 | 224.2 | 146.2 |
Steel bar | 12 | 0.21 | 425.1 | - | 572.8 | 201.4 | - |
Na+ | K+ | Ca2+ | Mg2+ | F− | Cl− | Br- | SO42− | CO32− |
---|---|---|---|---|---|---|---|---|
395 | 422.5 | 1.24 × 104 | 1.0 × 103 | 5.14 | 2.0 × 104 | 48.55 | 1.82 × 103 | 7.54 |
Specimen | Time (day) | Interruption Potential (mV) | Depolarization Potential (mV) | Attenuation (mV) |
---|---|---|---|---|
SFCB-CP | 20 | −705 | −473 | 232 |
60 | −640 | −401 | 239 | |
120 | −502 | −374 | 128 | |
180 | −571 | −368 | 203 | |
CFRP-CP | 20 | −420 | −248 | 172 |
60 | −444 | −239 | 205 | |
120 | −494 | −234 | 260 | |
180 | −426 | −221 | 205 |
Specimen | Cracking Load (kN) | Yield Load (kN) | Ultimate Load (kN) | Yield Deflection (mm) | Ultimate Deflection (mm) |
---|---|---|---|---|---|
CFRP-RE | 47.0 | 147.3 | 247.5 | 4.6 | 15.0 |
CFRP-UP | 39.0 | 132.2 | 232.7 | 3.8 | 14.3 |
CFRP-CP | 45.0 | 128.4 | 248.1 | 3.5 | 14.9 |
SFCB-RE | 40.0 | 143.3 | 260.2 | 4.2 | 20.8 |
SFCB-UP | 39.0 | 140.0 | 238.2 | 4.1 | 16.2 |
SFCB-CP | 40.0 | 143.0 | 247.7 | 4.2 | 19.8 |
SFCB-S | 15.4 | 50.9 | 148.5 | 1.9 | 11.3 |
CFRP-S | 14.0 | - | 186.8 | - | 11.7 |
Steel-S | 27.9 | 99.0 | 139.1 | 4.0 | 30.1 |
Specimen | Weight (g) | Length (mm) | Line Density (g/mm) | Average Line Density (g/mm) | Line Density Loss |
---|---|---|---|---|---|
No corrosion | 83.3 | 99.87 | 0.83 | 0.83 | 0% (0%) |
83.3 | 99.77 | 0.83 | |||
5% corrosion | 79.5 | 99.35 | 0.80 | 0.80 | 3.61% (0%) |
79.3 | 99.12 | 0.80 | |||
CFRP-CP | 78.8 | 99.23 | 0.79 | 0.795 | 4.22% (0.85%) |
78.8 | 98.86 | 0.80 | |||
CFRP-UP | 76.9 | 97.94 | 0.79 | 0.77 | 7.23% (3.40%) |
74.7 | 99.51 | 0.75 | |||
SFCB-CP | 76.8 | 99.16 | 0.77 | 0.775 | 6.63% (0.85%) |
76.2 | 97.51 | 0.78 | |||
SFCB-UP | 76.4 | 100.58 | 0.76 | 0.77 | 7.23% (1.70%) |
74.7 | 95.7 | 0.78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zheng, Y.; Sui, L.; Hu, B.; Huang, X. Study on the Flexural Performance of Hybrid-Reinforced Concrete Beams with a New Cathodic Protection System Subjected to Corrosion. Materials 2020, 13, 234. https://doi.org/10.3390/ma13010234
Zhou Y, Zheng Y, Sui L, Hu B, Huang X. Study on the Flexural Performance of Hybrid-Reinforced Concrete Beams with a New Cathodic Protection System Subjected to Corrosion. Materials. 2020; 13(1):234. https://doi.org/10.3390/ma13010234
Chicago/Turabian StyleZhou, Yingwu, Yaowei Zheng, Lili Sui, Biao Hu, and Xiaoxu Huang. 2020. "Study on the Flexural Performance of Hybrid-Reinforced Concrete Beams with a New Cathodic Protection System Subjected to Corrosion" Materials 13, no. 1: 234. https://doi.org/10.3390/ma13010234
APA StyleZhou, Y., Zheng, Y., Sui, L., Hu, B., & Huang, X. (2020). Study on the Flexural Performance of Hybrid-Reinforced Concrete Beams with a New Cathodic Protection System Subjected to Corrosion. Materials, 13(1), 234. https://doi.org/10.3390/ma13010234