The Strength of Egg Trays under Compression: A Numerical and Experimental Study
Abstract
:1. Introduction
2. Problem Description
2.1. Object of Analysis
2.2. Manufacturing Process
2.3. Compression Test Stand
2.4. FE Model
2.5. Statistical Analysis
3. Results and Discussion
3.1. Results of the Study
3.2. Maps of Stresses
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Fadiji, T.; Coetzeea, C.J.; Berry, T.M.; Opara, U.L. Investigating the role of geometrical configurations of ventilated fresh produce packaging to improve the mechanical strength—Experimental and numerical approaches. Food Packag. Shelf Life 2019, 20, 100312. [Google Scholar] [CrossRef]
- Fadiji, T.; Ambaw, A.; Coetzee, C.J.; Berry, T.M.; Opara, U.L. Application of finite element analysis to predict the mechanical strength of ventilated corrugated paperboard packaging for handling fresh produce. Biosyst. Eng. 2018, 174, 260–281. [Google Scholar] [CrossRef]
- Fadiji, T.; Coetzee, C.J.; Oparab, U.L. Analysis of the creep behaviour of ventilated corrugated paperboard packaging for handling fresh produce—An experimental study. Food Bioprod. Process. 2019, 117, 126–137. [Google Scholar] [CrossRef]
- Zaheer, M.; Awais, M.; Rautkari, L.; Sorvari, J. Finite element analysis of paperboard package under compressional load. Procedia Manuf. 2018, 17, 1162–1170. [Google Scholar] [CrossRef]
- Wallmeier, M.; Linvill, E.; Hauptmann, M.; Majschak, J.P.; Östlund, S. Explicit FEM analysis of the deep drawing of paperboard. Mech. Mater. 2015, 89, 202–215. [Google Scholar] [CrossRef]
- Huang, H.; Hagman, A.; Nygards, M. Quasi static analysis of creasing and folding for three paperboards. Mech. Mater. 2014, 69, 11–34. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Wang, J.; Pan, L.; Lu, L.; Lu, G. Quasi-static axial crushing of single wall corrugated paperboard. Compos. Struct. 2019, 226, 111237. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Chuang, C.; Gao, D.; Lu, G.; Lu, L.; Wang, Z. Mathematical models for predicting the quasi-static stress characteristics of corrugated paperboard with sinusoidal core along the longitudinal compression. Int. J. Mech. Sci. 2018, 149, 136–149. [Google Scholar] [CrossRef]
- Xu, G.; Huang, H.; Chen, B.; Chen, F. Buckling and postbuckling of elastoplastic FGM plates under inplane loads. Compos. Struct. 2017, 176, 225–233. [Google Scholar] [CrossRef]
- Muc, A.; Barski, M. Design of Particulate-Reinforced Composite Materials. Materials 2018, 11, 234. [Google Scholar] [CrossRef] [Green Version]
- Tornabene, F.; Fantuzzi, N.; Bacciocchi, M. Linear Static Behavior of Damaged Laminated Composite Plates and Shell. Materials 2017, 10, 811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolakowski, Z.; Mania, J.R. Semi-analytical method versus the FEM for analysis of the local post-buckling. Compos. Struct. 2013, 97, 99–106. [Google Scholar] [CrossRef]
- Zaczynska, M.; Kołakowski, Z. The influence of the internal forces of the buckling modes on the load-carrying capacity of composite medium-length beams under bending. Materials 2020, 13, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopecki, T.; Mazurek, P.; Lis, T. Experimental and Numerical Analysis of a Composite Thin-Walled Cylindrical Structures with Different Variants of Stiffeners, Subjected to Torsion. Materials 2019, 12, 3230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Mao, C.; Wang, J.; Fan, N.; Guo, T. Numerical Analysis and Experimental Studies on the Residual Stress of W/2024Al Composites. Materials 2019, 12, 2746. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Zhang, J.; Song, S.; Yang, D.; Wang, C. Effect of Temperature on Material Properties of Carbon Fiber Reinforced Polymer (CFRP) Tendons: Experiments and Model Assessment. Materials 2019, 12, 1025. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, T.; Borkowski, Ł.; Wiacek, N. Experimental Investigations of Impact Damage Influence on Behavior of Thin-Walled Composite Beam Subjected to Pure Bending. Materials 2019, 12, 1127. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Xiong, C.; Yin, J.; Yin, D.; Deng, H. Bending Experiment and Mechanical Properties Analysis of Composite Sandwich Laminated Box Beams. Materials 2019, 12, 2959. [Google Scholar] [CrossRef] [Green Version]
- Dębski, H.; Jonak, J. Failure analysis of thin-walled composite channel section columns. Compos. Struct. 2015, 132, 567–574. [Google Scholar] [CrossRef]
- Urbaniak, M.; Teter, A.; Kubiak, T. Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression. Compos Struct. 2015, 134, 199–208. [Google Scholar] [CrossRef]
- Kubiak, T.; Kolakowski, Z.; Swiniarski, J.; Urbaniak, M.; Gliszczynski, A. Local buckling and post-buckling of composite channel-section beams—Numerical and experimental investigations. Compos. Part B 2016, 91, 176–188. [Google Scholar] [CrossRef]
- Nunes, F.; Correia, M.; Correia, J.R.; Silvestre, N.; Moreira, A. Experimental and numerical study on the structural behaviour of eccentrically loaded GFRP columns. Thin-Walled Struct. 2013, 72, 175–187. [Google Scholar] [CrossRef]
- Czechowski, L.; Gliszczyński, A.; Bieniaś, J.; Jakubczak, P.; Majerski, K. Failure of GFRP channel section beams subjected to bending—Numerical and experimental investigations. Compos. Part B: Eng. 2017, 111, 112–123. [Google Scholar] [CrossRef]
- Camanho, P.P.; Matthews, F.L. A progressive damage model for mechanically fastened joints in composite laminates. J. Compos. Mater. 1999, 33, 2248–2280. [Google Scholar] [CrossRef]
- Chen, J.F.; Morozov, E.V.; Shankar, K. A combined elastoplastic damage model for progressive failure analysis of composite materials and structures. Compos. Struct. 2012, 94, 3478–3489. [Google Scholar] [CrossRef]
- Gliszczyński, A.; Kubiak, T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Compos. Struct. 2016, 169, 52–61. [Google Scholar] [CrossRef]
- Gliszczyński, A.; Czechowski, L. Collapse of channel section composite profile subjected to bending. Part I: Numerical investigations. Compos. Struct. 2017, 178, 383–394. [Google Scholar] [CrossRef]
- Lapczyk, I.; Hurtado, J.A. Progressive damage modeling in fiber-reinforced materials. Compos Part A Appl. Sci. 2007, 38, 2333–2341. [Google Scholar] [CrossRef]
- Liu, N.; Plucinsky, P.; Jeffers, A.E. Combining Load-Controlled and Displacement-Controlled Algorithms to Model Thermal-Mechanical Snap-Through Instabilities in Structures. J. Eng. Mech. 2017, 143, 04017051. [Google Scholar] [CrossRef]
- Czechowski, L.; Bieńkowska, M.; Szewczyk, W. Paperboard tubes failure due to lateral compression—Experimental and numerical study. Compos. Struct. 2018, 203, 132–141. [Google Scholar] [CrossRef]
- Kołakowski, Z.; Szewczyk, W.; Bieńkowska, M.; Czechowski, L. New method for evaluation of radial crush strength of paper cores. Mechanika 2018, 24, 169–173. [Google Scholar] [CrossRef]
- Liao, Z.S.; Hua, G.J.; Xie, Y.; Shao, Z. Finite element analysis on transverse compressive strength of corrugated board Edge. Packag. Eng. 2014, 35, 56–60. [Google Scholar]
- Hua, G.J.; Luo, D.T.; Wu, R.M. Simulation analysis of corrugated board strength based on buckling criteria. Packag. J. 2010, 2, 18–20. [Google Scholar]
- Abbès, B.; Guo, Y.Q. Analytic homogenization for torsion of orthotropic sandwich plates: Application to corrugated cardboard. Compos. Struct. 2010, 92, 699–706. [Google Scholar] [CrossRef]
- Talbi, N.; Batti, A.; Ayad, R.; Guo, Y.Q. An analytical homogenization model for finite element modelling of corrugated cardboard. Compos. Struct. 2009, 88, 280–289. [Google Scholar] [CrossRef]
- Beldie, L.; Sandberg, G.; Sandberg, L. Paperboard packages exposed to static loads-finite element modelling and experiments. Packag. Technol. Sci. 2001, 14, 171–178. [Google Scholar] [CrossRef]
- Hua, G.J.; Shen, Y.; Zhao, D.; Xie, Y. Experimental and Numerical Analysis of the Edge Effect for Corrugated and Honeycomb Fiberboard. Strength Mater. 2017, 188–197. [Google Scholar] [CrossRef]
- Hua, G.J.; Xie, Y. Finite element analysis of honeycomb and corrugated fiberboard side compression strength. Packag. Eng. 2009, 30, 1–2. [Google Scholar]
- Wang, Z.W.; Yao, Z. Experimental investigation and finite element analysis for impact compression of honeycomb paperboards. J. Mech. Eng. 2012, 48, 49–55. [Google Scholar] [CrossRef]
- Gao, S.; Wang, B.Z. Finite element analysis of double deck honeycomb board based on ANSYS. Mech. Eng. Autom. 2012, 14, 69–71. [Google Scholar]
- Liu, N.; Ren, X.; Lua, J. An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures. Compos. Struct. 2020, 237, 111893. [Google Scholar] [CrossRef]
- Hernández-Pérez, A.; Hägglund, R.; Carlsson, L.A.; Avilés, F. Analysis of twist stiffness of single and double-wall corrugated boards. Compos. Struct. 2014, 110, 7–15. [Google Scholar] [CrossRef]
- Hämäläine, P.; Hallbäck, N.; Gäärd, A.; Lestelius, M. On the determination of transverse shear properties of paper using the short span compression test. Mech. Mater. 2017, 107, 22–30. [Google Scholar] [CrossRef]
- Spottiswoode, A.J.; Bank, L.C.; Shapira, A. Investigation of paperboard tubes as formwork for concrete bridge decks. Constr. Build. Mater. 2012, 30, 767–775. [Google Scholar] [CrossRef]
- Bolzon, G.; Talassi, M. A combined experimental and numerical study of the behaviour of paperboard composites up to failure. Compos. Part B 2014, 66, 358–367. [Google Scholar] [CrossRef]
- Borgqvist, E.; Wallin, M.; Ristinmaa, M.; Tryding, J. An anistropic in-plane and out-of-plane elsto-plastic continuum model for paper board. Compos. Struct. 2015, 126, 184–195. [Google Scholar] [CrossRef]
- Mentrasti, L.; Cannella, F.; Pupilli, M.; Dai, J.S. Large bending behavior of creases paperboard. I. Experimental investigations. Int. J. Solid Struct. 2013, 50, 3089–3096. [Google Scholar] [CrossRef] [Green Version]
- Mentrasti, L.; Cannella, F.; Pupilli, M.; Dai, J.S. Large bending behavior of creases paperboard. II. Experimental investigations. Int. J. Solid Struct. 2013, 50, 3097–3105. [Google Scholar] [CrossRef] [Green Version]
- Fadiji, T.; Coetzee, C.; Opera, U.L. Compression strength of ventilated corrugated paperboard packages: Numerical modelling. Experimental validation and effects of vent geometric design. Biosyst. Eng. 2016, 151, 231–247. [Google Scholar] [CrossRef]
- User’s Guide MSC FEA® 2010 R1; MSC Software, Inc.: Newport Beach, CA, USA, 2010; Available online: www.mate.tue.nl/~piet/inf/mrc/pdf/vola2001.pdf (accessed on 14 May 2020).
- Grużewski, A. On Probability and Statistics; PZWS: Warsaw, Poland, 1966. (In Polish) [Google Scholar]
Denotation of Sample/ Model | Mass of Tray (Mean Mass of Tray ± (g) | Stiffness of Tray (Mean Stiffness of Tray ± (N/mm) | Maximum Load (Mean Maximum Load ± (N) | Strength Ratio (Mean Strength Ratio ± (N/g) | Decrease (−)/Increase (+) of Mean Stiffness with Respect to Basic Tray (Modified Tray) (%) | Decrease (−)/Increase (+) of Mean Maximum Load with Respect to Basic Tray (Modified Tray) (%) | Decrease (−)/Increase (+) of Strength Ratio with Respect to Basic Tray (Modified Tray) (%) |
---|---|---|---|---|---|---|---|
EXP_1_1 a | 52 (54.3 * ± 2.1) | 247.5 (314.7 * ± 60.1) | 1634 (1715 * ± 100) | 31.4 (31.5 * ± 1.0) | 0 (−26.5) | 0 (−29.1) | 0 (−19.0) |
EXP_1_2 a | 56 (54.3 * ± 2.1) | 363.3 (314.7 * ± 60.1) | 1827 (1715 * ± 100) | 32.6 (31.5 * ± 1.0) | 0 (−26.5) | 0 (−29.1) | 0 (−19.0) |
EXP_1_3 a | 55 (54.3 * ± 2.1) | 333.2 (314.7 * ± 60.1) | 1685 (1715 * ± 100) | 30.6 (31.5 * ± 1.0) | 0 (−26.5) | 0 (−29.1) | 0 (−19.0) |
FEM_1 | - | 361.1 | 1830 | - | - | - | - |
EXP_2_1 | 60 (62 ** ± 2.8) | 396.5 (428.2 ** ± 44.8) | 2410 (2418 ** ± 11) | 40.2 (38.9 ** ± 1.6) | +36.0 (0) | +41.0 (0) | +23.4 (0) |
EXP_2_2 | 64 (62 ** ± 2.8) | 459.8 (428.2 ** ± 44.8) | 2426 (2418 ** ± 11) | 37.9 (38.9 ** ± 1.6) | +36.0 (0) | +41.0 (0) | +23.4 (0) |
FEM_2 | - | 496.2 | 1922 | - | - | - | - |
M_1_1 | 60 (61 * ± 3.1) | 296.3 (335.8 * ± 35.6) | 2107 (1951 * ± 136) | 35.1 (32.2 * ± 2.8) | +6.71 (−21.6) | +13.8 (−19.3) | +2.22 (−17.2) |
M_2_1 b | 70 (71 * ± 2.6) | 284.4 (283.4 * ± 15.8) | 2087 (2090 * ± 77) | 29.8 (29.4 * ± 0.3) | -9.99 (−33.8) | +21.9 (-13.7) | -6.66 (−24.2) |
M_3_1 | 62 (60 * ± 2.1) | 321.3 (341.8 * ± 22.9) | 2391 (2067 * ± 283) | 38.6 (34.2 * ± 3.8) | +8.61 (−20.2) | +20.5 (−14.5) | +8.57 (−12.0) |
M_4_1 | 55 (54 * ± 2.6) | 307.7 (354.3 * ± 51.8) | 2237 (2353 * ± 141) | 40.7 (43.6 * ± 2.6) | +12.6 (−17.3) | +27.1 (−2.69) | +38.4 (+12.1) |
M_5_1 | 61 (58 * ± 2.5) | 289.9 (324.1 * ± 47.8) | 1766 (2251 * ± 422) | 29.0 (38.8 * ± 8.5) | +2.98 (−24.3) | +31.3 (−6.90) | +23.2 (−0.26) |
point 1 | point 2 | point 3 | point 4 | point 5 |
point 6 | point 7 | point 8 | point 9 | point 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czechowski, L.; Kmita-Fudalej, G.; Szewczyk, W. The Strength of Egg Trays under Compression: A Numerical and Experimental Study. Materials 2020, 13, 2279. https://doi.org/10.3390/ma13102279
Czechowski L, Kmita-Fudalej G, Szewczyk W. The Strength of Egg Trays under Compression: A Numerical and Experimental Study. Materials. 2020; 13(10):2279. https://doi.org/10.3390/ma13102279
Chicago/Turabian StyleCzechowski, Leszek, Gabriela Kmita-Fudalej, and Włodzimierz Szewczyk. 2020. "The Strength of Egg Trays under Compression: A Numerical and Experimental Study" Materials 13, no. 10: 2279. https://doi.org/10.3390/ma13102279
APA StyleCzechowski, L., Kmita-Fudalej, G., & Szewczyk, W. (2020). The Strength of Egg Trays under Compression: A Numerical and Experimental Study. Materials, 13(10), 2279. https://doi.org/10.3390/ma13102279