

Low-Cost Method and Biochip for Measuring the Trans-Epithelial Electrical Resistance (TEER) of Esophageal Epithelium

Daniel Puiu Poenar^{1,*}, Guang Yang¹, Wei Keat Wan² and Shilun Feng¹

- ¹ VALENS-Centre for Bio Devices and Signal Analysis, EEE School, Nanyang Technological University, Blk S1, Level B4, Unit 06 (S1-B4b-06), 50 Nanyang Avenue, Singapore 639798, Singapore; YANG0389@e.ntu.edu.sg (G.Y.); shilun.feng@ntu.edu.sg (S.F.)
- ² Histopathology Department, Singapore General Hospital (SGH), 20 College Road, Academia, Level 10, Diagnostic Tower, Singapore 169856, Singapore; wan.wei.keat@singhealth.com.sg
- * Correspondence: epdpuiu@ntu.edu.sg; Tel.: +65-6790-4237

Received: 18 April 2020; Accepted: 18 May 2020; Published: date

1) Best fitting curves

We hereby attach the values of all the coefficients for all the fitting curves extracted (using ORIGIN) for the data points plotted in all the paper's Figures.

Table S1. The fitting equation parameters obtained for the linear fit of the data shown in Figure 5a for tissues maintained in incubator at 37 °C.

Equation	$a_0 + a_1 x$
Weight	Instrumental
Intercept <i>a</i> ⁰	316.349 ± 2.943
Slope <i>a</i> ¹	-1.327 ± 0.048
Residual sum of squares	0.517
Pearson's r	-0.995
<i>R</i> -square (COD)	0.991
Adj. R-square	0.99

Table S2. The equation parameters obtained for the parabolic fit of the data shown in Figure 5a for tissues maintained at room temperature (23 °C).

Equation	$a_0 + a_1 x + a_2 x^2$
Weight	Instrumental
Intercept <i>a</i> ⁰	306.821 ± 6.33
<i>a</i> 1	-3.921 ± 0.307
<i>a</i> ₂	0.0164 ± 0.003
Reduced Xs	0.159
<i>R</i> -square (COD)	0.994
Adj. <i>R</i> -square	0.992

Figure 5b shows the variation of TEER during and after exposure to solutions with various values. Hence, in each case there are 2 sets of data, one for the behaviour while being exposed to the solution, and the other for the recovery after the 10 min. rinse. Because the behaviour was very different in the two cases, each data set was fitted with a different function, detailed in Tables S3 to S6 below.

Equation	$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$				
Sample/Exposure to acidic solution with:	pH 1	pH 3			
a 0	99.419 ± 1.439	99.70085 ± 0.67147			
<i>a</i> 1	7.339 ± 1.561	2.42938 ± 0.52609			
<i>a</i> 2	-1.806 ± 0.361	-0.60408 ± 0.11687			
аз	0.106 ± 0.028	0.03432 ± 0.00892			
a 4	$-0.002 \pm 6.94 \times 10^{-4}$	$-6.12821{\times}10^{-4}\pm2.18{\times}10^{-4}$			
Reduced χ_s	0.316	0.078			
<i>R</i> -square (COD)	0.991	0.996			
Adj. <i>R</i> -square	0.986	0.993			

Table S3. The fitting equation parameters for the data corresponding to the TEER variations during exposure to acidic media shown in Figure 5b, fitted using a 4th order polynomial.

Table S4. The fitting equation parameters for the data corresponding to the TEER variations during exposure to basic media shown in Figure 5b.

Equation	$y = A_2 + \cdot$	$\frac{A_1 - A_2}{1 + \left(\frac{x}{x_0}\right)^p}$
Sample/Exposure to basic solution with:	pH 7.2	pH 8
A_1	100.016 ± 0.422	100.046 ± 0.345
A_2	108.804 ± 0.155	113.078 ± 0.478
$\boldsymbol{\chi}_{0}$	1.995 ± 0.14	3.065 ± 0.258
p	2.905 ± 0.637	1.732 ± 0.255
Reduced Xs	0.021	0.014
<i>R</i> -square (COD)	0.985	0.994
Adj. R-square	0.979	0.991

The second set of data shown in Figure 5b, for the variation corresponding to the recovery that followed after exposure to the media of various pH values and its subsequent 10 min. rinse, have their parameters detailed in Tables S5 and S6.

Table S5. The fitting equation parameters for the data corresponding to the TEER variations after exposure to acidic media shown in Figure 5b, fitted using a log normal function.

Equation	$y = y_0 + \frac{A}{W \cdot x \cdot \sqrt{2}}$	$= \exp\left[-\frac{\left(\ln\frac{x}{x_c}\right)^2}{2W^2}\right]$
Sample/Exposure to acidic solution with:	pH 1	pH 3
	94.799 ± 0.809	99.295 ± 0.119
ХC	31.943 ± 2.306	29.087 ± 1.558
W	0.401 ± 0.105	0.195 ± 0.038
Α	-392.617 ± 28.144	-101.722 ± 6.678
Reduced Xs	0.0227	0.003
<i>R</i> -square (COD)	0.983	0.993
Adj. R-square	0.973	0.989

Equation	$y = y_0 + A_1 \exp(-x/t_1)$				
Sample/Exposure to basic solution with:	pH 7.2	pH 8			
y_0	101.723 ± 0.075	104.87422 ± 0.20607			
A_1	$-4.32 \times 10^7 \pm 2.512 \times 10^8$	2675.391 ± 3655.743			
t_1	1.825 ± 0.645	4.585 ± 0.971			
Reduced Xs	0.0028	0.0027			
<i>R</i> -square (COD)	0.971	0.987			
Adj. <i>R</i> -square	0.941	0.975			

Table S6. The fitting equation parameters for the data corresponding to the TEER variations after exposure to basic media shown in Figure 5b.

The parameters for the fitting equations of the curves shown in the other Figures of the paper are also given in the following Tables.

Table S7. The fitting equation parameters for the data corresponding to the variations of on-chip TEER responses of tissues exposed to acidic solution with pH 1, with or without sodium alginate treatment, shown in Figure 5c, fitted using a 4th order polynomial.

Equation	$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$				
Sample/Exposure to acidic solution with:	pH 1	Alginate + pH 1			
ao	99.419 ± 1.439	99.79979 ± 0.5936			
<i>a</i> 1	7.339 ± 1.561	0.60884 ± 0.60736			
<i>a</i> 2	-1.806 ± 0.361	-0.25623 ± 0.1571			
аз	0.106 ± 0.028	0.01716 ± 0.01324			
A 4	$-0.002 \pm 6.94 {\times} 10^{4}$	$-3.43{\times}10^{-4}\pm3.44{\times}10^{-4}$			
Reduced Xs	0.316	0.10137			
<i>R</i> -square (COD)	0.991	0.983			
Adj. <i>R</i> -square	0.986	0.961			

Table S8. The fitting equation parameters obtained for the linear fit of the normalized TEER variation shown in Figure 5d.

Equation	$a_0 + a_1 x$
Weight	Instrumental
Intercept <i>a</i> ⁰	101.286 ± 0.943
Slope a_1	-0.425 ± 0.015
Residual sum of squares	0.517
Pearson's r	-0.995
<i>R</i> -square (COD)	0.991
Adj. R-square	0.99

Table S9. The fitting equation parameters obtained for the parabolic fit of the relative permeability data shown in Figure 5d.

Equation	$a_0 + a_1 x + a_2 x^2$
Weight	Instrumental
Intercept <i>a</i> ⁰	96.873 ± 8.509
a_1	0.963 ± 0.663
a_2	0.055 ± 0.008
Residual sum of squares	2.348
<i>R</i> -square (COD)	0.994
Adj. <i>R</i> -square	0.992

2) Data of all the other plots

Section of	TEED	Standard	Normalized TEER	pH 1	S.D.	pH 3	S.D.	pН	S.D.
thoracic	(O, cm^2)	deviation	(as % of value					7.2	
esophagus	(22 · CIII ²)	(S.D.)	before exposure)						
11220	200.2	1 <i>6 4</i> 5	Before acid	100	7 72	100	6.60	100	77
upper	209.2	10.43	exposure	100	7.75	100	6.69	100	7.7
middle	210 5	24.01	After acid	66 E	E /E	07 /	1 10	109.1	4 5
middle	310.5	24.01	exposure	66.5	5.45	87.4	4.48	108.1	4.5
lower	306.8	20.53	1 hour after rinse	91.8	6.26	99.6	4.08	102.2	4.2

Table S10. The numerical values for the data plotted in Figure 3a,b.

Table S11. The numerical values for the data plotted in Figure 5a,d.

Time on chip (h)	TEER (Ω · cm ²) @37°C	S.D.	Normalized TEER (as % of value before	S.D.	Relative Permeability (as % of value	S.D.	TEER (Ω · cm²) @23°C	S.D.
			exposure)		at t=0)			
0	312.3	20.17	100	6.46	100	15.7	312.3	20.2
12	298.0	19.95	95.4	6.39	113	14.6	256.8	17.8
24	280.8	15.69	89.9	5.02	162	34.1	230.3	25.7
36	275.3	15.14	88.1	4.85	189	30.9	175.6	25.2
48	257.6	13.02	82.5	4.17	249	49.8	147.4	23.4
60	236.1	14.81	75.6	4.74	349	31.6	136.9	22.8
72	218.5	13.66	69.9	4.37	485	27.7	118.1	17.5
84	202.5	12.97	64.8	4.15	551	38.4	92.3	16.3
96	189.7	14.69	60.7	4.70	675	50.1	79.7	12.1

Table S12. The numerical values for the data plotted in Figure 5b,c.

Acid exposure (min)	pH 1		рН 3		pH 7.2		pH 8		Alginate+pH1	
	Normalized	S.D.	Normalized	S.D.	Normalized	S.D.	Normalized	S.D.	Normalized	S.D.
	TEER		TEER		TEER		TEER		TEER	
	(as % of value		(as % of value		(as % of value		(as % of value		(as % of value at	
	at <i>t=</i> 0)		at <i>t</i> =0)		at <i>t=</i> 0)		at <i>t=</i> 0)		<i>t</i> =0)	
0	100	2.6	100	2.5	100	2.9	100	2.9	100	1.9
2	103.7	4.4	101.5	2.7	104.5	2.7	104.6	3.7	99.3	2.3
4	107.4	5.3	102.2	2.9	107.4	2.5	107.1	4.5	99.8	2.5
6	102.2	5.1	99.6	2.2	108.9	2.8	109.9	4.4	97.9	2.2
8	90.3	4.9	95.5	3.9	109.5	3.1	111.5	4.2	95.3	3.4
10	78.5	3.8	91.5	3.4	108.9	2.7	111.9	3.7	93.5	2.6
12	68.2	4.5	87.5	2.8	108.8	2.8	112.3	3.8		
14	65.1	4.1	86.2	2.5	108.6	2.7	112.1	4.1	92.2	2.3
16	63.6	4.2	85.1	2.4	108.6	2.4	112.4	4.4		
18	62.5	3.5	83.1	1.9	108.7	2.2	112.4	3.6		
20	62.3	3.8	83.2	1.8	108.6	2.0	112.1	3.9	91.9	1.8
Rinse										
30	81.818	4.9	92.461	4.9	98.6	7.1	108.7	5.1		
35	84.461	5.3	95.497	5.3	101.5	3.3	106.3	4.5		
40	86.152	5.1	97.906	5.1	101.8	2.3	105.2	3.7		
45	88.372	3.8	99.058	4.7	101.8	2.5	104.8	5.3		
50	91.438	4.4	98.953	4.4	101.6	2.2	105.1	4.1		
60	92.178	4.7	98.848	6.5						
70	94.82	5.3	99.372	5.3						
80	94.195	6.4	99.372	4.4						
90	94.383	6.1	99.581	5.1						

 \odot 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).