Laboratory Methods for Assessing the Influence of Improper Asphalt Mix Compaction on Its Performance
Abstract
:1. Introduction
2. Experimental Materials
Asphalt Mix Components
3. Research Method
3.1. Samples Preparation
- Cores sampled from slab no. 1, 69.3 mm high (63 mm + 10%)—R1
- Cores sampled from slab no. 2, 66.2 mm high (63 mm + 5%)—R2
- Cores sampled from slab no. 3, 63 mm high—R3
- Cores sampled from slab no. 4, 59.9 mm high (63 mm − 5%)—R4
3.2. Test Methods
- CI—compaction index [%]
- ρcore—bulk density tested on core sample
- ρMarshall—bulk density determined on Marshall samples
- ρbssd—bulk density (SSD) (kg/m3)
- m1—mass of the dry specimen (g)
- m2—mass of the specimen in water (g)
- m3—mass of the saturated surface-dried specimen (g)
- ρw—density of water at test temperature (kg/m3)
- ρm—density of the asphalt mix (kg/m3)
- m1—mass of the pycnometer (g)
- m2—mass of the pycnometer with the specimen (g)
- m3—mass of the pycnometer with the specimen and water (g)
- ρw—density of water at test temperature (kg/m3)
- Vpp—Volume of the pycnometer filled to the measuring line (m3)
- Vm—air void content in the asphalt mix specimen (%)
- ρm—density of the asphalt mix (kg/m3)
- ρb—bulk density of the asphalt mix (kg/m3)
- ITSR—indirect tensile strength ratio (%)
- ITSw—the average strength for the wet set of samples (kPa)
- ITSd—the average strength for the dry set of samples (kPa)
4. Results and Discussion
4.1. Bulk Density and Compaction Index
4.2. Density And Air Void Content of the Asphalt Mix
4.3. Water and Frost Resistance
4.4. Stiffness Modulus
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cui, S.; Blackman, B.; Kinloch, A.J.; Taylor, A.C. Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. Int. J. Adhes. Adhes. 2014, 54, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Roseen, R.M.; Ballestero, T.; Houle, J.; Briggs, J.F.; Houle, K.M. Water Quality and Hydrologic Performance of a Porous Asphalt Pavement as a Storm-Water Treatment Strategy in a Cold Climate. J. Environ. Eng. 2012, 138, 81–89. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Fiume, A.; Moreno-Navarro, F.; Rubio-Gámez, M. Analysis of fatigue cracking of warm mix asphalt. Influence of the manufacturing technology. Int. J. Fatigue 2018, 110, 197–203. [Google Scholar] [CrossRef]
- Du, Y.; Chen, J.; Han, Z.; Liu, W. A review on solutions for improving rutting resistance of asphalt pavement and test methods. Constr. Build. Mater. 2018, 168, 893–905. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, H.; Han, Z.; Deng, C. Fatigue Properties of Cold-Recycled Emulsified Asphalt Mixtures Fabricated by Different Compaction Methods. Sustainability 2019, 11, 3483. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.R. Density of Asphalt Concrete: How Much is Needed? Transp. Res. Rec. J. Transp. Res. Board 1990, 1282, 27–32. [Google Scholar]
- Praticò, F.; Vaiana, R. A study on volumetric versus surface properties of wearing courses. Constr. Build. Mater. 2013, 38, 766–775. [Google Scholar] [CrossRef]
- Finn, F.N.; Epps, J.A. Compaction of Hot Mix Asphalt Concrete; Research Report 214-21; Texas Transportation Inst.: College Station, TX, USA, 1980. [Google Scholar]
- Woszuk, A.; Franus, W. Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Constr. Build. Mater. 2016, 114, 556–563. [Google Scholar] [CrossRef]
- Woszuk, A.; Franus, W. A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies. Appl. Sci. 2017, 7, 293. [Google Scholar] [CrossRef] [Green Version]
- Airey, G.; Collop, A. Mechanical and structural assessment of laboratory and field-compacted asphalt mixtures. Int. J. Pavement Eng. 2014, 17, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Mallick, R.B. Use of Superpave Gyratory Compactor To Characterize Hot-Mix Asphalt. Transp. Res. Rec. J. Transp. Res. Board 1999, 1681, 86–96. [Google Scholar] [CrossRef]
- EN 12697-31; Bituminous Mixtures - Test Methods for Hot Mix Asphalt. Specimen Preparation by Gyratory Compactor; Polish Committee for Standardization: Warsaw, Poland, 2007.
- Superpave Mixture Design Guide; U.S. Dep. Transportation Fed. Highw. Adm.: Washington, DC, USA, 2001.
- Tao, M.; Mallick, R.B. Effects of Warm-Mix Asphalt Additives on Workability and Mechanical Properties of Reclaimed Asphalt Pavement Material. Transp. Res. Rec. J. Transp. Res. Board 2009, 2126, 151–160. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Gardziejczyk, W.; Iwański, M.M. Moisture resistance and compactibility of asphalt concrete produced in half-warm mix asphalt technology with foamed bitumen. Constr. Build. Mater. 2016, 126, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, P.; Sideris, L.; Loizos, A. Evaluation of the effects of gyratory and field compaction on asphalt mix internal structure. Mater. Struct. 2015, 49, 665–676. [Google Scholar] [CrossRef]
- Tapkın, S.; Keskin, M. Rutting analysis of 100 mm diameter polypropylene modified asphalt specimens using gyratory and Marshall compactors. Mater. Res. 2013, 16, 546–564. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-J.; Amirkhanian, S.; Putman, B.J.; Kim, K.W. Laboratory Study of the Effects of Compaction on the Volumetric and Rutting Properties of CRM Asphalt Mixtures. J. Mater. Civ. Eng. 2007, 19, 1079–1089. [Google Scholar] [CrossRef]
- Jaskula, P. Influence of compaction effectiveness on interlayer bonding of asphalt layers. In Proceedings of the 9th International Conference Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Brown, H.R.; Naficy, S.; Spinks, G.M. Time-dependent mechanical properties of tough ionic-covalent hybrid hydrogels. Polymer 2015, 65, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Asphalt surfaces on national Roads, Technical requirements WT-2 part I; General Directorate for National Roads and Motorways: Warsaw, Poland, 2014.
- Luo, S.; Qian, Z.; Yang, X.; Wang, H. Design of gussasphalt mixtures based on performance of gussasphalt binders, mastics and mixtures. Constr. Build. Mater. 2017, 156, 131–141. [Google Scholar] [CrossRef]
- Esquinas, Á.R.; Ramos, C.; Jiménez, J.R.; Fernández, J.; De Brito, J.M.C.L. Mechanical behaviour of self-compacting concrete made with recovery filler from hot-mix asphalt plants. Constr. Build. Mater. 2017, 131, 114–128. [Google Scholar] [CrossRef]
- Peterson, R.L.; Mahboub, K.; Anderson, R.M.; Masad, E.; Tashman, L. Comparing Superpave Gyratory Compactor Data to Field Cores. J. Mater. Civ. Eng. 2004, 16, 78–83. [Google Scholar] [CrossRef]
- Smith, B.C.; Diefenderfer, B.K. Comparison of Nuclear and Nonnuclear Pavement Density Testing Devices. Transp. Res. Rec. J. Transp. Res. Board 2008, 2081, 121–129. [Google Scholar] [CrossRef]
- Micaelo, R.; Azevedo, M.C.; Ribeiro, J. Hot-mix asphalt compaction evaluation with field tests. Balt. J. Road Bridg. Eng. 2014, 9, 306–316. [Google Scholar] [CrossRef]
- Commuri, S.; Zaman, M. A novel neural network-based asphalt compaction analyzer. Int. J. Pavement Eng. 2008, 9, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Commuri, S.; Mai, A.T.; Zaman, M. Neural Network–Based Intelligent Compaction Analyzer for Estimating Compaction Quality of Hot Asphalt Mixes. J. Constr. Eng. Manag. 2011, 137, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Praticò, F.; Vaiana, R.; Moro, A. Dependence of Volumetric Parameters of Hot-Mix Asphalts on Testing Methods. J. Mater. Civ. Eng. 2014, 26, 45–53. [Google Scholar] [CrossRef]
- EN 933-1 Tests for geometrical properties of aggregates. Determination of particle size distribution. Sieving method; Polish Committee for Standardization: Warsaw, Poland, 2012.
- EN 933-10 Tests for Geometrical Properties of Aggregates. Assessment of Fines. Grading of Filler Aggregates (Air Jet Sieving); Polish Committee for Standardization: Warsaw, Poland, 2009.
- EN 12697-6 Bituminous mixtures - Test Methods for Hot Mix Asphalt. Determination of bulk density of bituminous specimens; Polish Committee for Standardization: Warsaw, Poland, 2012.
- EN 12697-5 Bituminous mixtures-Test methods. Determination of the maximum density; Polish Committee for Standardization: Warsaw, Poland, 2018.
- EN 12697-8 Bituminous mixtures-Test methods. Determination of void characteristics of bituminous specimens; Polish Committee for Standardization: Warsaw, Poland, 2018.
- EN 12697-12 Bituminous mixtures-Test methods. Determination of the water sensitivity of bituminous specimens; Polish Committee for Standardization: Warsaw, Poland, 2018.
- EN 12697-26 Bituminous mixtures-Test methods. Stiffness.; Polish Committee for Standardization: Warsaw, Poland, 2018.
- Asphalt surfaces on national Roads, Technical requirements WT-2 part II; General Directorate for National Roads and Motorways: Warsaw, Poland, 2016.
- Vacková, P.; Valentin, J.; Kotoušová, A. Impact of lowered laboratory compaction rate on strength properties of asphalt mixtures. Innov. Infrastruct. Solut. 2017, 3, 1–8. [Google Scholar] [CrossRef]
- Zulkati, A.; Diew, W.Y.; Delai, D.S. Effects of Fillers on Properties of Asphalt-Concrete Mixture. J. Transp. Eng. 2012, 138, 902–910. [Google Scholar] [CrossRef]
- Melotti, R.; Santagata, E.; Bassani, M.; Salvo, M.; Rizzo, S. A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures. Waste Manag. 2013, 33, 1906–1917. [Google Scholar] [CrossRef]
- Cheung, L.W.; Dawson, A.R. Effects of Particle and Mix Characteristics on Performance of Some Granular Materials. Transp. Res. Rec. J. Transp. Res. Board 2002, 1787, 90–98. [Google Scholar] [CrossRef]
- Júnior, J.L.O.L.; Babadopulos, L.F.A.L.; Soares, J.B. Effect of aggregate shape properties and binder’s adhesiveness to aggregate on results of compression and tension/compression tests on hot mix asphalt. Mater. Struct. 2020, 53, 1–15. [Google Scholar] [CrossRef]
- Bernier, A.; Zofka, A.; Josen, R.; Mahoney, J. Warm-Mix Asphalt Pilot Project in Connecticut. Transp. Res. Rec. J. Transp. Res. Board 2012, 2294, 106–114. [Google Scholar] [CrossRef]
- Ren, J.; Xing, C.; Tan, Y.; Liu, N.; Liu, J.; Yang, L. Void distribution in zeolitewarm mix asphalt mixture based on X-ray computed tomography. Materials 2019, 12, 1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.B.; Frost, J.D.; Shashidhar, N. Microstructure Study of WesTrack Mixes from X-Ray Tomography Images. Transp. Res. Rec. J. Transp. Res. Board 2001, 1767, 85–94. [Google Scholar] [CrossRef]
- Jiang, W.; Sha, A.; Xiao, J. Experimental Study on Relationships among Composition, Microscopic Void Features, and Performance of Porous Asphalt Concrete. J. Mater. Civ. Eng. 2015, 27, 04015028. [Google Scholar] [CrossRef]
- Xing, C.; Xu, H.; Tan, Y.; Liu, X.; Ye, Q. Mesostructured property of aggregate disruption in asphalt mixture based on digital image processing method. Constr. Build. Mater. 2019, 200, 781–789. [Google Scholar] [CrossRef]
- Sarsam, S.I.; Al-Obaidi, M.K. Assessing the Impact of Various Modes of Compaction on Tensile Property and Temperature Susceptibility of Asphalt Concrete. Int. J. Sci. Res. Knowl. 2014, 2, 297–305. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Nejad, F.M. Evaluating the Effect of Mix Design and Thermodynamic Parameters on Moisture Sensitivity of Hot Mix Asphalt. J. Mater. Civ. Eng. 2017, 29, 04016207. [Google Scholar] [CrossRef]
- Sanij, H.K.; Meybodi, P.A.; Hormozaky, M.A.; Hosseini, S.; Olazar, M. Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycothermTM as an anti-stripping additive. Constr. Build. Mater. 2019, 197, 185–194. [Google Scholar] [CrossRef]
- Woszuk, A.; Bandura, L.; Franus, W. Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 2019, 235, 493–502. [Google Scholar] [CrossRef]
- Nciri, N.; Shin, T.; Lee, H.; Cho, N. Potential of Waste Oyster Shells as a Novel Biofiller for Hot-Mix Asphalt. Appl. Sci. 2018, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- Hartman, A.M.; Gilchrist, M.D.; Walsh, G. Effect of Mixture Compaction on Indirect Tensile Stiffness and Fatigue. J. Transp. Eng. 2001, 127, 370–378. [Google Scholar] [CrossRef]
- Ahmed, K.; Irfan, M.; Ahmed, S.; Ahmed, A.; Khattak, A. Experimental Investigation of Strength and Stiffness Characteristics of Hot Mix Asphalt (HMA). Procedia Eng. 2014, 77, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Halle, M.; Rukavina, T.; Domitrovic, J. Influence of temperature on asphalt stiffness modulus. In Proceedings of the 5th Eurasphalt Eurobitume Congress, Istanbul, Turkey, 13–15 June 2012; pp. 13–15. [Google Scholar]
- Woszuk, A.; Wróbel, M.; Franus, W. Application of Zeolite Tuffs as Mineral Filler in Warm Mix Asphalt. Materials 2019, 13, 19. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.E.; Kamaruddin, N.H.M.; Daniel, B.D.; Hassan, N.A.; Hainin, M.R.; Tajudin, S.A.A.; Madun, A.; Mapanggi, R. Stiffness modulus properties of hot mix asphalt containing waste engine oil. ARPN J. Eng. Appl. Sci. 2016, 11, 14089–14091. [Google Scholar]
- Woszuk, A.; Wróbel, M.; Franus, W. Influence of Waste Engine Oil Addition on the Properties of Zeolite-Foamed Asphalt. Materials 2019, 12, 2265. [Google Scholar] [CrossRef] [Green Version]
Test | Specification | Result | Specification Limit |
---|---|---|---|
Penetration (25 °C, 0.1 mm) | EN 1426:2009 | 59 | 50–70 |
Viscosity at 135 °C (mPa·s) | ASTM D 4402 | 428 | - |
Softening point(°C) | EN 1427:2009 | 53 | 46–54 |
Penetration index | EN 12591:2010 | −0.1 | - |
Dolomite (% wt) | Limestone Filler (% wt) | Sand (% wt) | |
---|---|---|---|
MgO | 14.76 | 0.21 | - |
Al2O3 | 3.53 | 0.14 | 2.80 |
SiO2 | 10.05 | 0.25 | 92.99 |
K2O | 1.42 | - | 0.82 |
CaO | 39.62 | 80.94 | 0.25 |
TiO2 | 0.24 | - | 0.09 |
MnO | 0.23 | - | - |
Fe2O3 | 2.15 | 0.07 | 1.29 |
LOI | 28.00 | 18.39 | 1.78 |
Material Type | Percentage (%) | |
---|---|---|
Mineral Mix | Asphalt Mix | |
Mineral filler | 6.0 | 5.5 |
0/2 Quartz, fine aggregate | 20.0 | 18.8 |
0/2 Dolomite, fine aggregate | 26.0 | 24.6 |
2/8 Dolomite, coarse aggregate | 26.0 | 24.6 |
8/11 Dolomite, coarse aggregate | 22.0 | 20.8 |
50/70 Asphalt | - | 5.7 |
Specimen Type | Height Change (%) Compaction Energy (Blows) | Bulk Density (kg/m3) | Standard Deviation | Air void Content (%) | Standard Deviation | Compaction Index (%) |
---|---|---|---|---|---|---|
R1 | +10 * | 2321 | 25 | 8.3 | 1.0 | 94.1 |
R2 | +5 * | 2385 | 19 | 5.7 | 0.8 | 96.7 |
R3 | 0 * | 2437 | 14 | 3.7 | 0.5 | 98.8 |
R4 | −5 * | 2459 | 11 | 2.8 | 0.4 | 99.7 |
M1 | 2 × 20 ** | 2364 | 5 | 6.5 | 0.5 | 95.8 |
M2 | 2 × 35 ** | 2427 | 8 | 4.1 | 0.3 | 98.4 |
M3 | 2 × 50 ** | 2467 | 7 | 2.5 | 0.3 | 100.0 |
M4 | 2 × 75 ** | 2475 | 13 | 2.2 | 0.2 | 100.3 |
Compaction Index (%) | ITSw (kPa) | Standard Deviation | ITSd (kPa) | Standard Deviation | ITSR (%) | |
---|---|---|---|---|---|---|
Cored samples | 94.1 | 334 | 25 | 406 | 13 | 82.4 |
96.7 | 418 | 10 | 466 | 15 | 86.6 | |
98.8 | 497 | 10 | 567 | 13 | 87.8 | |
99.7 | 448 | 10 | 491 | 12 | 91.2 | |
Marshall samples | 95.8 | 421 | 19 | 504 | 23 | 83.5 |
98.4 | 520 | 22 | 585 | 24 | 88.9 | |
100 | 577 | 19 | 629 | 12 | 91.7 | |
100.3 | 598 | 30 | 648 | 33 | 92.3 |
Compaction Index (%) | Stiffness in 23 °C (MPa) | Standard Deviation | Stiffness in 10 °C (MPa) | Standard Deviation | Stiffness in −2 °C (MPa) | Standard Deviation | ||
---|---|---|---|---|---|---|---|---|
Cored Samples | 94.1 | 1262 | 65 | 4283 | 363 | 9661 | 441 | |
96.7 | 1496 | 72 | 4750 | 173 | 11,103 | 636 | ||
98.8 | 1814 | 117 | 5864 | 915 | 12,742 | 1013 | ||
99.7 | 1660 | 155 | 4590 | 393 | 12,162 | 746 | ||
Marshall Samples | 95.8 | 1384 | 122 | 4404 | 312 | 11,075 | 771 | |
98.4 | 1857 | 137 | 5669 | 266 | 12,951 | 1226 | ||
100 | 2086 | 166 | 6012 | 390 | 14,331 | 733 | ||
100.3 | 2197 | 159 | 6201 | 334 | 14,446 | 958 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, M.; Woszuk, A.; Franus, W. Laboratory Methods for Assessing the Influence of Improper Asphalt Mix Compaction on Its Performance. Materials 2020, 13, 2476. https://doi.org/10.3390/ma13112476
Wróbel M, Woszuk A, Franus W. Laboratory Methods for Assessing the Influence of Improper Asphalt Mix Compaction on Its Performance. Materials. 2020; 13(11):2476. https://doi.org/10.3390/ma13112476
Chicago/Turabian StyleWróbel, Michał, Agnieszka Woszuk, and Wojciech Franus. 2020. "Laboratory Methods for Assessing the Influence of Improper Asphalt Mix Compaction on Its Performance" Materials 13, no. 11: 2476. https://doi.org/10.3390/ma13112476
APA StyleWróbel, M., Woszuk, A., & Franus, W. (2020). Laboratory Methods for Assessing the Influence of Improper Asphalt Mix Compaction on Its Performance. Materials, 13(11), 2476. https://doi.org/10.3390/ma13112476