Characterization of Damage Evolution on Hot Flat Rolled Mild Steel Sheets by Means of Micromagnetic Parameters and Fatigue Strength Determination
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Micromagnetic Analysis
3.1.1. Barkhausen Noise (BN)
3.1.2. Incremental Permeability (IP)
3.1.3. Harmonic Analysis (HA)
3.2. Fatigue Investigations
4. Results and Discussion
4.1. Micromagnetic Analysis
4.2. Fatigue Investigations
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Llanos, J.M.; Santisteban, V.; Demurger, J.; Kieber, B.; Forrestier, R.; Rogberg, B.; Santis, M.d.; Lundbäck, H. Improvement of Central Soundness in Long Products from a through Process Control of Solidification and Reheating and Rolling Parameters; European Union: Brussels, Belgium, 2008. [Google Scholar]
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 1985, 107, 83. [Google Scholar] [CrossRef]
- Park, C.Y.; Yang, D.Y. A study of void crushing in large forgings I: Bonding mechanism and estimation model for bonding efficiency. J. Mater. Process. Technol. 1996, 57, 129–140. [Google Scholar] [CrossRef]
- Adler, E.; Pfeiffer, H. The influence of grain size and impurities on the magnetic properties of the soft magnetic alloy 47.5% NiFe. IEEE Trans. Magn. 1974, 10, 172–174. [Google Scholar] [CrossRef]
- Tekkaya, A.E.; Allwood, J.M.; Bariani, P.F.; Bruschi, S.; Cao, J.; Gramlich, S.; Groche, P.; Hirt, G.; Ishikawa, T.; Löbbe, C.; et al. Metal forming beyond shaping: Predicting and setting product properties. CIRP Ann. 2015, 64, 629–653. [Google Scholar] [CrossRef]
- Liebsch, C.; Möhring, K.; Lohmar, J.; Walther, F.; Hirt, G. Investigation on the influence of damage on the fatigue strength of hot rolled sheet metal. Prod. Eng. Res. Dev. 2020, 14, 65–75. [Google Scholar] [CrossRef]
- Liebsch, C.; Hirt, G. Numerical investigation on damage evolution and void closure in hot flat rolling. In Proceedings of the 11th Forming Technology Forum, Zurich, Switzerland, 2–3 July 2018. [Google Scholar]
- Balageas, D.; Fritzen, C.-P.; Güemes, A. Structural Health Monitoring; ISTE: London, UK; Newport Beach, CA, USA, 2006. [Google Scholar]
- Altpeter, I.; Tschuncky, R.; Szielasko, K. Electromagnetic techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation Methods; Hübschen, G., Herrmann, H.-G., Altpeter, I., Tschuncky, R., Eds.; Woodhead Publishing an Imprint of Elsevier: Cambridge, MA, USA, 2016; pp. 225–262. ISBN 9780081000403. [Google Scholar]
- Shaw, B.A.; Evans, J.T.; Wojtas, A.S.; Suominen, L. Grinding process control using the magnetic Barkhausen noise method. In Electromagnetic Nondestructive Evaluation (II); Albanese, R., Rubinaccci, G., Takagi, T., Udpa, S.S., Eds.; IOS Press: Amsterdam, The Netherlands, 1998; pp. 82–91. ISBN 90 5199 375 7. [Google Scholar]
- Ilker Yelbay, H.; Cam, I.; Hakan Gür, C. Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique. NDT E Int. 2010, 43, 29–33. [Google Scholar] [CrossRef]
- Schuster, S.; Dertinger, L.; Dapprich, D.; Gibmeier, J. Application of magnetic Barkhausen noise for residual stress analysis—Consideration of the microstructure. Mater. Test. 2018, 60, 545–552. [Google Scholar] [CrossRef]
- Blaow, M.; Evans, J.T.; Shaw, B.A. Effect of hardness and composition gradients on Barkhausen emission in case hardened steel. J. Magn. Magn. Mater. 2006, 303, 153–159. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Cotterell, M.; Tanner, D.A.; Mészáros, I. Characterisation of ferritic stainless steel by Barkhausen techniques. NDT E Int. 2004, 37, 489–496. [Google Scholar] [CrossRef]
- Neyra Astudillo, M.R.; Núñez, N.; López Pumarega, M.I.; Ruzzante, J.; Padovese, L. Magnetic Barkhausen noise and magneto acoustic emission in stainless steel plates. Procedia Mater. Sci. 2015, 8, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Anglada-Rivera, J.; Padovese, L.R.; Capó-Sánchez, J. Magnetic Barkhausen Noise and hysteresis loop in commercial carbon steel: Influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 2001, 231, 299–306. [Google Scholar] [CrossRef]
- Pal’a, J.; Bydžovský, J. Barkhausen noise as a function of grain size in non-oriented FeSi steel. Measurement 2013, 46, 866–870. [Google Scholar] [CrossRef]
- Kikuchi, H.; Ara, K.; Kamada, Y.; Kobayashi, S. Effect of microstructure changes on barkhausen noise properties and hysteresis loop in cold rolled low carbon steel. IEEE Trans. Magn. 2009, 45, 2744–2747. [Google Scholar] [CrossRef]
- Liu, T.; Kikuchi, H.; Kamada, Y.; Ara, K.; Kobayashi, S.; Takahashi, S. Comprehensive analysis of Barkhausen noise properties in the cold rolled mild steel. J. Magn. Magn. Mater. 2007, 310, e989–e991. [Google Scholar] [CrossRef]
- Ghanei, S.; Kashefi, M.; Mazinani, M. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel. J. Magn. Magn. Mater. 2014, 356, 103–110. [Google Scholar] [CrossRef]
- Knyazeva, M.; Rozo Vasquez, J.; Gondecki, L.; Weibring, M.; Pöhl, F.; Kipp, M.; Tenberge, P.; Theisen, W.; Walther, F.; Biermann, D. Micro-magnetic and microstructural characterization of wear progress on case-hardened 16MnCr5 gear wheels. Materials 2018, 11, 2290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baak, N.; Schaldach, F.; Nickel, J.; Biermann, D.; Walther, F. Barkhausen Noise Assessment of the Surface Conditions Due to Deep Hole Drilling and Their Influence on the Fatigue Behaviour of AISI 4140. Metals 2018, 8, 720. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Chen, Z.J.; Jiles, D.C.; Biner, S. Variation of coercivity of ferromagnetic material during cyclic stressing. IEEE Trans. Magn. 1994, 30, 4593–4595. [Google Scholar] [CrossRef]
- Baak, N.; Nickel, J.; Biermann, D.; Walther, F. Barkhausen noise-based fatigue life prediction of deep drilled AISI 4140. Procedia Struct. Integr. 2019, 18, 274–279. [Google Scholar] [CrossRef]
- Palit Sagar, S.; Parida, N.; Das, S.; Dobmann, G.; Bhattacharya, D.K. Magnetic Barkhausen emission to evaluate fatigue damage in a low carbon structural steel. Int. J. Fatigue 2005, 27, 317–322. [Google Scholar] [CrossRef]
- Baldev, R.; Jayakumar, T.; Moorthy, V.; Vaidyanathan, S. Characterisation of microstructures, deformation, and fatigue damage in different steels using magnetic Barkhausen emission technique Barkhausen Emission Technique. Russ. J. Nondestruct. Test. 2001, 37, 789–798. [Google Scholar] [CrossRef]
- Tenkamp, J.; Haack, M.; Walther, F.; Weibring, M.; Tenberge, P. Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5. Matr. Test. 2016, 58, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Takács, N.; Posgay, G.Y.; Harasztosi, L.; Beke, D.L. Correlation between Barkhausen-noise and corrugation of railway rails. J. Mater. Sci. 2002, 37, 3599–3601. [Google Scholar] [CrossRef]
- Dubec, J.; Neslusan, M. Multiparametric analysis of surface integrity after turning through Barkhausen noise in relation to tool wear. MM Sci. J. 2012, 314–317. [Google Scholar] [CrossRef]
- Teschke, M.; Rozo Vasquez, J.; Baak, N.; Samfaß, L.; Walther, F. Characterization of forming-induced damage of bent and hot flat rolled DP800 steel sheets by micromagnetic measurement. In Proceedings of the 13th International Conference on Barkhausen Noise and Micromagnetic Testing, Prague, Czech Republic, 23–26 Semptember 2019; Volume 19. [Google Scholar]
- Samfaß, L.; Baak, N.; Meya, R.; Hering, O.; Tekkaya, A.E.; Walther, F. Micro-magnetic damage characterization of bent and cold forged parts. Prod. Eng. Res. Dev. 2020, 14, 77–85. [Google Scholar] [CrossRef]
- Samfaß, L.; Walther, F. Influence of forming induced damage on the fatigue behaviour and magnetic properties of 16MnCrS5 steel (in German). In Werkstoffe und Bauteile auf dem Prüfstand, 36; Tagung Werkstoffprüfung 2018; Stahlinstitut VDE: Dusseldorf, Germany, 2018; pp. 39–44. ISBN 978-3-941269-99-6. [Google Scholar]
- Starke, P.; Walther, F.; Eifler, D. Fatigue assessment and fatigue life calculation of quenched and tempered SAE 4140 steel based on stress–strain hysteresis, temperature and electrical resistance measurements. Fat. Frac. Eng. Mater. Struct. 2007, 30, 1044–1051. [Google Scholar] [CrossRef]
- Starke, P.; Walther, F.; Eifler, D. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens. Mater. Test. 2018, 60, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Liebsch, C.; Li, X.; Lohmar, J.; Hirt, G. Influence of process conditions and pore morphology on the closure rate of pores in hot rolling of steel. In Proceedings of the 13th International Conference on Numerical Methods in Industrial Forming Processes, Portsmouth, NH, USA, 23–27 June 2019. [Google Scholar]
- Dahl, T.; Hoff, H. Grundlagen des Walzverfahrens, 2nd ed.; Stahleisen Verlag: Düsseldorf, Germany, 1955. [Google Scholar]
- Fleck, N.A.; Hutchinson, J.W. Void growth in shear. Proc. R. Soc. Lond. A 1986, 407, 435–458. [Google Scholar] [CrossRef]
- Engler, O.; Huh, M.Y.; Tomé, C.N. A study of through-thickness texture gradients in rolled sheets. Metall. Mater. Trans. 2000, 31, 2299–2315. [Google Scholar] [CrossRef]
- Dobman, G.; Kröning, M.; Theiner, W.; Willems, H.; Feidler, U. Nondestructive characterization of materials ultrasonic and micromagnetie techniques) for strength and toughness prediction and the detection of early creep damage. Nucl. Eng. Des. 1992, 157, 137–158. [Google Scholar] [CrossRef]
- Hilzinger, R.; Rodewald, W. Magnetic Materials: Fundamentals, Products, Properties, Applications; Vacuumschmelze GmbH & Co. KG: Hanau, Germany, 2013; ISBN 978 3 89578 352 4. [Google Scholar]
- McCurrie, R.A. Ferromagnetic Materials: Structure and Properties; Academic Press Limited: London, UK, 1994; ISBN 0-12-482495-1. [Google Scholar]
- Wolter, B.; Gabi, Y.; Conrad, C. Nondestructive testing with 3MA—An overview of principles and applications. Appl. Sci. 2019, 9, 1068. [Google Scholar] [CrossRef] [Green Version]
- Fraunhofer Institut Zerstörungsfreie Prüfverfahren (IZFP). Testing System 3MA User Manual; Version 1.81; Fraunhofer Institut Zerstörungsfreie Prüfverfahren (IZFP): Saarbrücken, Germany, 2015. [Google Scholar]
- Wang, Z.D.; Gu, Y.; Wang, Y.S. A review of three magnetic NDT technologies. J. Magn. Magn. Mater. 2012, 324, 382–388. [Google Scholar] [CrossRef]
- Jiles, D.C. Dynamics of domain magnetization and the Barkhausen effect. Czech. J. Phys. 2000, 50, 893–924. [Google Scholar] [CrossRef]
- Saby, M.; Bouchard, P.-O.; Bernacki, M. Void closure criteria for hot metal forming: A review. J. Manuf. Process. 2015, 19, 239–250. [Google Scholar] [CrossRef]
- Stewart, D.M.; Stevens, K.J.; Kaiser, A.B. Magnetic Barkhausen noise analysis of stress in steel. Curr. Appl. Phys. 2004, 4, 308–311. [Google Scholar] [CrossRef]
- Hwang, D.G.; Kim, H.C. The influence of plastic deformation on Barkhausen effects and magnetic properties in mild steel. J. Phys. D 1988, 21, 1807–1813. [Google Scholar] [CrossRef]
- Rösler, J.; Bäker, M.; Harders, H. Mechanical Behaviour of Engineering Materials; Springer-Verlag: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-73446-8. [Google Scholar]
- Eifler, D.; Piotrowski, A. Characterization of cyclic deformation behaviour by mechanical, thermometrical and electrical methods. Mater. Sci. Eng. Technol. 1995, 26, 121–127. [Google Scholar] [CrossRef]
- Matthiessen, A.; Vogt, C., IV. On the influence of temperature on the electric conducting-power of alloys. Philos. Trans. R. Soc. 1864, 154, 167–200. [Google Scholar] [CrossRef]
- Kasap, S. Springer Handbook of Electronic and Photonic Materials; Springer Science + Business Media Inc: Boston, MA, USA, 2006; ISBN 978-0-387-29185-7. [Google Scholar]
C | Si | Mn | Cu | Al | Mo | Ni | Cr | V | Nb | Ti | Co |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.4 | 1.8 | 0.05 | 0.03 | 0.02 | 0.05 | 0.2 | <0.005 | 0.04 | 0.02 | 0.05 |
Micromagnetic Analysis Technique | Parameter | Description | Unit |
---|---|---|---|
Harmonic analysis (HA) | A3 | Amplitude of 3rd harmonics | A/cm |
K | Harmonic distortion | - | |
Barkhausen noise (BN) | Mmax | Maximum magnetic BN amplitude | V |
Hcm | Coercive magnetic field by (BN) | A/cm | |
Incremental permeability (IP) | Hcµ | Coercive magnetic field by (IP) | A/cm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teschke, M.; Rozo Vasquez, J.; Lücker, L.; Walther, F. Characterization of Damage Evolution on Hot Flat Rolled Mild Steel Sheets by Means of Micromagnetic Parameters and Fatigue Strength Determination. Materials 2020, 13, 2486. https://doi.org/10.3390/ma13112486
Teschke M, Rozo Vasquez J, Lücker L, Walther F. Characterization of Damage Evolution on Hot Flat Rolled Mild Steel Sheets by Means of Micromagnetic Parameters and Fatigue Strength Determination. Materials. 2020; 13(11):2486. https://doi.org/10.3390/ma13112486
Chicago/Turabian StyleTeschke, Mirko, Julian Rozo Vasquez, Lukas Lücker, and Frank Walther. 2020. "Characterization of Damage Evolution on Hot Flat Rolled Mild Steel Sheets by Means of Micromagnetic Parameters and Fatigue Strength Determination" Materials 13, no. 11: 2486. https://doi.org/10.3390/ma13112486
APA StyleTeschke, M., Rozo Vasquez, J., Lücker, L., & Walther, F. (2020). Characterization of Damage Evolution on Hot Flat Rolled Mild Steel Sheets by Means of Micromagnetic Parameters and Fatigue Strength Determination. Materials, 13(11), 2486. https://doi.org/10.3390/ma13112486