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Abstract: Magnetic Resonance Imaging (MRI) is a powerful, noninvasive and nondestructive
technique, capable of providing three-dimensional (3D) images of living organisms. The use of
magnetic contrast agents has allowed clinical researchers and analysts to significantly increase
the sensitivity and specificity of MRI, since these agents change the intrinsic properties of the
tissues within a living organism, increasing the information present in the images. Advances in
nanotechnology and materials science, as well as the research of new magnetic effects, have been the
driving forces that are propelling forward the use of magnetic nanostructures as promising alternatives
to commercial contrast agents used in MRI. This review discusses the principles associated with the
use of contrast agents in MRI, as well as the most recent reports focused on nanostructured contrast
agents. The potential applications of gadolinium- (Gd) and manganese- (Mn) based nanomaterials
and iron oxide nanoparticles in this imaging technique are discussed as well, from their magnetic
behavior to the commonly used materials and nanoarchitectures. Additionally, recent efforts to
develop new types of contrast agents based on synthetic antiferromagnetic and high aspect ratio
nanostructures are also addressed. Furthermore, the application of these materials in theragnosis,
either as contrast agents and controlled drug release systems, contrast agents and thermal therapy
materials or contrast agents and radiosensitizers, is also presented.

Keywords: nanomaterials; Gd-based contrast agents; Mn-based contrast agents; iron oxide
nanoparticles; magnetic nanodiscs; synthetic antiferromagnetic nanostructures; nanowires; contrast
agents; MRI; theragnosis

1. Introduction

Magnetic Resonance Imaging (MRI) is one of the most powerful techniques in medical imaging, due
to its noninvasiveness and radiation-free nature. Compared with other clinical imaging techniques, MRI
presents several advantages associated with image flexibility and high spatial resolution, good contrast
in soft tissues and also the ability to provide information related to blood circulation and blood vessels.
On the other hand, its major disadvantage is the low sensitivity [1]. However, in recent decades,
several types of contrast agents have been developed to improve the MRI sensitivity and enhance
the information present in the images, namely by using magnetic ions and magnetic nanoparticles
(NPs) [2].

Contrast agents based on Gadolinium(III), so called Gd(III)-based (GBCAs), are among the most
widely used contrast agents in MRI. About 40% of MRI scans are performed with GBCAs, and, in the
case of neuro MRI exams, GBCAs are used about 60% of the time [3]. However, GBCAs have raised
various toxicity concerns associated with systemic fibrosis, which is a potentially fatal condition.

Also, a certain percentage of the administrated GBCAs can persist in the organism for long
periods, usually in form of Gd(III) [4]. Superparamagnetic iron oxide nanoparticles (SPIONs) have
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been developed and approved as possible substitutes for GBCAs. Such particles have distinct
characteristics, namely, biocompatibility, easy metabolization, high saturation magnetic moments that
can be controlled by tuning the particle size and composition, and easy surface functionalization [5].
However, these contrast agents were not commercially successful [3]. This may be attributed to the
fact that they are size-restricted by the superparamagnetic regime, which limits the magnetic moment
of each particle, and, through simulations, it was verified that the optimal dimensions of particles for
MRI contrast agents surpass such superparamagnetic threshold [6]. Among the various nanomaterials
that can be found in the literature with different shapes and compositions, magnetic nanostructures
(MNS), and in particular, nanodiscs and nanowires, are promising alternatives to SPIONs due to their
larger magnetic moments that are not restrained by the superparamagnetic regime [7]. Also, MNS are
a promising system for theragnostics, since they can be used as contrast agents and, at the same time,
generate localized heating inside the body with the use of an external alternating current (AC) magnetic
field, or be used for controlled drug delivery, photodynamic therapy and neutron capture therapy [8,9].

This review is focused on the recent advances in magnetic nanoparticles as contrast enhancing
agents in MRI. Consequently, first we will discuss the principles of MRI regarding the use of T1 and T2

contrast agents, addressing, simultaneously, the contrast agents most widely used in clinical practice.
Then, we explore recent reports regarding the development of new types of contrast agents based on
MNS: SPIONs, nanodiscs, synthetic antiferromagnets and high aspect ratio nanowires. Furthermore,
the use of these nanostructures in both cancer diagnosis and therapeutics will also be discussed.

2. T1 and T2 Contrast Agents

Contrast agents are used to improve the MRI images of tissues and organs by changing the
relaxation times of the water protons and, therefore, modifying the magnitude of the signal in the
body regions where the agent is incorporated [10]. An MRI contrast agent normally shortens the
rates of all of the relaxation processes; however, each substance predominantly influences one of
them. Contrast agents that mostly shorten the relaxation time of the longitudinal component of the
magnetization are called T1, or positive contrast agents, while the T2, or negative, contrast agents,
mainly reduce the relaxation time of the transverse component [2]. Usually, two main parameters are
used to evaluate the performance of a contrast agent: longitudinal relaxivity (r1) and relaxivity ratio,
i.e., transversal relaxivity (r2)/longitudinal relaxivity (r1). Here, the value of r1 is related to the signal
enhancement potential of a contrast agent, while the r2/r1 ratio is used to define the category within
which a contrast agent fits, i.e., either positive (T1) or negative (T2). Generally, contrast agents that
have a low r2/r1 ratio (<5) are classified as T1 substances, while agents that have a larger r2/r1 ratio
(>10) are categorized as T2 contrast media [11].

2.1. T1 Contrast Agents

The longitudinal relaxation is directly related to the energy loss from the spin to its neighbors
and represents the realignment process of the longitudinal component of the magnetization with
the external magnetic field. When a strong external magnetic field (B0) is applied to a living tissue,
the magnetic moments of the hydrogen nuclei, which are naturally randomly oriented, will be oriented
parallel or antiparallel to the field. The energy difference between these two states is very small and
originates a net magnetization vector (Mz) that does not produce any measurable signal due to its
static equilibrium state. To obtain information from the spins, a radiofrequency (RF) pulse at the
Larmor frequency, i.e., the frequency at which the nuclei freely precess about B0, must be applied.
Through this interaction, it becomes possible to identify two relaxation processes resulting from the
application of a pulse that causes Mz to flip 90◦ from the positive z-axis to the transverse one. After the
RF transmitter is switched off, each individual magnetic moment will begin to precess about B0 at
its own Larmor frequency, and an equilibrium state will be sought. This means that the transversal
magnetization will decay over time (free induction decay (FID)) due to the dephasing of the magnetic
moments, originating a signal that oscillates at the Larmor frequency, and the longitudinal component
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of the magnetization will return to its initial maximum value along the direction of B0 [12]. In this
context, the T1 relaxation time provides a measure of how fast the net magnetization vector returns
to its initial state parallel to B0. This parameter is defined as the time required for Mz to recover to
approximately 63% of its equilibrium value after the application of an RF pulse, as represented in
Figure 1 [13]. Consequently, the MRI image can be improved by reducing the T1 relaxation time,
which yields a bright contrast in the acquired pictures. This can be achieved by using positive contrast
agents, such as paramagnetic ions or materials.
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Figure 1. T1 relaxation process. Diagram of the T1 relaxation when a 90◦ RF pulse was applied to a
system at equilibrium. Mz is reduced to zero, but then returns gradually to its equilibrium value if
no further RF pulses are applied. Adapted from Ridgway, J.P. “Cardiovascular magnetic resonance
physics for 7clinicians: Part I.” J. Cardiovasc. Magn. Reson. 12 (2010) 71.

Complexes of gadolinium (Gd(III)), manganese (Mn(II)) and iron (Fe (III)) are widely adopted
as paramagnetic T1 contrast agents in MRI. Gd(III) is characterized by seven unpaired electrons in
the valence 4f orbital, while Mn(II) and Fe(III) contains five unpaired electrons in the d subshell.
Nevertheless, all of them present high magnetic moments, large longitudinal electronic relaxation times
(∼10−8 s) and no magnetization in the absence of an external magnetic field [3,10,14,15]. There are
several transition and lanthanide metals with unpaired electrons, but to be an efficient contrast agent,
the electron spin-relaxation time in the metal needs to match the Larmor frequency of the protons [2].
Additionally, the main problem associated with paramagnetic heavy metal ions in their native form is
their toxicity [16]. Free Gd (Gd(III)), for instance, is very toxic and must be administered in its stable
form to prevent the release of the metal ion in vivo. As a result, several types of GBCAs have been
developed to satisfy these conditions [3,14]. An octadentate polyaminopolycarboxylato-based ligand
is present in Gb-based compounds exhibiting the ninth coordination sites available for water linkage.
Among all the possible metal complexes, discrete Gd(III) chelates are the most suitable paramagnetic
contrast agents, dominating the field of contrast agents used in clinical practice. Clinically-used GBCAs
(as well as the majority of the other contrast agents) can be intravenously or orally administrated, and
they are divided into three different groups: blood pool contrast agents (BPCAs), extracellular fluid
(ECF) agents and organ-specific agents [10]. ECF agents, due to their low molecular weight, travel first
to the heart and are then distributed in both intravascular and cellular media. On the other hand, blood
pool agents are considered good contrast agents to image arteries and veins, as, after administration,
they are confined to the intravascular space. Organ-specific agents are capable of targeting specific
tissues and organs, such as liver, or lymph nodes. The main contrast agents used clinically and some
examples that have received approval for clinical trials are summarized in Table 1.
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Table 1. Commercially-approved contrast agents and some examples that have received approval for
clinical trials [3,10,17,18].

Trade Name Generic Name Administration Route
(Category) Applications Approval

Dotarem/
Clariscan Gadoterate meglumine Intravenous (ECF) Multipurpose 1989 EU

2013 US

Prohance Gadoteridol Intravenous (ECF) Multipurpose 1992

Gadovist (EU)
Gadavist (US) Gadobutrol Intravenous (ECF) Multipurpose 1998 EU

2011 US

Magnevist a Gadopentetate
dimeglumine Intravenous (ECF) Multipurpose 1988

Omniscan a Gadodiamide Intravenous (ECF) Multipurpose 1993

Optimark a Gadoversetamide Intravenous (ECF) Multipurpose 1999

Multihance Gadobenate
dimeglumine Intravenous (ECF) Liver, Multipurpose 2004

Gadomer Gadomer-17 Intravenous (ECF) Multipurpose -

Vistarem Gadomelitol Intravenous (Blood Pool) Multipurpose -

Clariscan PEG-feron (USPIO) Intravenous (Blood Pool) Multipurpose -

Sinerem/
Combidex

Ferumoxtran-10
(USPIO) Intravenous (Blood Pool) Multipurpose -

Ablavar (Vasovist,
Angiomark) b

Gadofosveset
trisodium Intravenous (Blood Pool) Angiography 2005 EU

2008 US

Primovist (EU)
Eovist (US)

Disodium gadoxetic
acid

Intravenous
(organ-specific) Liver 2005 EU

2008 US

Teslascan Mangafodipir
trisodium

Intravenous
(organ-specific) Liver, myocardium 1997

Endorem (EU)
Feridex (US) Ferumoxides (SPIO) Intravenous

(organ-specific) Liver 1996 US

- Sprodiamde Intravenous
(organ-specific)

myocardium, brain
perfusions -

Sinerem/
Combidex

Ferumoxtran-10
(USPIO)

Intravenous
(organ-specific)

metastatic lymph
nodes, macrophage

imaging
-

Feraheme c Ferumoxytol (USPIO) Intravenous
(organ-specific)

brain lesions, liver,
lymph nodes, blood

vessels

2009 US
2013 UE

Lumirem/
GastroMARK ferumoxsil (MPIO) Oral Gastrointestinal tract 1996

Ferriseltz ferric ammonium
citrate Oral Gastrointestinal tract 1992

Lumenhance manganese chloride Oral Gastrointestinal tract 1997
a Suspended by the European Medicines Agency in 2017. b Approved for magnetic resonance angiography (MRA)
but has been discontinued. c Approved only for iron replacement therapy.

To further reduce the toxicity of the free metal ions and have contrast agents that cross the blood
brain barrier (BBB), research in the field of paramagnetic contrast agents has focused, in the last
few years, on the development of nanostructured materials [15]. Paramagnetic NPs present several
advantages, such as the tunability of size and shape compared to the contrast agents involving free
metal ions; therefore, a wide range of approaches have been adopted to produce paramagnetic NPs for
MRI. In general, the development of these NPs can be divided in two main classes: nanostructured
materials (i.e., Gd2O3, Mn3O4, Dy2O3, MnO) with incorporated paramagnetic ions [19–23]; or the
postfunctionalization of the NPs with lanthanide coordination complexes. The latter approach has
been developed using different nanoparticle scaffolds as supports (quantum dots, gold, silica and
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micelles), which allow a subsequent doping to be performed with pentetic acid (DTPA), dodecane
tetraacetic acid (DOTA), or derivates [24–27].

Iron-based NPs are among the most widely used inorganic materials in nanomedicine, and some
of them have already been used in clinical trials and practices as MRI contrast agents [28].
In contrast to Gd-based contrast agents, iron oxide NPs are typically negative, i.e., T2, contrast agents
(e.g., superparamagnetic iron oxide NPs). Since, these types of contrast agents are associated with
background interference and low resolution, several studies have been carried out, leading to the
development of ultrasmall iron oxide (USIO) NPs [5,28–35] and magnetic nanowires (NWs) [31,36–39].
The T1 enhancement of USIO-NPs and NWs is associated with increased surface area, suppressed
magnetization and surface effects on magnetization. Additionally, when the nanoparticles are too small,
their magnetization can be easily flipped using thermal energy. Under this condition, their behavior is
paramagnetic [40–43].

Besides the structures mentioned above, other types of structures have been assessed, such as stealth
rare earth oxide nanodiscs [44], linear arrays of magnetite nanoparticles [45] and antiferromagnetic
compounds [21,46,47].

2.2. T2 Contrast Agents

Transverse relaxation depends on the spin precession frequency around B0, and is defined by
the T2 relaxation time. This parameter represents the interval of time during which the transverse
magnetization decreases to approximately 37% of its initial value, as presented in Figure 2. Firstly,
a RF pulse is applied to excite the spins that start to precess in phase. However, the local magnetic
environment and spin–spin interactions cause small differences in the Larmor frequency, and the
spins start to dephase, leading to T2 relaxation, as illustrated in Figure 2 [48]. However, in that
same figure, it is possible to verify that the real signal decays faster than the prediction based on
the T2 relaxation time. In fact, a faster exponential decrease was observed as a function of the T2*
time constant, which takes into account not only the intrinsic effects associated with T2, but also the
dephasing resulting from extrinsic magnetic inhomogeneities, such as defects within the main static
magnetic field, B0, or susceptibility differences between adjacent tissues [49].

Therefore, superparamagnetic iron oxides NPs (SPIONs) have been considered a possible substitute
to Gd(III)-complexes due to their high saturation magnetization, biocompatibility, ease of metabolization
and surface functionalization [3,10,50–57]. Recently, it was also demonstrated that several types of
NPs were able to cross the BBB, increasing the possibility of early diagnosis of several diseases in the
brain [58].

The major drawback of these nanoparticles is that the size is restrained by the superparamagnetic
regime, which designates the maximum size that a particle can have to sustain zero remanent
magnetization, which is a fundamental property, since it prevents the aggregation of particles in the
absence of a magnetic field. For this reason, each particle has a constrained magnetic moment, and the
optimized particle size for T2 MRI contrasts agents (radius of about 20 nm) usually surpasses the
superparamagnetic limit [6,59]. To overcome these limitations, several authors have studied various
alternatives, namely, high aspect-ratio ferromagnetic NPs [39,60] and synthetic antiferromagnetic (SAF)
nanostructures [61].
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equilibrium value. This decaying signal is called Free Induction Decay (FID). Adapted from Ridgway,
J.P. “Cardiovascular magnetic resonance physics for clinicians: Part I.” J. Cardiovasc. Magn. Reson. 12
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3. Magnetic Properties

The main advantages of NPs are associated with their high surface-to-volume ratios [62–64].
Through several studies, it has been stated that the saturation value of magnetization builds up linearly
with particle’s dimensions, until it achieves a bulk value. On the other hand, the shape of the particle
affects the magnetic properties, and the correlation between magnetization (M) and geometry remains
a subject of study for biomedical applications. Regarding the magnetic properties, NPs are usually
designed as paramagnetic, diamagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic [62,63].

3.1. Paramagnetic Contrast Agents

Paramagnetic contrast compounds involve metal ions/atoms that have uncoupled magnetic
moments [10,15,40,62,63]. The unpaired free electrons produce magnetic dipoles which are randomly
aligned at equilibrium state, presenting an average magnetic moment equal to zero. Thus, paramagnetic
materials have moments with no long-range order, where the dipoles are aligned only when an
external magnetic field is applied, and they possess a small positive magnetic susceptibility [62].
Regarding their MRI application, paramagnetic nanomaterials possess many advantages compared to
traditional coordination complexes; for instance, their composition, size and shape are readily tunable.
The localized density effects enhance the magnetic attributes of nanoparticles, increasing their T1

and/or T2 relaxivity values when compared to the corresponding coordination complexes. Moreover,
longer blood circulation time is facilitated by pharmacokinetics [15].

In addition, it has been stated that paramagnetic properties can also arise from dimensional
confinement. In the regime of a single magnetic domain (i.e., superparamagnetism), when the size
of the particle is below a critical value, i.e., typically 5 nm [5,30–35], the magnetization can be easily
flipped by the thermal energy. This leads to a T1 contrast improvement that can be attributed to various
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aspects, such as the suppression of the magnetization, the increased surface iron center exposure,
surface effects and water diffusion [40].

3.2. Superparamagnetic Nanoparticles

Superparamagnetism in SPIONs arises from paramagnetic iron and is characterized by the zero
coercivity and large magnetic moment in the presence of an external magnetic field [50]. SPIONs are
single domain nanostructures where a decoupling of the magnetization of the particle from the lattice
due to thermal energy overcomes the anisotropy energy [65]. This happens when the sample volume
is reduced below a critical value, or superparamagnetic limit, in which more energy is required to
create a domain wall than to support the external magnetostatic energy of the single domain state.
The magnetic anisotropy energy, E, which is responsible for all the magnetic moments along the same
direction, is presented in Equation (1):

E(θ) = KeffVsen2(θ) (1)

where Keff is the anisotropy constant, V corresponds to the volume of the nanoparticle and θ is the angle
between the easy axis and the magnetization. Therefore, KeffV is the energy barrier between the two
reverse easy directions of magnetization that are energetically equivalent. With decreasing particle size,
KeffV decreases until the value of thermal energy and fluctuations of the overall magnetic moment can
take place within the particle. These thermal fluctuations then affect the orientation of the magnetization
if they are large enough to overcome the magnetic anisotropy barrier. This change in magnetization
resembles the behavior of a paramagnetic material, albeit involving a magnetic moment that is
several orders of magnitude larger, leading to the creation of a superparamagnet [40,51,59]. Two key
features describe a superparamagnetic system: lack of hysteresis, and data of different temperatures
superimposed onto a universal curve of M vs. H/T [66]. The relaxation time of moment τ is given by
the Néel-Brown expression in Equation (2), where kB is the Boltzmann constant, and τ0 ≈ 10−9 s.

τ = τ0 exp
(

KeffV
kBT

)
(2)

If the total magnetization of the particles reverses at shorter times than the experimental timescales,
the system will appear to be superparamagnetic. If not, the system is in the blocked state [40,51,59,65,
67,68], as presented in Figure 3.Materials 2020, 13, x FOR PEER REVIEW 8 of 29 
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3.3. Synthetic Antiferromagnetic

SAFs are a novel type of magnetic nanoparticle; their structure consists of two ferromagnetic
layers separated by a nonmagnetic one. The nomenclature of ‘synthetic antiferromagnetic’ refers to the
antiparallel alignment of the ferromagnetic layers, which provides almost zero magnetization in the
presence of low applied fields [69]. The interaction between two ferromagnetic layers can be either
magnetostatic or by interlayer exchange coupling. The former one strongly relies on the aspect ratio of
the architecture, while the latter is determined by the choice of the material and the number of atomic
layers [70]. Moreover, oscillatory dependence on the thickness of the spacer has been found [71,72].
Furthermore, SAFs are nanostructures which have been optimized to have negligible remanence, low
susceptibility around zero field and a distinct, tunable, switch to full magnetization, which allows high
saturation magnetization values at low applied fields [61,69,73].

3.4. High Aspect Ratio Nanowires

The unusual properties of nanowires (NWs) arise from their high-density of electronic states,
high surface to volume ratio and high aspect ratio. In comparison with other low-dimensional systems,
NWs have two quantum-confined and one unconfined direction that make it possible to tune their
magnetic properties, namely, the Curie temperature, coercivity on both axes, orientation of the magnetic
easy axis, saturation field and magnetization and remanence magnetization [7]. Moreover, in NWs
with multiple segments along their length, an antiferromagnetic coupling can be induced by controlling
the separation between the magnetic layers [74]. Their magnetic properties can be tuned by changing
the wire length, diameter, chemical composition and thickness of the segmented layers. NWs can be
considered feasible substitutes to spherical NPs, as they interact differently due to their anisotropy
properties that arise from the high length to diameter ratio [75–78]. Moreover, the prevalent shape
anisotropy induced by the high aspect ratio and higher magnetic moments make them attractive as
contrast agents in MRI, as well as in several other biomedical applications [39].

4. Iron Oxide Nanoparticles

NPs are spherical nanostructures with a size between 1 and 100 nm, making them comparable to
biomolecules [79,80]. Furthermore, they present unique physical and chemical properties which arise
from the fact that a great proportion of their atoms is present on the nanoarchitecture surface [79,81].
These distinct attributes, along with their reduced size, have made these nanoformations a widely
studied material in biomedicine, particularly as diagnostic, theranostic or therapeutic tools [81,82].
Nevertheless, only a few elements can be used for such applications due to toxicity problems [80,83].
Within this context, iron oxide NPs have demonstrated great potential, especially as MRI contrast agents,
since they possess low toxicity, biodegradability, chemical stability under physiological conditions,
and a fast response when an external magnetic field is applied [52,80]. Consequently, various authors
have been studying the use of these nanostructures in the context of that medical imaging technique.

An example is the work from Hobson et al. [84], where the suitability of SPIONs as T2 contrast
agents was examined. Here, the goal was to improve the contrast produced by NPs in a T2-weighted
MRI. Therefore, 5 nm spherical nanoarchitectures were fabricated via high temperature thermal
decomposition, coated with oleic acid and then agglomerated inside a self-assembling polymer
(chitosan amphiphile) through physical means without cross-linking, forming raspberry SPIONs
(Figure 4). After the synthesis process, it was verified that these nanostructures were colloidally stable
within various biomedical liquids. Afterwards, the MR relaxivities of single, as well as clustered,
NPs were measured, as an increase on their spin-spin (r2) to spin-lattice (r1) relaxation ratio (r2/r1),
i.e., from 3.0 to 79.1 had been noticed when grouping occurred; this gave rise to better negative
contrast. Furthermore, the aggregated nanoarchitectures were intravenously administered to mice to
analyze their biodistribution and performance in in vivo MRI studies. As a result, it was observed
that only the liver and the spleen accumulated the nanostructures, and that these exhibited a blood
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half-life of 28.3 min. Additionally, MRI tests demonstrated an effective contrast, associated with these
raspberry SPIONs, in the two organs where they were accumulated, providing clear images of the
liver vasculature, including the portal vein, since they were localized in the extravascular space of that
organ (Figure 5).

Materials 2020, 13, x FOR PEER REVIEW 9 of 29 

 

widely studied material in biomedicine, particularly as diagnostic, theranostic or therapeutic tools 
[81,82]. Nevertheless, only a few elements can be used for such applications due to toxicity problems 
[80,83]. Within this context, iron oxide NPs have demonstrated great potential, especially as MRI 
contrast agents, since they possess low toxicity, biodegradability, chemical stability under 
physiological conditions, and a fast response when an external magnetic field is applied [52,80]. 
Consequently, various authors have been studying the use of these nanostructures in the context of 
that medical imaging technique. 

An example is the work from Hobson et al. [84], where the suitability of SPIONs as T2 contrast 
agents was examined. Here, the goal was to improve the contrast produced by NPs in a T2-weighted 
MRI. Therefore, 5 nm spherical nanoarchitectures were fabricated via high temperature thermal 
decomposition, coated with oleic acid and then agglomerated inside a self-assembling polymer 
(chitosan amphiphile) through physical means without cross-linking, forming raspberry SPIONs 
(Figure 4). After the synthesis process, it was verified that these nanostructures were colloidally stable 
within various biomedical liquids. Afterwards, the MR relaxivities of single, as well as clustered, NPs 
were measured, as an increase on their spin-spin (r2) to spin-lattice (r1) relaxation ratio (r2/r1), i.e., from 
3.0 to 79.1 had been noticed when grouping occurred; this gave rise to better negative contrast. 
Furthermore, the aggregated nanoarchitectures were intravenously administered to mice to analyze 
their biodistribution and performance in in vivo MRI studies. As a result, it was observed that only 
the liver and the spleen accumulated the nanostructures, and that these exhibited a blood half-life of 
28.3 min. Additionally, MRI tests demonstrated an effective contrast, associated with these raspberry 
SPIONs, in the two organs where they were accumulated, providing clear images of the liver 
vasculature, including the portal vein, since they were localized in the extravascular space of that 
organ (Figure 5). 

 
Figure 4. Transmission electron microscopy (TEM) micrograph depicting a raspberry SPION with 
uranyl acetate (1%) staining. Reprinted from Hobson, N.J.; Weng, X.; Siow, B.; Veiga, C.; Ashford, M.; 
Thanh, N.T.; Schätzlein, A.G.; Uchegbu, I.F. “Clustering superparamagnetic iron oxide nanoparticles 
produces organ-targeted high-contrast magnetic resonance images.” Nanomedicine 14 (2019) 1135. 

 
Figure 5. T2-weighted axial MRI pictures illustrating a mice liver cross section 60 min 
postadministration of (a) raspberry SPIONs; (b) commercially available contrast agent 
Ferucarbotran®. The arrows in (a) show hepatic liver vessels, that are not observed in (b). Reprinted 

Figure 4. Transmission electron microscopy (TEM) micrograph depicting a raspberry SPION with
uranyl acetate (1%) staining. Reprinted from Hobson, N.J.; Weng, X.; Siow, B.; Veiga, C.; Ashford, M.;
Thanh, N.T.; Schätzlein, A.G.; Uchegbu, I.F. “Clustering superparamagnetic iron oxide nanoparticles
produces organ-targeted high-contrast magnetic resonance images.” Nanomedicine 14 (2019) 1135.

Materials 2020, 13, x FOR PEER REVIEW 9 of 29 

 

widely studied material in biomedicine, particularly as diagnostic, theranostic or therapeutic tools 
[81,82]. Nevertheless, only a few elements can be used for such applications due to toxicity problems 
[80,83]. Within this context, iron oxide NPs have demonstrated great potential, especially as MRI 
contrast agents, since they possess low toxicity, biodegradability, chemical stability under 
physiological conditions, and a fast response when an external magnetic field is applied [52,80]. 
Consequently, various authors have been studying the use of these nanostructures in the context of 
that medical imaging technique. 

An example is the work from Hobson et al. [84], where the suitability of SPIONs as T2 contrast 
agents was examined. Here, the goal was to improve the contrast produced by NPs in a T2-weighted 
MRI. Therefore, 5 nm spherical nanoarchitectures were fabricated via high temperature thermal 
decomposition, coated with oleic acid and then agglomerated inside a self-assembling polymer 
(chitosan amphiphile) through physical means without cross-linking, forming raspberry SPIONs 
(Figure 4). After the synthesis process, it was verified that these nanostructures were colloidally stable 
within various biomedical liquids. Afterwards, the MR relaxivities of single, as well as clustered, NPs 
were measured, as an increase on their spin-spin (r2) to spin-lattice (r1) relaxation ratio (r2/r1), i.e., from 
3.0 to 79.1 had been noticed when grouping occurred; this gave rise to better negative contrast. 
Furthermore, the aggregated nanoarchitectures were intravenously administered to mice to analyze 
their biodistribution and performance in in vivo MRI studies. As a result, it was observed that only 
the liver and the spleen accumulated the nanostructures, and that these exhibited a blood half-life of 
28.3 min. Additionally, MRI tests demonstrated an effective contrast, associated with these raspberry 
SPIONs, in the two organs where they were accumulated, providing clear images of the liver 
vasculature, including the portal vein, since they were localized in the extravascular space of that 
organ (Figure 5). 

 
Figure 4. Transmission electron microscopy (TEM) micrograph depicting a raspberry SPION with 
uranyl acetate (1%) staining. Reprinted from Hobson, N.J.; Weng, X.; Siow, B.; Veiga, C.; Ashford, M.; 
Thanh, N.T.; Schätzlein, A.G.; Uchegbu, I.F. “Clustering superparamagnetic iron oxide nanoparticles 
produces organ-targeted high-contrast magnetic resonance images.” Nanomedicine 14 (2019) 1135. 

 
Figure 5. T2-weighted axial MRI pictures illustrating a mice liver cross section 60 min 
postadministration of (a) raspberry SPIONs; (b) commercially available contrast agent 
Ferucarbotran®. The arrows in (a) show hepatic liver vessels, that are not observed in (b). Reprinted 

Figure 5. T2-weighted axial MRI pictures illustrating a mice liver cross section 60 min postadministration
of (a) raspberry SPIONs; (b) commercially available contrast agent Ferucarbotran®. The arrows in (a)
show hepatic liver vessels, that are not observed in (b). Reprinted from Hobson, N.J.; Weng, X.; Siow, B.;
Veiga, C.; Ashford, M.; Thanh, N.T.; Schätzlein, A.G.; Uchegbu, I.F. “Clustering superparamagnetic iron
oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images.” Nanomedicine
14 (2019) 1135.

Another approach was considered by Basly et al. [85]. Here, the authors covalently bonded
hydrophilic pegylated dendrons to SPIONs, using a phosphonate anchor (Figure 6). The dendritic
molecules were selected because they were discrete and monodisperse entities, not only exhibiting
adjustable characteristics, but also permitting distinct as well as reproducible polyfunctionalizations to
be made at their periphery. On the other hand, the phosphonate coupling agent was chosen since it
provided a strong binding, stabilized suspension within water at a physiological pH, and conserved the
magnetic properties of the nanostructures. Then, the relaxivities associated with these nanoarchitectures
were analyzed using a 1.5 T magnetic field. As a result, the authors obtained a r2/r1 ratio equal to 44.8,
having measured relaxivity values 1.5 times higher than those exhibited by commercially available
polymer-decorated NPs. Additionally, in vitro relaxivity measurements under 7 T confirmed a
significant negative contrast.
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Perriat, P.; Billotey, C.; Taleb, J.; Pourroy, G.; Bégin-Colin, S. “Dendronized iron oxide nanoparticles as
contrast agents for MRI.” Chem. Commun., 46 (2010) 985. Copyright (2010) Royal Society of Chemistry.

Xie et al. [86] performed a different study in which an MRI contrast agent for the identification of
brain gliomas in vivo, i.e., lactoferrin-conjugated SPIONs (LfSPIONs), was developed. After synthesizing
NPs, the authors examined their physical, chemical and magnetic properties, as well as their
interaction with glioma cells. As a result, a hydrodynamic diameter equal to ∼75 nm, a 51 emu/g Fe
saturation magnetization, and a T2 relaxivity equal to 75.6 mM−1s−1 were observed for these spherical
nanostructures. Additionally, an in vitro study considering a rat glioma cell line (C6) revealed that the
Lf-SPIONs yielded MR images with a better T2 contrast than those produced by SPIONs. Furthermore,
an in vivo investigation was performed using rat models together with the developed NPs. Considerably
improved contrast among the tumor and the neighboring healthy tissues was observed on T2-weighted
brain glioma MR images up to 48 h after the administration of Lf-SPIONs (Figure 7). Following such
a time period, a histochemical analysis led to the observation of those nanostructures around the
vascular region of the lesion tissue slices. Real-time polymerase chain reaction (RT-PCR) plus Western
Blot were employed in the brain tumor tissues. These techniques allowed the authors to confirm a
larger expression level associated with Lf receptors compared to normal tissue from the same organ.
Consequently, these results indicated that Lf-SPIONs are adequate T2 MRI contrast agents for brain
glioma, presenting large selectivity and sensitivity.
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from Elsevier.

In a different work, Gonzalez-Rodriguez et al. [87] fabricated biocompatible SPIONs conjugated
with graphene oxide (GO-SPIONs). These spherical nanostructures presented a mean size of 250 nm



Materials 2020, 13, 2586 11 of 29

and demonstrated the ability to be used in magnetic targeted therapy, fluorescence imaging, cancer
discernment through optical pH-sensing, anticancer drug delivery and as MRI contrast agents.
Cytotoxicity assays revealed a reduced cell death resulting from the internalization of the nanoparticles
at a 15 g/mL concentration. Furthermore, relaxivity measurements indicated a r2/r1 ratio of ∼10.7 for
the GO-SPIONs, being considerably higher than that exhibited by free SPIONs (∼2.3). Consequently,
this suggests that graphene oxide-conjugated SPIONs could be employed as T2 MRI contrast agents.
Additionally, the authors successfully distinguished cancer cells from healthy ones in vitro through
the ratios of emission intensity associated with NPs, since they presented fluorescence in the visible
range that depended on a medium pH (Figure 8). Concerning drug delivery, the authors were able
to perform fluorescence-tracked intracellular delivery of hydrophobic doxorubicin noncovalently
conjugated with GO via the application of an external magnetic field. This yielded a 2.5-fold efficacy
enhancement compared to the free drug at reduced concentrations, making it possible to reduce the
drug dose required to achieve an identical therapeutic effect.

Materials 2020, 13, x FOR PEER REVIEW 11 of 29 

Figure 7. In vivo T2-weighted MR pictures representing a rats’ brain with C6 gliomas (indicated by 
the arrows), acquired 48 h after the administration of (a) SPIONs and (b) Lf-SPIONs. Reprinted from 
Xie, H.; Zhu, Y.; Jiang, W.; Zhou, Q.; Yang, H.; Gu, N.; Zhang, Y.; Xu, H.; Xu, H.; Yang, X. “Lactoferrin-
conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection 
of brain glioma in vivo.” Biomaterials, 32 (2011) 495. Copyright (2010), with permission from Elsevier. 

In a different work, Gonzalez-Rodriguez et al. [87] fabricated biocompatible SPIONs conjugated 
with graphene oxide (GO-SPIONs). These spherical nanostructures presented a mean size of 250 nm 
and demonstrated the ability to be used in magnetic targeted therapy, fluorescence imaging, cancer 
discernment through optical pH-sensing, anticancer drug delivery and as MRI contrast agents. 
Cytotoxicity assays revealed a reduced cell death resulting from the internalization of the 
nanoparticles at a 15 g/mL concentration. Furthermore, relaxivity measurements indicated a r2/r1 ratio 
of ∼10.7 for the GO-SPIONs, being considerably higher than that exhibited by free SPIONs (∼2.3). 
Consequently, this suggests that graphene oxide-conjugated SPIONs could be employed as T2 MRI 
contrast agents. Additionally, the authors successfully distinguished cancer cells from healthy ones 
in vitro through the ratios of emission intensity associated with NPs, since they presented 
fluorescence in the visible range that depended on a medium pH (Figure 8). Concerning drug 
delivery, the authors were able to perform fluorescence-tracked intracellular delivery of hydrophobic 
doxorubicin noncovalently conjugated with GO via the application of an external magnetic field. 
This  

Figure 8. Pictures representing the GO-SPIONs green (550 nm) as well as red (635 nm) fluorescent 
emissions in healthy (HEK-293) and cancer (HeLa; MCF-7) cells. Adapted from Gonzalez-Rodriguez, 
R.; Campbell, E.; Naumov, “A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic 
targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing.” PLOS 
ONE 14 (2019) e0217072. 

Figure 8. Pictures representing the GO-SPIONs green (550 nm) as well as red (635 nm) fluorescent
emissions in healthy (HEK-293) and cancer (HeLa; MCF-7) cells. Adapted from Gonzalez-Rodriguez,
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Also considering SPIONs, Sulek et al. [88] fabricated a contrast agent by the noncovalent
functionalization of nanoparticles with peptide amphiphile molecules, which provided water solubility
and improved their biocompatibility (Figure 9). Then, after production, the nanocomplexes relaxivity
were assessed under a 3.0 T magnetic field; a r2/r1 ratio as high as 111.55 was observed, i.e., much
larger value than for commercially available SPIONs. Furthermore, in vitro incubation experiments
using fibroblasts (NIH 3T3) revealed that these functionalized NPs were, in fact, highly biocompatible.
Moreover, it was observed that such spherical nanostructures were located on the cell membrane or
matrix. Additionally, the hydrophilic peptide sequence located at the SPIONs surface, which supplies
stability as well as bioactivity within aqueous conditions, could be changed to target specific tissues.

A different T2 contrast agent, i.e., multifunctional polymeric-coated multicore NPs (bioferrofluids),
were investigated by Ali et al. [89]. These spherical nanostructures consisted of various maghemite
NPs with a hydrophilic polymer (polyethylene glycol, PEG, acrylate). Furthermore, their uptake
and toxicity in the liver of mice were assessed through MRI together with histological techniques.
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Then, the obtained outcomes were compared against those acquired when employing commercially
available Endorem magnetic fluids under identical experimental circumstances. The r2/r1 ratio of the
bioferrofluids synthesized by the authors was 184, while that of Endorem was 54.02. Additionally,
these NPs not only exhibited a smaller blood circulation period, but were also shown to be efficient
reticuloendothelial system agents, since they remained in the liver tissue. It was also observed that
those bioferrofluids stayed in the liver for a longer period than Endorem. Nevertheless, no perceptible
histological lesions in the examined liver were caused by the two contrast agents analyzed over a
period of 60 days postadministration.
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Figure 9. Schematic representation of the MPEG-PEI-SPIONs fabrication process. Reproduced from
Zhang, Y.; Zhang, L.; Song, X.; Gu, X.; Sun, H.; Fu, C.; Meng, F. “Synthesis of Superparamagnetic
Iron Oxide Nanoparticles Modified with MPEG-PEI via Photochemistry as New MRI Contrast Agent.”
J. Nanomater. (2015) 417389.

Another type of contrast agent was analyzed in a work from Zhang et al. [90]. The nanomaterials
consisted of SPIONs coated with polyethylenimine (PEI), which were obtained through photochemistry,
and whose superficial layer was altered by poly(ethylene glycol) methyl ether (MPEG),
MPEG-PEI-SPIONs (Figure 9). The physical properties, stability and MRI feasibility of these NPs were
assessed. They were shown to possess a hydrodynamic size of 34 nm. Their coating was determined
by a Fourier transform infrared spectrometer to be 31% and 12% proportions of PEI and MPEG,
respectively. Additionally, magnetic measurements showed superparamagnetic behavior, as well as 46
emu/g saturation magnetization. Furthermore, a stability test indicated that MPEG-PEI considerably
enhanced the spherical nanostructure stability. Relaxation measurements demonstrated similar r2

values for both PEI-SPIONs as well as MPEG-PEI-SPIONs. Additionally, T2-weighted MR images
using MPEG-PEI-SPIONs revealed a considerable improvement of the MR signal, as the concentration
of those NPs in water increased (Figure 10). This indicated that these spherical nanostructures are able
to produce large magnetic field gradients near their surface.Materials 2020, 13, x FOR PEER REVIEW 13 of 29 
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Figure 10. T2-weighted MR pictures representing MPEG-PEI-SPIONs at various concentrations, namely
(a) 0.063; (b) 0.125; (c) 0.250; (d) as well as 0.500 mg/mL. Reproduced from Zhang, Y.; Zhang, L.; Song, X.;
Gu, X.; Sun, H.; Fu, C.; Meng, F. “Synthesis of Superparamagnetic Iron Oxide Nanoparticles Modified
with MPEG-PEI via Photochemistry as New MRI Contrast Agent.” J. Nanomater. (2015) 417389.
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Yue-Jian et al. [91] studied a novel contrast agent consisting in antifouling PEG-coated SPIONs.
Monodisperse oleic acid-coated SPIONs were synthesized via the thermolysis of iron oleate, followed
by the self-assembling of spherical nanostructures and the PEG-lipid conjugates in water. Then, it was
observed, through dynamic light scattering, that the PEG-coated SPIONs were stable within water at
pHs from 3 to 10 and at sodium chloride concentrations up until 0.3 M. Their incubation with a cell
culture medium possessing 10% fetal bovine serum, which replicated the in vivo plasma, confirmed
such stability, with no changes in the NP dimensions after 24 h having been noted. These results
indicated an absence of protein adsorption upon the surface. In vitro relaxation measurements
indicated a greater r2 for these spherical nanoarchitectures than that associated with the commercially
available contrast agent, Feridex IV.

Several authors have also encouraged the use of iron oxide NPs as T1 contrast agents, since in
clinical practice, typically employed contrast agents are Gd complexes, which, as mentioned, pose
health risks [5,10,92,93]. Within this context, Wei et al. [94] investigated zwitterion-coated SPIONs
(ZES-SPIONs), possessing inorganic cores with a size of ∼3 nm and an ultrathin hydrophilic shell
(∼1 nm). These NPs were shown to present a r2/r1 ratio equal to 2.0, i.e., a value lower than that
associated with other SPION-based positive contrast agents, albeit this was within a factor of 2 to
that exhibited by Gd-based chelates. Additionally, in vivo MRI was performed on mice injected
with ZES-SPIONs to assess their preclinical potential as positive contrast agents for MRI and MR
angiography (Figure 11). Such tests revealed a contrast power that was sufficiently high for use in
the considered applications. An efficient renal clearance of the ZES-SPIONs was observed, and by
measuring their r2/r1 ratio again after excretion, the authors verified that the MR contrast power of the
NPs was largely unmodified under physiological conditions.
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Figure 11. T1-weighted MR angiography, at 7 T, of a mouse (A) 4 min; (B) 12 min; and (C) 20 min,
after the injection of ZES-SPIONs. Reprinted from H. Wei, O. T. Bruns, M. G. Kaul, E. C. Hansen, M.
Barch, A. Wiśniowska, O. Chen, Y. Chen, N. Li, S. Okada, J. M. Cordero, M. Heine, C. T. Farrar, D.
M. Montana, G. Adam, H. Ittrich, A. Jasanoff, P. Nielsen and M.G. Bawendi; “Exceedingly small iron
oxide nanoparticles as positive MRI contrast agents”; Proceedings of the National Academy of Sciences;
114(9); 2325-2330 (2017). Copyright (2017) National Academy of Sciences.

Yin et al. [95] achieved T1 contrast in MRI by employing SPIONs with diameters between 11
and 22 nm in an ultra-low field (ULF) MRI system, which applied a ∼0.13 mT magnetic field at room
temperature. This approach made it possible to improve the positive contrast created by such NPs,
because under these conditions, their relaxation times were similar to the proton Larmor precession
period, indicating a great increase in the r1 value. Additionally, their r2 was lowered, since the magnetic
moments present in the SPIONs were not saturated at this field magnitude. As a result, a r1 as high as
615 mM−1s−1 was obtained for Zn0.3Fe2.7O4 NPs coated with silicon dioxide and with a size of 18 nm,
being 100 times greater than that of typical commercial Gd-based positive contrast agents under large
magnetic fields, i.e., 1.5 and 3.0 T. Furthermore, the authors verified a linear dependence of r1 on the
imaginary part of the magnetic AC mass susceptibility at 5.56 kHz, i.e., the proton resonance frequency,
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for all the studied cases. This result was attributed to the NP magnetic fluctuations associated with
Brownian motion or Néel relaxation. As a conclusion, various benefits were observed with this
approach, namely, adjustable magnetic susceptibility in SPIONs, improved signals, shorter imaging
times, as well as the use of biocompatible substances.

Also for MRI applications, Corr et al. [45] studied suspensions composed of rectilinear chains of
magnetite NPs which were fabricated through a process involving the cross-linking of neighboring
nanoparticles with polyelectrolytic complexes. Then, a magnetic field was applied leading, to the
reorganization of such nanoarchitectures into collateral arrangements. The relaxivity of the obtained
nanostructures was assessed through field-cycling NMR at 37 ◦C, showing a substantial lowering
of the relaxation times for every field used. Additionally, MR pictures of living rats to which such
nanostructures were administered were obtained to evaluate the impact that they had upon the brain.
Not only was an acceptable biological compatibility for these nanoarchitectures observed, but in vivo
MRI images also showed their potential as T1-contrast agents, since they obscured brain areas, as shown
in Figure 12.
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-4-styrene sulfonate ratio 1:2) travels across the organ; Fast Low Angle Shot (FLASH) picture of a mouse
brain (c) before and (d) as PSSS-Mag1 travels across the organ. Reprinted with permission from S. A.
Corr, S. J. Byrne, R. Tekoriute, C. J. Meledandri, D. F. Brougham, M. Lynch, C. Kerskens, L. O’Dwyer and
Y. K. Gun’ko; “Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents”; Journal of the
American Chemical Society; 130(13); 4214-4215 (2008). Copyright (2008) American Chemical Society.

β-glucan particles (GPs) obtained from yeast constitute a category of microcarriers. These are
under development; nevertheless, they possess the ability to target cells in the immune system,
allowing, for example, the transportation of drugs or imaging agents to those biological entities.
However, the encapsulation of these compounds inside porous GPs is difficult. This problem was
addressed by Patel et al. [46] through the synthesis of large spin Fe(III) macrocyclic compounds
which effectively work as in vivo T1 MRI contrast agents. As a result, Fe(III)-based macrocyclic T1

MRI contrast agents were easily encapsulated inside the GPs, due to their distinctive coordination
chemistry. Furthermore, the GPs labelled with the basic Fe(III) compounds were stable in physiologic
environments. Additionally, and in contrast to the free Fe(III) coordination complex, the labelled
Fe(III)-GPs not only reduced the T1 relaxivity, but also acted as a silenced version of the considered
contrast agent.

Recently, Kozlova et al. reported that the control of the contrast of an MRI scan can be achieved
by adjusting the nanoparticle concentration in the administrated suspension, or by changing the
number of nanoparticles in one carrier. In the same work, it was also reported that the core-shell
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structure of the nanoparticle influences the contrast efficiency [96]. The authors fabricated polymeric
submicron particles with a core-shell structure and verified an improvement of T1 and T2 gradient
contrast when magnetite nanoparticles were incorporated only in the carrier shell. The obtained result
was associated with the magnetic interactions that were determined by the package density of the
magnetite nanoparticles in the carrier.

5. Gd and Mn-based Nanomaterials

Many methods have been developed to incorporate Gd chelates into nanoparticles [15], and lots of
studies have focused on the development of silica nanostructures doped with Gadolinium atoms. In this
context, Rieter et al. [97] produced stables nanoparticles with r1 values higher than those reported by
using conventional Gd chelates by using a luminescent core [Ru(bpy)3]Cl3 with a silylated Gd complex
coating. Another work demonstrated that the relaxometric properties of the complex strictly depend
on where the Gd complex in mesoporous silica nanoparticles (MSNs) is placed. The highest r1 value of
33.6 ± 1.3 mM−1s−1 was found to be related with a specific synthesis method, namely, the long-delay,
co-condensation process. The reported relaxometric value was larger than those of Gd-DOTA silica
NPs, and much greater than the unbound Gd-DOTA (~20 times) [98]. Biotin was covalently attached
to the structures, which led to complexes, after the conformational change, with a large relaxivity,
but displaying permutable behavior in the presence of a specific protein target [99]. To integrate
Gd-DOTA components, graphene oxide (GO) was also used as a viable platform. A study by Zhang et
al. [100] reported that PEG chains were first covalently attached to the GO complex with subsequent
surface modification by DOTA, and then Gd(III) ions were implanted. These nanostructures, under the
application of a 11.7 T field, showed an r1 value of 14.2 mM−1s−1. Some other strategies to incorporate
Gd into several types of nanoparticles have also been reported, namely by grafting Gd(III) in detonation
nanodiamond (DND) [101] and melanin-dots (M-dots) loaded with Gd (II) [102].

Gadolinium oxides are considered the most suitable option for Gd chelates; it has been stated that
a decrease in the diameter of the particle will lead to an increase in the relaxivity up to a maximum
value. As an example, Park et al. [20] showed that the lower the dimension of the particle, the higher
the relaxivity and maximum value reached when the diameter of the structure, d, is between 1–2.5 nm,
as presented in Figure 13. Consequently, ultrasmall gadolinium oxide nanoparticles have been used in
in vivo studies to image a tumor in a rat’s brain. The enhanced contrast of the T1-weighted sequences
was considered the be the result of the combination of the intrinsic large surface structure compared
to the core-shell, and the presence of Gd(III) ions attached to the surrounding area. Nonetheless,
ultrasmall Gd2O3 NPs have been found to create aggregates in the cerebrum; as a result, it can be said
that the toxicity of the particles is proportional to the maximization of the image potency. Yin et al. [103]
developed gadolinium oxide-coated silica nanostructures by exploring different thicknesses of the
Gd2O3 component. It was demonstrated by varying the thickness of the silica shell over a wide range
that with thinner shell values, larger r1 values can be achieved. In addition, the nanocomposites
showed no significant issues in terms of toxicity. The enhanced signals in in vivo tumor-targeted
MRI indicated that ultrasmall gadolinium oxide nanoparticles with a core-shell structure are good
candidates as T1 contrast enhancing agents for clinical trials.

Dual T1- and T2-weighted MRI agents were also reported by Zeng et al. [104]. These authors
fabricated nontoxic gadolinium hybrid iron oxide (GdIO) nanoarchitectures with hydrodynamic
size between 120 and 150 nm. These nanocomposites exhibited both unusual paramagnetic and
superparamagnetic behavior and their magnetic moments, measured at 5T in a nonsaturated point
of the hysteresis curve, were found to be 33.5 emu/g The GdIO samples exhibited high contrast
ability for use as both positive and negative contrast agents, with a Gd-based positive relaxivity
value of 70.10 ± 3.65 mM−1 s−1 and an Fe-based negative relaxivity value of 173.55 ± 6.48 mM−1 s−1.
Through in vivo trials, it was shown that the GdIO nanocomposites were capable of reaching tissues in
the cerebrum and further moving toward somatic cells [104].
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Bailey et al. [44] reported the fabrication of RE2O3-based nanodiscs, exploring diameters in
the range of 10–14 nm; RE stands for Gd, dysprosium (Dy) or ytterbium (Yb) passivated with a
nontoxic polymer. Here, their appropriateness for use as MRI contrast agents was analyzed. To be
able to compare the relaxation times of such nanostructures, either to spherical ones or small DTPA
ligand-base chelates, a magnetic field of 1.41 T and a temperature of 37 ◦C (body temperature) were
adopted. The authors also executed T1- weighted MR scans of an appropriate model of the body for
the ensemble of samples, revealing that Gd2O3 nanodiscs were more suitable as contrast agents than
the commercially available Gd-DTPA due to their higher relaxivities [105].The efficiency of in vivo
targeted imaging should be increased by the higher relaxivity values, and a large amount of proton
relaxation would be achieved, without the need for a large amount nanocomposites attached to the
surface of the structure to be imaged. Moreover, it was shown that these Gd2O3 nanodiscs could serve
as T1 contrast enhancing agents. The polymer-coated Gd2O3 and Dy2O3 nanoarchitectures, on a cell
line derived from a human cervical cancer (HeLa), showed negligible cytotoxic effects.

Singh et al. [23] also reported two different PEG coated structures as viable alternatives to
commonly used Gd-based complexes, i.e., gadolinium oxide nanoparticles and Gd-doped iron oxide
(GdIO) superparamagnetic nanoarchitectures with different shapes and dimensions. In this report,
a 7 T MR scanner was used to measure the relaxivity values of the different nanostructures. It was
concluded that the smaller the size of the particle (<5 nm), the higher its relaxivity value (i.e., suitability
as T1 contrast agents), as presented in Figure 14.

Besides Gd-based nanocomposites, Mn has also been studied as a possible T1 contrast agent
due to its higher biocompatibility, leading to fewer toxic compounds compared Gd; however, it
possesses low intrinsic r1 relaxivities. Nevertheless, it has shown promising results as dual modal
imaging agent, as presented in Figure 5 [15]. Much effort has been put into increasing biocompatibility
and r1 by using derived nanoparticulate systems. For instance, polyethylene glycol-coated Mn3O4

nanoarchitectures were enclosed in a nontoxic, nanosized porous carbon structure. Then, it the
suitability of the nanoarchitecture as a T1 contrast enhancing agent was demonstrated. The nontoxicity
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and ease of dissolution in water of the structure were attributed both to the presence of a carbon
structure and the functionalization of the surface, confirming the usefulness of such structures in the
interpretation of MRI scans [22].

Figure 14. T1 relaxation rate versus the accumulation of nanocomposites originating from (left) Gd2O3

nanodiscs with different sizes and (right) spherical GdIO nanoparticles with a diameter of 6 nm and
9 nm, as well as squared nanostructures with a side of 4 nm. Reproduced with permission from
G. Singh, B. H. McDonagh, S. Hak, D. Peddis, S. Bandopadhyay, I. Sandvig, A. Sandvig and W. R.
Glomm; “Synthesis of gadolinium oxide nanodisks and gadolinium doped iron oxide nanoparticles for
MR contrast agents”; Journal of Materials Chemistry B; 5(3); 418-422 (2017), from The Royal Society
of Chemistry.

Neves et al. [47] studied Mn oxide (MnO) NPs (average size of ~20 nm) coated with
carboxymethyl-dextran. Despite not having performed an in vivo study, the authors considered
such nanostructures to be suitable as T1 contrast agents after performing a clinical trial on a 3.0 T MRI
scanner, because of their considerable longitudinal relaxivity. Additionally, it was observed that for a
small number of particles (less than 25 µg/mL), the NPs were biocompatible in healthy cells; it was also
reported that few nanoparticles in solution (5 µg/mL) would result in nonnegligible toxicity effects in
the case of HeLa cells.

Manganese ferrite nanoparticles (Fe3O4@MnIO) have also exhibited larger r1 compared to iron
oxide NPs [106]. Here, the authors found a longitudinal relaxation value of 33.8 mM−1s−1 for
Fe3O4@MnIO and a r2 of 306.3 mM−1s−1. The higher r1 value was related to the elevated relaxation
time of the electronic component and to the presence of a larger number of unpaired electrons due to
Fe substitution by Mn ions. Additionally, in vivo results indicated that these nanoparticles may be
suitable for in vivo scans, with negligible toxicity at a dosage of 1 mg/kg.

An alternative to the common MRI scan is fluorine (F) magnetic resonance imaging. One of
the major drawbacks of common MRI is the presence of noisy signals that arise from the proton
nuclei situated in vicinity of the region of interest; in this context, fluorine has been considered a
viable alternative, as it possesses adequate magnetic features compared to protons [107]. Despite the
advantages of 19-F MRI, in order to reach a satisfactory resolution of the image, a greater amount of
contrast enhancing agents has to be employed (from 10 to 50 mM) than with Gd complexes, which
are able to generate detectable signals at considerably lower concentrations (0.1 µM) [108]. The low
sensitivity of this system arises from two main factors: The low concentration, the long longitudinal
relaxation time of 19-F nuclei compared to 1-H, and the fact that a longer T1, particularly for diamagnetic
complexes, results in an increase in the acquisition time of the scan needed to produce an acceptable
image (i.e., with a satisfactory signal-to-noise ratio). To overcome this problem, the longitudinal
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relaxation rates have to be shortened, a task which is well accomplished by the encapsulation of
paramagnetic compounds, such as lanthanides(III) or iron(II), for instance [109].

6. Synthetic Antiferromagnetic Nanostructures

More recently, the use of antiferromagnetic nanoarchitectures as T1 contrast agents has also
been studied by various researchers. For example, Na et al. [21] synthesized antiferromagnetic MnO
nanoparticles, presenting dimensions from 7 until 25 nm and possessing a PEG-phospholipid casing.
Here, the relaxivity associated with these spherical nanoformations was evaluated in a 3.0 T human
clinical scanner. Additionally, their suitability as in vivo MRI contrast agents was assessed in a mouse.
It was observed that these NPs were feasible T1 contrast agents, demonstrating no significant toxic
effects at concentrations under 0.82 mM in eight human cell lines comprising various tissues. Moreover,
through their combination with a tumor-specific antibody, the authors were able to selectively enhance
the contrast in T1-weighted MRI on with breast cancer cells situated in a mouse metastatic brain tumor,
into which the nanoparticles with functional groups were intravenously administered.

Liu et al. [110] also fabricated spherical nanostructures exhibiting antiferromagnetic properties.
These nanoarchitectures were glutathione-functionalized iron-oxide nanoparticles, produced at
room temperature in an aqueous-phase by a facile, extremely efficient, as well as eco-friendly,
one-step reduction process, using tetrakis(hydroxymethyl)phosphonium chloride as the reducing
agent. After the synthesis procedure, characterization of the nanostructures revealed a diameter
of 3.72 ± 0.12 nm, an r2 of 8.28 mM−1s−1, a 2.28 r2/r1 ratio, reduced magnetization, plus adequate
water dispersion. Additionally, through their incubation with HeLa cells, it was observed that
they were biocompatible, and that they improved the acquired MR signal intensity in T1-weighted
sequences, as the iron content inside the considered biological entities increased. Moreover, the
fabricated nanoparticles were also injected into mice and rat models to study not only their in vivo
circulation and metabolic paths, but also to analyze the contrast they created in MR images under those
conditions. The nanostructures escaped the hepatic reticuloendothelial system, and were subsequently
expelled from the body via the urinary system, enabling the realization of a renal function assessment.
This course led to a long circulation period in the vasculature, providing strong improvement in
T1-weighted MRI of the vascular resolution of not only the internal carotid artery, but also the superior
sagittal sinus, which are locations where the thrombus identification is essential for identifying a stroke
(Figure 15). Additionally, various T1- and T2-weighted MR pictures of a rat’s kidney injected with
these nanostructures yielded a detailed visualization of both the cortical-medullary anatomy and the
renal physiological functions.
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glutathione-functionalized iron-oxide nanoparticles. Reproduced from C.-L. Liu, Y.-K. Peng, S.-W. Chou,
W.-H. Tseng, Y.-J. Tseng, H.-C. Chen, J.-K. Hsiao and P.-T. Chou; “One-Step, Room-Temperature Synthesis
of Glutathione-Capped Iron-Oxide Nanoparticles and their Application in In Vivo T1-Weighted Magnetic
Resonance Imaging”; Small; 10(19); 3962-3969 (2014). Copyright (2014) WILEY-VCH Verlag GmbH &
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In another study, Peng et al. [46] analyzed a different T1 contrast agent type, antiferromagnetic-iron
oxide-hydroxide nanocolloids, with a diameter of 2–3 nm. Such nanostructures were produced in
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the mesopores in worm-like mesoporous silica. Then, their relaxation times were assessed at 40 ◦C
utilizing a 0.47 T Minispec spectrometer. These nanoparticles not only had the lowest r2/r1 ratio that
was known before 2013 for colloidal T1 contrast agents based on Fe, but also presented significantly
large longitudinal relaxivity. Moreover, the obtained MR pictures showed that these nanocolloids had
better performance as T1 contrast agents in in vitro (HeLa cells) as well as in in vivo (rat; mouse) MRI,
in comparison to ultrasmall iron oxide particles at the nanoscale. Additionally, such nanocolloids
displayed great biological compatibility and biodegradability.

Besides the aforementioned nanostructures, another type of nanoarchitecture investigated for
this biomedical application is SAFs. Roosbroeck et al. [61] produced phospholipid-covered, stratified
[Au (10 nm)/Ni80Fe20 (5 nm)/Au (2.5 nm)/Ni80Fe20 (5 nm)/Au (10 nm)] SAF nanostructures, presenting
a disc architecture and exhibiting diameters among 89.8 nm and 523.2 nm, via a colloidal lithography
methodology. Their magnetic appraisal indicated a remarkably small remanence, which is necessary
to prevent particle agglomeration, plus a large magnetization. These properties suggest that such
nanostructures are suitable for use in the biomedical context. Consequently, the authors then assessed
the feasibility of these nanoarchitectures as T2 contrast agents. This evaluation, as shown in Figure 16,
indicated that the nanostructures possessed enhanced relaxivities at 24.85 ◦C under a 9.4 T magnetic
field compared to SPIONs, particularly the smaller ones, with a diameter of 90 nm. Here, the
researchers also used these nanoarchitectures in an in vitro MRI investigation, on an ovarian cancer
cell line (SKOV3). This analysis showed that a higher T2 relaxation existed in the cells labelled with
these nanostructures.
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For benchmarking purposes, the theoretical values for NiFe nanoparticles are represented in gray.
Reprinted with permission from R. V. >, W. V. Roy, T. Stakenborg, J. Trekker, A. D’Hollander,
T. Dresselaers, U. Himmelreich, J. Lammertyn and L. Lagae; “Synthetic Antiferromagnetic Nanoparticles
as Potential Contrast Agents in MRI”; ACS Nano; 8(3); 2269-2278 (2014). Copyright (2014) American
Chemical Society.

7. High aspect Ratio Nanowires

The use of nanowires (NWs) in this particular biomedical application has also been investigated
by various authors. For example, Bañobre-López et al. [60] assessed the relaxivity attributes associated
with a colloidally stable water dispersion of poly-acrylic acid (PAA)-covered Ni ferromagnetic
NWs, characterized by a longitudinal magnetic anisotropy. The fabrication method involved the
pulsed electroplating of Ni/Gold (Au) multilayered nanowires within a nanoporous aluminum oxide
template at room temperature, followed by template removal and chemical etching of the Au layer
in acidic etching involving two stages. Then, the relaxation times associated with the synthesized
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nanoarchitectures, which had a monodisperse mean diameter and length of ~36 nm and ~600 nm,
respectively, were assessed utilizing a relaxometer at a frequency of 60 MHz at 37 ◦C in two different
magnetic fields, specifically 1.41 T and 3.0 T. As a result, it was verified that these nanoarchitectures
were efficient T2 contrast agents, as is clearly visible in Figure 17. Additionally, the contrast produced by
these nanostructures was observed in an MRI scan of a phantom, performed under a 3 T magnetic field.
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with permission from M. Bañobre-López, C. Bran, C. Rodríguez-Abreu, J. Gallo, M. Vázquez and J.
Rivas; “A colloidally stable water dispersion of Ni nanowires as an efficient T2-MRI contrast agent”;
Journal of Materials Chemistry B; 5(18); 3338—3347 (2017), from The Royal Society of Chemistry.

Shore et al. [39] also studied nanowires for MRI applications. Specifically, Fe and segmented
Fe/Au nanowires with various lengths and diameters were fabricated by template-assisted
electrodeposition. These nanostructures were covered with certain substances, specifically Dop-PEG
and/or SH-PEG-COOH, allowing the linking of biomolecules to the fabricated one-dimensional
nanostructures, and permitting the targeting of specific cells. Additionally, the magnetic appraisal of
the two nanoarchitectures showed a greater saturation magnetization for the multilayered nanowires.
Moreover, since the thickness of their Fe sections was lower than their diameter, such nanoarchitectures
were more easily magnetized than pure Fe nanostructures along the orthogonal direction with respect to
the long axis of the nanostructure. Furthermore, the relaxivity attributes associated with the fabricated
nanoarchitectures were assessed at 25 ◦C and a 1.5 T magnetic field, and the obtained results were
compared to those of Fe as well as Fe-Au nanoparticles. The researchers verified that the 0.7 µm long
Fe nanowires with a diameter of 110 nm and encapsulated in Dop-PEG presented the highest potential
as T1 contrast agents. In contrast, the 1-µm-long Fe-Au nanowires with a diameter equal to 32.8 nm
and covered with SH-PEG-COOH plus Dop-PEG showed the best suitability as T2 contrast agents,
exhibiting a r2 similar to that of commercially available Fe oxide nanoparticles. Here, an MR scan was
executed of a few samples comprising Fe as well as Fe-Au nanowires at a magnetic field equal to 9.4 to
verify the contrast.

Another type of nanowire for biomedical application was investigated by Leung et al. [111].
These nanostructures, made from Mn–Fe, were synthesized through the ligand-induced self-organization
of Mn–Fe oxide nanoparticles. Via TEM, it was observed that they possessed a mean diameter equal
to 35 nm and, on average, were 1 µm long. The elemental content of the nanowires content was
verified by inductively coupled plasma-optical emission spectroscopy (ICP-OES), as well as through
energy-dispersive X-ray (EDX) spectroscopy; an Fe percentage of ∼40.65 was indicated. Moreover,
their influence on the T2 relaxation time was assessed using a 1.5 T MRI system. Here, it was shown
that these nanoarchitectures considerably increased the MRI signal decay speed at concentrations of
100 µg/mL or 10 µg/mL, which demonstrated their potential as T2 contrast agents. Moreover, the cell
labelling efficiency of these nanostructures was assessed by incubating them with a macrophage cell
line (RAW264.7). Subsequently, the effective incorporation of Mn–Fe nanowires into the considered
biological entities was achieved.
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Also considering improvements of the negative contrast in MRI, Martínez-Banderas et al. [112]
fabricated distinct, one-dimensional nanostructures composed of an iron core together with an iron
oxide shell (Fe-FexOy core–shell NWs). Their r1, r2, and r2/r1 ratio was assessed under a 1.5 T magnetic
field; it was observed that they possessed a great potential for this application. Furthermore, the
effects of various oxidation levels as well as surface coatings were evaluated under a 7.0 T field. It was
shown that their r2 could be adjusted by not only the oxide shell thickness, but also by coating agents.
Moreover, breast cancer cells (MDA-MB-231) labelled with Fe-FexOy core–shell NWs, coated with
two different compounds, namely bovine serum albumin (BSA) and (3-aminopropyl)triethoxysilane
(APTES), were inserted into tissue-mimicking phantoms. Then, T2-weighted MR images of these
cases were taken; it was observed that the BSA coating improved the dispersion and the cellular
internalization compared to APTES, while providing identical cell identification efficiency through MRI.
Consequently, this has permitted the use of a lower concentration of nanostructures to efficiently mark
the desired cells, thereby lowering the probability of toxicity effects. Using such coating, the authors
were able to detect ∼25 cells/µL by employing a NW concentration of 0.8 µg of Fe/mL. Cells labelled
with BSA-coated nanostructures were implanted inside a mouse brain and several T2-weighted MR
images were acquired at a 11.7 T field at various time intervals postimplantation. It was observed that
these biological entities could be identified in such organs for at least 40 days after insertion.

The use of iron oxide (Fe3O4) nanostructures with rod-like morphologies (nanowires with low
aspect ratio), diameters of 4–12 nm and lengths ranging from 30 to 70 nm in this specific biomedical
application was also examined by Mohapatra et al. [113]. It was verified that nanorods of 70 nm length
showed a r2 relaxivity of 608 mM−1 s−1. Additionally, the increase of the size of the nanorods caused a
linear increase in their r2 relaxivity values, i.e., from 312 to 608 s−1mM−1. Such trend was attributed
to an augmentation associated with both the saturation magnetization and the surface area of the
nanostructures. Moreover, in vitro assays considering HeLa cells indicated that those biological entities
exhibited normal growth in the presence of Fe3O4 nanorods, indicating acceptable biocompatibility
without toxic effects (approximately 90% the cells remained alive), even postincubation with 1 mg/mL
of nanorods.

8. Theragnosis Applications

Nanotechnology is a powerful approach for the development of novel nanomaterials that can be
used for both the diagnosis and treatment of illnesses, thereby addressing the biggest challenges in
cancer therapeutics. A lot of effort has been placed in the study of several types of nanoarchitectures
due to their promising applications as “theragnostic” anticancer agents, showing good performance in
imaging combined therapy, i.e., hyperthermia, radiotherapy or drug delivery.

Concerning the treatment of tumor diseases, smart drug delivery systems (SDDSs) are considered
particularly interesting for theragnostic purposes. Nevertheless, the development of a biocompatible
system which is able to combine diagnostic efficiency with the effective distribution of the drug is still
the object of investigation. A study by Wang et al. [114] reported the fabrication of nanostructures
obtained by a combination of Poly (lactic-co-glycolic) acid (PLGA), indocyanine green (ICG) and
iron-based magnetic crystals. These structures have switchable sizes (arising from the thermosensitivity
of PLGA polymer), and can be loaded either with chemotherapy or photothermal agents. In vivo
trials showed that these nanocapsules are able to be delivered selectively into cancer areas by the
application of either a magnetic field or a fluorescent probe, providing nonnegligible therapeutic
benefits. The stability of blood circulation is provided by the significantly high initial dimension of
these nanocapsules (NCs), while the permeability of the structures within the tumor and the governable
release of doxorubicin (DOX) are achieved by the reduction and disintegration of the capsule within
the tumor microenvironment. Interestingly, the overproduced reactive oxygen species (ROS) arising
from a combination of catalysis reactions and the radiation triggered by the ICG relieved the lack of
oxygen for compacted cancers, which is necessary for mitigating the counteraction which occurs due
to the insufficient quantity of oxygen during synergetic therapy. Due to the unique properties of such
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nanostructures, an almost complete elimination of tumors was accomplished. Moreover, a complete
scan was achieved by using a dual MRI-fluorescence imaging system. In conclusion, this study has
successfully implemented nanocapsules which are highly tumor selective for use either for diagnoses
or therapeutic treatment.

Until now, among the different architectures, specifically designed magnetite nanostructures
have shown the greatest potential for use as both diagnostic and therapeutic agents due to their
adaptability, nontoxicity, ease of synthesis and very suitable magnetic properties for the biomedical
field, as presented, for instance, in Figure 18 [115]. With the core-shell strategy, several structures,
like single- and multi-core shell NPs, have been explored, where magnetite can be located in either
the core, in the shell or enclosed in a polymer mold. In all cases, the multimodal features of the
nanostructures are the result of a combination of attributes, and make possible the simultaneous use
of different techniques in combination, such as contrast enhancing agents in MRI/Positron emission
tomography (PET) [116].
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Figure 18. In vivo build-up of Fe3O4 nanostructures in the tumor area. (a) In vivo T2-weighted
MR scans (upper) and color mapped (lower) images of the region of interest before and 3 h after
the introduction of Fe3O4 nanoparticles into the bloodstream (the arrows illustrate the cancer area).
(b) Confocal laser scanning microscopic images of detached cancer tissue accumulated the day after
injection. Left: Red fluorescence presenting cells in presence of Fe3O4. Right: Merged image with
4’,6’-diamino-2-fenil-indol (DAPI) stained nuclei (blue) (scale bar 10 µm). Reprinted with permission
from J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I.C. Song, S. P. Park, W. K. Moon and
T. Hyeon; “Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite
Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and
Drug Delivery”; Journal of the American Chemical Society; 132(2); 552-557 (2010). Copyright (2010)
American Chemical Society.

A study by Efremova et al. [117] reported the fabrication of octahedral-shaped Fe3O4 magnetite
nanoparticles with diameter of 25 nm grown on 9 nm gold nanospheres. The nanoarchitectures
exhibited magnetic features comparable to those of bulk materials. Additionally, it was verified
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through in vitro and in vivo assays that the nonpure structures, because of their shape anisotropy,
presented higher transverse relaxivity for MRI compared to conventional contrast enhancing agents.
Furthermore, iron oxide-gold nanocomposites were associated with either two fluorescent pigments
or a conjunction of a pigment and a drug, making them able to simultaneously detect the pattern of
the carrier and the loaded drug. Furthermore, by using specific microscopy techniques, the authors
were able to detect in real time the consignment and leak of the drug in a cancer area. Moreover, by
substituting the pigments with particles that bind to specific cells, iron oxide-gold nanoarchitectures
appear to be good candidates for theragnostic applications. Gold and SPION-loaded micelles were
also used as theragnostic agents to image and treat cerebrum cancers [118]. Other magnetic-gold
nanoarchitectures can be found in the literature as alternatives for theragnosis applications [119,120].

Besides the structures reported above, self-assembled peptide hydrogels have recently developed
as a novel prototype in biomaterial research. For instance, in a report by Carvalho et al. [121],
new dehydrodipeptides consisting of specific amino-acids were synthetized and analyzed. SPIONs were
integrated into the hydrogels and the resulting structures were fully characterized in order to understand
their new properties. The authors successfully demonstrated that self-build hydrogels maintain their
magnetic features when SPIONs are incorporated in the structure, regardless of the presence of a
diamagnetic component which arises from the hydrogel grid. Dual T1/T2 MRI contrast agents were
obtained, and it was observed that the SPIONs, with the application of an alternating magnetic
field, were able to produce an increase in the local temperature that was sufficient to trigger a phase
transition of specific hydrogels; in this context, the leak of SPIONs from the hydrogel compounds upon
the application of an alternating magnetic field could a successful step in the development of more
powerful theragnostic systems.

9. Prospects and Conclusions

Progress in the development of contrast agents for MRI is notoriously slow. Beyond the various
contrast agents which have been approved for use in the humans, there are a significant number of
new agents in clinical and research development. There is a broad variety of fabrication procedures to
obtain paramagnetic and superparamagnetic nanoparticles with control over their composition, size
and shape. Furthermore, the ability to integrate additional imaging modes or drugs for treatment,
and the use of specific vectors linked to the particle surface, make these agents yet more promising.
More recently, other exciting spin configurations have been presented in the literature as potential MRI
contrast agents, namely synthetic antiferromagnets (SAFs) and high aspect ratio nanowires (NWs).
Biocompatible SAF nanostructures have been reported with coupling between ferromagnetic layers;
their relaxivities and saturation magnetization make them promising candidates for this biomedical
application. Also, the characteristics of magnetic NWs and segmented NWs have been explored. It was
observed that the high surface area of these nanostructures and the high magnetic moment also show
interesting potential for contrast enhancement. The development and comprehension of different
magnetic effects is of the uttermost importance in the pursuit of novel contrast agents in MRI. On the
other hand, systematic in vivo studies are also needed to understand their mechanism of action and
accumulation in different organs.
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