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Abstract: Structural health monitoring (SHM) has been extensively used in civil infrastructures to
assess structural condition and situation. Here, we develop a novel type of mechanical sensing
technique using the structural instability of cylindrical cells detected by fiber Bragg grating (FBG).
The cylinders are fabricated using a 3D printing technique, which are coiled by the FBG wires to
detect the transverse deformation. Structural instability under axial compression is obtained in the
experiments and the force–displacement relations are validated by the numerical simulations with
satisfactory agreements. The wavelength variation of the FBG, caused by the structural instability,
is observed and compared with the predefined threshold. Defining the variation larger than the
threshold as “1” and smaller as “0”, the pattern recognition algorithm is used to convert the FBG
results into binary data, which can, therefore, be analyzed to indicate the structural conditions. In the
end, we envision the potential applications of the reported sensing technique, such as wireless sensors
for structural health monitoring (SHM) in civil infrastructures.

Keywords: structural instability; mechanical sensors; fiber Bragg grating (FBG); pattern recognition;
structural health monitoring (SHM)

1. Introduction

Structural health monitoring (SHM) has been extensively used in civil infrastructures to assess
structural condition and situation, which requires autonomous, continuous, cost-effective, and reliable
detection of structure performance. Damage detection is critical regarding SHM, and therefore
various techniques have been developed to improve accuracy and efficiency, so as to detect damage
at the early stage and prevent potential structural failure. Many sensing methods and mechanisms
have been developed to investigate material and structural failures based on structural deformation
(i.e., mechanical strain) [1,2]. Strain refers to the amount of deformation structures suffer due to internal
or external excitations, and therefore strain sensing is the technique to detect and reflect the changes of
the structure behavior. Traditional strain sensors (e.g., piezoresistive strain gauges) are typically based
on electrical devices such as piezoresistors (devices that exhibit changes in resistance under strain
changes) [3], and metal wire-based strain gauges or foil strain gauges [4]. However, those resistances
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typically result in complex and bulky measuring data. As a consequence, research efforts have been
dedicated to developing new detecting techniques with good efficiency and accuracy.

Here, we develop a novel type of mechanical sensing technique that makes use of the structural
instability of cylindrical cells. Fiber Bragg grating (FBG) is deployed to measure the structural
response of the cylinders. Compared with the conventional electrical sensors, the FBG technique
has various inherent advantages, such as non-conductivity, resistance to corrosion, and immunity to
electromagnetic interference [5–10]. FBG has been reported with promising sensitivity and accuracy
for deformation measurement [11–13]. FBG has been applied in many sensing applications, such as
temperature sensors [14,15], acoustic sensors [16], and stress [17] or strain [18–20] sensors. In this
study, the FBG observations are compared with predefined thresholds to convert the detected results
into binary data. Analyzing data with the help of a pattern recognition (PR) algorithm, the mechanical
response of the targeted structures can be detected. The PR method is a typical machine learning (ML)
technique in artificial intelligence (AI), which has been extensively used to analyze image data and
observe structural changes in SHM [21]. Taking advantage of FBG in detecting the structural instability
(i.e., postbuckling) response, the detection data of the reported mechanical sensors are significantly
reduced compared with time-dependent sensors. In particular, the predefined threshold is selected
such that only a postbuckling response (i.e., tension- or compression-induced cylinder deformation)
more critical than the threshold is recorded and converted into the binary data. As a consequence,
the reported mechanical sensors are only triggered by a deformation larger than the threshold. The rest
of the paper is presented as: Section 2 introduces the paradigm and design principle of the powerless
mechanical sensors. Section 3 presents the experimental and numerical studies of the instability of
cylindrical cells. Section 4 demonstrates the pattern recognition algorithm used to analyze the binary
data detected by FBG. Section 5 envisions potential applications for the powerless mechanical sensors
in SHM.

2. Design Principle and Paradigm

This section demonstrates the design principle of the mechanical sensor, while indicating the
paradigm of the FBG for converting structural instability into binary data. PR is used to analyze the
data and detect the damage of structures.

2.1. Design Principle of Powerless Mechanical Sensors Using Structural Instability

Figure 1 demonstrates the design principle of the mechanical sensors using FBG-enabled
pattern recognition to consider structural instability. Figure 1a illustrates the original and deformed
configurations of the cylindrical cells in the mechanical sensors under external excitations, such as
strain fluctuations. The cylindrical cells in the mechanical sensors are coiled by FBG, such that the
structural configurations can be accurately measured. Figure 1b demonstrates the principle of FBG
used to measure the structural instability of the cylinders. FBG is formed by the periodic change of the
refractive index of the fiber core in the direction of the propagation of optical radiation. Full-spectrum
light is transmitted into one end of the FBG core, which is separated into two light signals at the
location of the Bragg grating. External mechanical variations lead to an associated shift of the central
Bragg wavelength of the optical fiber sensor, as indicated by the reflected light or transmitted light in
the figure. In this condition, the FBG acts as a spectral filter that reflects particular wavelengths of
light near the Bragg resonance wavelength and releases the rest. The spectrum of the FBG is shown
by the red line, while the transmitted spectrum that resulted in force is given in green. According to
the spectral features of FBG, the deformations of the cylindrical cells in the mechanical sensors can
be captured.

Defining certain configuration thresholds, the deformations of the cylinders smaller than the
threshold are referred to as the signal of “0”, while the deformations larger than the threshold are “1”.
As a consequence, the structural response of the 8 × 8-unit mechanical sensor is converted into binary
data. Figure 1c displays the binary data matrices before and after the deformations.
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sensors is the significant reduction in the amount of detection data. In particular, the predefined 
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Figure 1. Design principle of the mechanical sensors. (a) Illustration of powerless mechanical sensors
and configuration changes from original to deformed under external excitations. (b) Principle of fiber
Bragg grating (FBG) under the influences of external force. (c) Binary data (i.e., detected response)
converted from the structural instability, which indicate the deformation of the cylindrical cells larger
than the predefined thresholds.

In particular, the 8 × 8 “0” data matrix represents the initial mechanical response of the structures.
Detecting structural strains using FBG at an arbitrary time step ti and comparing it with the threshold,
those cylinders deformed more than the threshold are changed to “1” and the smaller ones are
maintained as “0”. When the time step is increased to ti+1, the binary data matrix is updated
accordingly. A PR algorithm is then used to compare the detected data matrices, and the pattern
differences are analyzed to detect the structural damage under the external excitations (e.g., force in
Figure 1a). Compared with the time-dependent sensors, the advantage of the reported mechanical
sensors is the significant reduction in the amount of detection data. In particular, the predefined
threshold is selected such that only a postbuckling response (i.e., tension- or compression-induced
cylinder deformation) more critical than the threshold is recorded and converted into the binary data.
As a consequence, the reported mechanical sensors are only triggered by a deformation larger than the
threshold, which does not particularly distinguish tension from compression.

2.2. Paradigm of FBG in Detecting Structural Instability

The Bragg resonant wavelength is the dominant factor in FBG, which can be expressed as [22]:

λFBG = 2neffΛ (1)

where λFBG, neff, and Λ refer to the Bragg resonant wavelength, refractive index, and grating period,
respectively. Note that the Bragg resonant wavelength is determined by various factors applied
on FBG (e.g., mechanical deformation fluctuation), which significantly affect the refractive index
or grating period. In return, the changes of the Bragg resonant wavelength accurately reflect the
environment variation for FBG. Coiling FBG around the cylinders (Figure 1b), the deformations lead to
spectra transmission.

The Bragg resonant wavelength is typically affected by changes in mechanical conditions and
ambient temperature. Therefore, it is desirable to distinguish the thermal and mechanical influences
on the spectrum, so as to identify the state of the cylinders. Considering the length extension and
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cross-sectional shape changes of the cylinders, while omitting the thermal influence following the
stress-strain relationship, the wavelength shifting of the FBG caused by the changes in the strain or
temperature is given by [23–25]:

∆λFBG = 2
(
Λ
∂neff

∂l
+ neff

∂Λ
∂l

)
∆l + 2

(
Λ
∂neff

∂T
+ neff

∂Λ
∂T

)
∆T (2)

where ∆l and ∆T are the changes in the FBG’s length and temperature. Considering the length extension
or cross-section shape changes, while omitting the thermal influence, the wavelength response of FBG
at any point can be expressed as: (∆neff)x = −

neff
3

2E

[
(p11 − 2νp12)σx + [(1− ν)p12 − νp11]

(
σy + σz

)]
(∆neff)y = −

neff
3

2E

[
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] (3)

where E and ν are, respectively, the Young’s modulus and Poisson coefficient of the optical fiber, p11 and
p12 are the strain-optic coefficients, and neff is the average refractive index along the two orthogonal
axes of the fiber. σx, σy, and σz are the stress components of the FBG in the x, y, and z principal
directions, respectively. Using the Hooke elasticity relationship, the Bragg reflection wavelength at any
point on the disturbed FBG can be written as [26]: ∆λx = λx

[
−
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2
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)]] (4)

where ∆λx and ∆λy are the wavelength shifting in the fast and slow axes, and λx and λy are the initial
wavelengths of the peaks corresponding to the two polarization modes, respectively.

Assuming the ambient temperature is constant, the Bragg wavelengths of the two polarization
modes provide different shifts in the x and y axes (i.e., amplitude and period) under the strain changes
(the green line in Figure 1b). On the contrary, when the force is constant, temperature fluctuation only
causes wavelength shifting in the x-axis of the transmitted spectrum due to the thermo-optic effect and
the thermal expansion effect, as shown by the yellow line in Figure 1b. Therefore, the tension- and
compression-induced strain can be obtained based on the difference in Bragg wavelengths between the
two polarization modes. However, since single mode fiber has ultra-low birefringence, radial strain
can be ignored in our model, namely, the theoretical force analysis toward FBG can be simplified to be
affected only by axial strain. The simplified equation can be written as [25,27]:

∆λFBG = λFBG ×

{
1−

neff
2

2
× [p12 − ν(p11 + p12)]

}
× εz , (5)

where εz is the longitudinal strain. It is worthwhile to point out that the temperature changes can be
compensated for by adding another FBG to only detect the temperature or placing the device under
test in a temperature-controlled environment.

3. Experiments and Numerical Simulations on the Structural Instability of Cylindrical Cells

In this section, the cylinders were fabricated using the 3D printing technique, which were coiled
by the FBG wires. Experiments were then carried out on the structural instability of the FBG cylinders,
and the experimental results were validated with numerical simulations. The FBG results were
obtained in wavelength to detect the deformation of the cylinders in the experiments.
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3.1. Fabrication of FBG Cylindrical Cells

The cylindrical cells in the mechanical sensors were manufactured using a polymer-based 3D
printing device [28] with polylactic acid (PLA) filaments. In particular, PLA filaments were heated
and squeezed out through the nozzle, and were 0.4 mm in diameter. The filaments were then rapidly
cooled down once they were placed on the structuring cylindrical samples. The entire process was
repeated, such that the cylinders were fabricated layer by layer. The top and bottom ends of the
cylinders were fabricated with a greater thickness, such that local damages could be prevented under
uniform axial compression. The FBG wires, of about 5 mm length and 90% reflectivity, were inscribed
on a hydrogen-loaded SMF (SM28, Corning, NY, US) by using a 193 nm ArF excimer laser (BraggStar
S-Industrial [29], Coherent Inc., Santa Clara, CA, US) with a phase mask method. Figure 2a displays
the 3D printed cylinders coiled by the FBG wires and the Gotech loading machine. In particular,
ultra-violet glue (Model NOA65, Norland Ltd., CRANBURY, NJ, US) was used to bond the FBG wires
to the cylinders. The fabrication process of the FBG wires was based on the commercial phase mask
method, which is suitable for mass production [30]. In addition, the packaging can be reproduced by
using mature commercial glue, such as Norland NOA65 glue or EPOXY-353ND glue. The FBG wires
were covered over all the grating area by UV glue. Note that only one FBG was designed to detect the
postbuckling response of each cylinder under axial tension and compression. The certain threshold of
the postbuckling response is predefined (Figure 2d), such that the FBG only monitors a deformation
more severe than the threshold, while the less critical events are neglected to significantly reduce the
amount of the detection data. The loading machine comprised the loading cell and adjustable loading
bed. To avoid the imperfection of the initial tilt, the loading bed was designed with a semi-sphere
placed between two flat plates.

3.2. Experiments and Numerical Simulations

The loading machine was used to test the structural deformations of the cylinders subjected
to axial compression. Quasi-static loading conditions were applied, such that the FBG cylinders
cannot be destroyed in the loading–unloading process. In particular, the axial compression of 0.8 mm
was applied to ensure the functionality of the FBG wires under deformation. Figure 2b presents the
experimental setup, and the comparison of the deformation configurations between the experimental
and numerical results. In the experiments, the sample was placed in the center of the loading bed,
and the FBG interrogator was used to obtain the detected wavelength. In the numerical simulations,
the finite element (FE) model was developed in Abaqus v16.1. The cylinders were simulated using the
shell elements (S4R). Buckling and postbuckling analyses were conducted to obtain the postbuckling
response of the cylinders subjected to axial compression. In particular, the buckling analysis was linear
perturbation/buckle, and the postbuckling analysis was dynamic implicit with Nlgeom. The excitation
was applied to the top edge of the cylinders as axial displacement. The geometric and material
properties, element type and size, and loading conditions are summarized in Table 1.

Figure 2c shows the comparison of the force–displacement relations between the experimental
and numerical results and the deformed cylinder configurations at the limit states. Shifting to exclude
the initial softening, the experimental results are observed having the same stiffness and amplitude.
The deformed configurations are presented when the cylinder starts deforming, as well as before and
after the structural instability. It can be seen that satisfactory agreements are obtained between the
numerical and experimental results.
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Table 1. Geometric and material properties, element type, and size in finite element (FE) modeling,
and loading conditions.

Cylinders (Polylactic Acid PLA) Fiber Bragg Grating (FBG)

Mater.

Density (g/cm3) 1.24 2.20
Young’s modulus (GPa) 3.47 73.02
Elongation at break (%) 5.2 2

Tensile modulus 1.34 –

Geo.
Length (mm) 50, 60, 70 5

Diameter (mm) 30 0.125
Thickness (mm) 0.4 –

FE
Element type S4R –

Element size (mm) 3 –

Load
Amplitude (mm) 0.8

Time (s) 100
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Figure 2. Experiments and numerical simulations of the FBG cylinders subjected to external
loading. (a) 3D printed cylinders coiled by FBG wires and the loading machine in the experiments.
(b) Experimental setup, testing results, and numerical simulations of the deformation configurations
of the cylindrical samples. (c) Comparison of the force–displacement relations between the
experimental and numerical results and the deformed shapes at the limit states. (d) FBG detection and
force–displacement relation of the cylinder and the conversion of structural instability into binary data,
using the predefined threshold of wavelength of 1.541 µm.
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3.3. FBG Detection of the Structural Instability of the Cylindrical Cells

Figure 2d illustrates the FBG sensing results of the deformed cylinder samples. We used FBG
to obtain the variations of the wavelength before and after the structural instability of the cylinder.
We define the variation threshold of the wavelength as 1.541 µm, which leads to the strain threshold
of ε = 1%, and therefore the conditions before the threshold (i.e., ε < 1%) can be converted into
the binary data “0”, while those after the threshold are “1”. It is worthwhile to mention that the
structural instability (strain threshold) can be programmed. Designing the FBG cylinders with different
thresholds and assembled into sets, the obtained binary data can be used to detect the conditions of
structures, as demonstrated in Figure 1c. In addition, three different cylindrical samples were tested
twice under the cyclic loading to ensure the repeatability of the FBG sensors. Since the mechanical
strains considered in this study are relatively small, the detected results are repeatable and comparable.
The errors in the estimation of the thresholds of the cylinders are approximately 5% of the peak value,
as shown with the error bar in Figure 2d.

4. Pattern Recognition Analysis and Discussion on Potential Applications

4.1. Pattern Recognition Algorithm

Next, we use the damage detection concept to analyze the FBG detected binary data from the
mechanical sensors. The binary data generated from the response of structures are analyzed into
patterns. The detection procedures can be summarized as using the validated simulation results of
structural instability as feature vectors to obtain binary data to analyze. Afterward, the recognized
patterns are incorporated with conditional chains to identify damage. In particular, pattern variations are
anticipated when damage happens to the structures, which are then used to assess structural conditions.

Figure 3a presents the schematic illustration of the pattern scheme of analyzing the FBG binary
data of the mechanical sensors. Figure 3b displays the flowchart that details the developed damage
detection approach. In this study, we use pattern recognition (PR) as the image processing method
to recognize and analyze the binary data generated from the FBG wires, detecting the condition of
structures from normalness to irregularity [31–33]. Pattern deviation is used to analyze the binary data
with respect to each other in the PR analysis. In particular, the binary data detected from the structural
response using FBG were considered as image patterns. According to the PR scheme, each pattern
(i.e., binary data detected at a certain time ti) is addressed as a data matrix and characterized with
image features based on binary values. Note that the dimension of the binary data is dependent on
the number and distribution of the FBG cylinders in the mechanical sensors. If a mechanical sensor
consists of n = i× j cylindrical cells, each binary datum (i.e., pattern matrix) can be represented with
n features. Therefore, data classifiers are used to search for the shifting of the patterns in the sensor.
When the detected binary data are recorded at the time step of ti+1, the extracted features of the binary
data are compared with the features from the previously recorded pattern at the time step of ti. If all
the n features are identical between the time steps of ti and ti+1, the binary data are characterized to be
in the same class.

Otherwise, the data at ti+1 is classified as a new class. Following the pattern classifier, FBG-enabled
binary data can be used to filter the ambient temperature or load excitation variations that are larger
than the predefined thresholds.
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(b) A flowchart that indicates the procedures of the binary classifier rules and data analysis.
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4.2. Potential Applications of the Mechanical Sensors for Structural Health Monitoring (SHM)

Here, the wireless mechanical sensors are outlooked in civil infrastructures for structural health
monitoring (SHM). Figure 4 illustrates the application of the mechanical sensors for SHM in civil
infrastructures. The mechanical sensors are assembled onto a platform, which are embedded in the
targeted structures. The light source and optical interrogator are designed into the supply device box.
The detecting signals are wirelessly sent to signal transmission devices, which are delivered to central
computers via the internet. As a consequence, the mechanical sensors are capable of measuring the
structural conditions and the results can be wirelessly sent to smartphones for analysis.
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5. Conclusions

In this study, we developed mechanical sensors based on the structural instability of cylindrical
cells detected by fiber Bragg grating (FBG). The cylinders were fabricated using 3D printing and
the FBG wires were coiled to detect transverse deformation. Experiments were conducted to obtain
structural instability under axial compression, and the experimental results (i.e., force–displacement
relations) were validated by numerical simulations with satisfactory agreements. The wavelength
variation of the FBG was observed due to structural instability, and the results were compared with
the predefined threshold. The pattern recognition algorithm was used to convert the FBG results into
binary data by defining a variation larger than the threshold as “1” and smaller as “0”. The binary
data was analyzed to indicate the structural conditions, and the reported technique was envisioned as
wireless sensors for SHM in civil infrastructures.
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