Influence of the Composition of the Hybrid Filler on the Atomic Oxygen Erosion Resistance of Polyimide Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Filled Films
2.3. Material Characterization
2.4. AO Beam Exposures
3. Results
3.1. Chemical Structure of the Fillers and Composites
3.2. Morphology of Filled PI Films
3.3. Thermal Properties
3.4. AO Erosion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bond, D.K.; Goddard, B.; Singleterry, R.; León, S.B.Y.; Bilbao, S. Evaluating the effectiveness of common aerospace materials at lowering the whole body effective dose equivalent in deep space. Acta Astronaut. 2019, 165, 68–95. [Google Scholar] [CrossRef]
- Chen, J.; Ding, N.; Li, Z.; Wang, W. Organic polymer materials in the space environment. Progr. Aerosp. Sci. 2016, 83, 37–56. [Google Scholar] [CrossRef]
- Gordo, P.; Frederico, T.; Melicio, R.; Duzellier, S.; Amorim, A. System for space materials evaluation in LEO environment. Adv. Space Res. 2020, 66, 307–320. [Google Scholar] [CrossRef]
- Verker, R.; Bolker, A.; Carmiel, Y.; Gouzman, I.; Grossman, E.; Minton, T.K.; Remaury, S. Ground testing of an on-orbit atomic oxygen flux and ionizing radiation dose sensor based on material degradation by the space environment. Acta Astronaut. 2020, 173, 333–343. [Google Scholar] [CrossRef]
- Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in Polyimide-based materials for space. Appl.Adv. Mater. 2019, 31, 1807738. [Google Scholar] [CrossRef]
- Grossman, E.; Gouzman, I. Space Environment Effects on Polymers in Low Earth Orbit. In Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms; Elsevier: Amsterdam, The Netherlands, 2003; Volume 208, pp. 48–57. [Google Scholar]
- Tennyson, R.C. Protection of polymeric materials from atomic oxygen. High Perform. Polym. 1999, 11, 157–165. [Google Scholar] [CrossRef]
- Reddy, M.R. Effect of low earth orbit atomic oxygen on spacecraft materials. J. Mater. Sci. 1995, 30, 281–307. [Google Scholar] [CrossRef]
- Shuvalov, V.A.; Reznichenko, N.P.; Tsokur, A.G.; Nosikov, S.V. Synergetic effect of the action of atomic oxygen and vacuum ultraviolet radiation on polymers in the Earth’s ionosphere. High Energy. Chem. 2016, 50, 171–176. [Google Scholar] [CrossRef]
- Awaja, F.; Moon, J.B.; Gilbert, M.; Zhang, S.; Kim, C.G.; Pigram, P.J. Surface molecular degradation of selected high performance polymer composites under low earth orbit environmental conditions. Polym. Degrad. Stab. 2011, 96, 1301–1309. [Google Scholar] [CrossRef]
- Shimamura, H.; Nakamura, T. Investigation of degradation mechanisms in mechanical properties of polyimide films exposed to a low earth orbit environment. Polym. Degrad. Stab. 2010, 95, 21–33. [Google Scholar] [CrossRef]
- Li, G.; Liu, X.; Li, T. Effects of low earth orbit environments on atomic oxygen undercutting of spacecraft polymer films. Compos. B Eng. 2013, 44, 60–66. [Google Scholar] [CrossRef]
- Qian, M.; Murray, V.J.; Wei, W.; Marshall, B.C.; Minton, T.K. Resistance of POSS polyimide blends to hyperthermal atomic oxygen attack. ACS Appl. Mater. Interfaces 2016, 8, 33982–33992. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Ju, P.; Wan, H.; Chen, L.; Li, H.; Zhou, H.; Chen, J. Enhanced atomic oxygen resistance and tribological properties of PAI/PTFE composites reinforced by POSS. Prog. Mater. Sci. 2020, 139, 105427. [Google Scholar] [CrossRef]
- Minton, T.K.; Wright, M.E.; Tomczak, S.J.; Marquez, S.A.; Shen, L.H.; Brunsvold, A.L.; Cooper, R.; Zhang, J.M.; Vij, V.; Guenthner, A.J.; et al. Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl. Mater. Interfaces 2012, 4, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Brunsvold, A.L.; Minton, T.K.; Gouzman, I.; Grossman, E.; Gonzalez, R. An investigation of the resistance of polyhedral oligomeric silsesquioxane polyimide to atomic-oxygen attack. High Perform. Polym. 2004, 16, 303–318. [Google Scholar] [CrossRef]
- Lei, X.-F.; Qiao, M.-T.; Tian, L.-D.; Yao, P.; Ma, Y.; Zhang, H.-P.; Zhang, Q.-Y. Improved space survivability of polyhedral oligomeric silsesquioxane (POSS) polyimides fabricated via novel POSS-diamine. Corros. Sci. 2015, 90, 223–238. [Google Scholar] [CrossRef]
- Shivakumar, R.; Bolker, A.; Tsang, S.H.; Atar, N.; Verker, R.; Gouzman, I.; Hala, M.; Moshe, N.; Jones, A.; Grossman, E.; et al. POSS enhanced 3D graphene—Polyimide film for atomic oxygen endurance in Low Earth Orbit space environment. Polymer 2020, 191, 122270. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, G.; Wang, X.; Qi, S.; Wu, Z.; Wu, D. Polyimide/ladder-like polysilsesquioxane hybrid films: Mechanical performance, microstructure and phase separation behaviors. Compos. B Eng. 2014, 56, 808–814. [Google Scholar] [CrossRef]
- Atar, N.; Grossman, E.; Gouzman, I.; Bolker, A.; Murray, V.J.; Marshall, B.C.; Qian, M.; Minton, T.K.; Hanein, Y. Atomic-oxygen-durable and electrically-conductive CNT-POSS polyimide flexible films for space applications. ACS Appl. Mater. Interfaces 2015, 7, 12047–12056. [Google Scholar] [CrossRef]
- Lei, X.F.; Chen, Y.; Zhang, H.P.; Li, X.J.; Yao, P.; Zhang, Q.Y. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl. Mater. Interfaces 2013, 5, 10207–10220. [Google Scholar] [CrossRef]
- Lei, X.; Qiao, M.; Tian, L.; Chen, Y.; Zhang, Q. Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment. Corros. Sci. 2015, 98, 560–572. [Google Scholar] [CrossRef]
- Miyazaki, E.; Tagawa, M.; Yokota, K.; Yokota, R.; Kimoto, Y.; Ishizawa, J. Investigation into tolerance of polysiloxane-block-polyimide film against atomic oxygen. Acta Astronaut. 2010, 66, 922–928. [Google Scholar] [CrossRef]
- Li, L.; Liu, C.; Qu, C.; Zheng, S.; Wang, D.; Chang, J.; Zhao, D.; Tang, Y.; Fan, X.; Liu, Z.; et al. In-Situ self-encapsulated flexible multi-layered poly (imide siloxane) copolymer film with resistance to atomic oxygen. Mater. Today Commun. 2020, 23, 100959. [Google Scholar]
- Yang, Z.; Wang, Q.; Bai, Y.; Wang, T. AO-resistant shape memory polyimide/silica composites with excellent thermal stability and mechanical properties. RSC Adv. 2015, 5, 72971–72980. [Google Scholar] [CrossRef]
- Lei, X.; Yao, P.; Qiao, M.; Sun, W.; Zhang, H.; Zhang, Q. Atomic oxygen resistance of polyimide/silicon hybrid thin films with different compositions and architectures. High Perform. Polym. 2014, 26, 712–724. [Google Scholar] [CrossRef]
- Zhang, J.; Ai, L.; Li, X.; Zhang, X.; Lu, Y.; Chen, G.; Fang, X.; Dai, N.; Tan, R.; Song, W. Hollow silica nanosphere/polyimide composite films for enhanced transparency and atomic oxygen resistance. Mater. Chem. Phys. 2019, 222, 384–390. [Google Scholar] [CrossRef]
- Shu, M.; Li, Z.; Man, Y.; Liu, K.; Liu, H.; Gao, Y. Surface modification of poly (4,4-oxydiphenylene pyromellitimide) (Kapton) by alkali solution and its applications to atomic oxygen protective coating. Corros. Sci. 2016, 112, 418–425. [Google Scholar] [CrossRef]
- Hu, L.; Li, M.; Xu, C.; Luo, Y. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack. Thin Solid Films 2011, 520, 1063–1068. [Google Scholar] [CrossRef]
- Fong, H.; Vaia, R.A.; Sanders, J.H.; Lincoln, D.; Vreugdenhil, A.J.; Liu, W.; Bultman, J.; Chen, C. Self-passivation of polymer-layered silicate nanocomposites. Chem. Mater. 2001, 13, 4123–4129. [Google Scholar] [CrossRef]
- Gunthner, M.; Kraus, T.; Dierdorf, A.; Decker, D.; Krenkel, W.; Motz, G. Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation. J. Eur. Ceram. Soc. 2009, 29, 2061–2068. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, K.; Zhan, M. Atomic oxygen erosion resistance of polyimide/ZrO2 hybrid films. Appl. Surf. Sci. 2010, 256, 7384–7388. [Google Scholar] [CrossRef]
- Lv, M.; Wang, Q.; Wang, T.; Liang, Y. Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications. Compos. B Eng. 2015, 77, 215–222. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Liu, S.-J.; Chiang, P.-C. Synthesis and characteristics of polyimide/titanianano hybrid films. Thin Solid Films 2006, 515, 1126–1131. [Google Scholar] [CrossRef]
- Cooper, R.; Upadhyaya, H.P.; Minton, T.K.; Berman, M.R.; Du, X.; George, S.M. Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings. Thin Solid Films 2008, 516, 4036–4039. [Google Scholar] [CrossRef]
- Mallakpour, S.; Naghdi, M. Polymer/SiO2 nanocomposites: Production and applications. Prog. Mater. Sci. 2018, 97, 409–447. [Google Scholar] [CrossRef]
- Schubert, U. Simple and yet complicated Sol-Gel-Chemistry. Chem. UnsererZeit 2018, 52, 18–25. [Google Scholar] [CrossRef]
- Singh, L.P.; Bhattacharyya, S.K.; Kumar, R.; Mishra, G.; Sharma, U.; Singh, G.; Ahalawat, S. Sol-Gel processing of silica nanoparticles and their applications. Adv. Coll. Interf. Sci. 2014, 214, 17–37. [Google Scholar] [CrossRef]
- Mekuria, T.D.; Zhang, C.; Fouad, D.E. The effect of thermally developed SiC@SiO2 core-shell structured nanoparticles on the mechanical, thermal and UV-shielding properties of polyimide composites. Compos. B Eng. 2019, 173, 106917. [Google Scholar] [CrossRef]
- Tebeneva, N.A.; Meshkov, I.B.; Tarasenkov, A.N.; Polshchikova, N.V.; Kalinina, A.A.; Buzin, M.I.; Serenko, O.A.; Zubavichus, Y.V.; Katsoulis, D.E.; Muzafarov, A.M. Polyfunctional branched metallosiloxane oligomers and composites based on them. J. Organomet. Chem. 2018, 868, 112–121. [Google Scholar] [CrossRef]
- Andropova, U.S.; Tebeneva, N.A.; Serenko, O.A.; Tarasenkov, A.N.; Buzin, M.I.; Shaposhnikova, V.V.; Muzafarov, A.M. Nanocomposites based on polyarylene ether ketones from sol–gel process: Characterizations and prospect applications. Mater. Des. 2018, 160, 1052–1058. [Google Scholar] [CrossRef]
- Andropova, U.; Serenko, O.; Tebeneva, N.; Tarasenkov, A.; Buzin, M.; Afanasyev, E.; Sapozhnikov, D.; Bukalov, S.; Leites, L.; Aysin, R.; et al. Atomic oxygen erosion resistance of polyimides filled hybrid nanoparticles. Polym. Test. 2020, 84, 106404. [Google Scholar] [CrossRef]
- Vinogradova, S.V.; Vasnev, V.A.; Vygodskii, Y.S. Cardo polyheteroarylenes. Synthesis, properties, and characteristic, features. Russ. Chem. Rev. 1996, 65, 249–277. [Google Scholar] [CrossRef]
- Novikov, L.S.; Voronina, E.N.; Chernik, V.N.; Vernigorov, K.B.; Yablokova, M.Y. Atomic oxygen influence on polymer nanocomposites with different fillers. J. Spacecr. Rocket. 2016, 53, 1012–1018. [Google Scholar] [CrossRef]
- Chen, X.Y.; Rodrigue, D.; Kaliaguine, S. Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes. Sep. Purif. Technol. 2012, 86, 221–233. [Google Scholar] [CrossRef]
Sample | The Precursor Concentration (wt.%) | Tg (°C) | Td (°C) | T5% (°C) | Tdm (°C) | Solid Residue (wt.%) |
---|---|---|---|---|---|---|
PI | 0 | 381 | 497 | 570 | - | 0 |
Al-MDES | 100 | - | 268 | 310 | - | 86 |
Fe-MDES | 100 | - | 235 | 290 | - | 80 |
Cr-MDES | 100 | - | 271 | 367 | - | 56 |
Zr-MDES | 100 | - | 278 | 362 | - | 87 |
Hf-MDES | 100 | 247 | 416 | 90 | ||
Nb-MDES | 100 | - | 259 | 334 | - | 86 |
PI-Al-MDES | 3 | 390 | 538 | 497 | 13 | |
14 | 390 | 456 | 497 | 6 | ||
PI-Fe-MDES | 3 | 395 | 476 | 415 | 8 | |
14 | 389 | 450 | 420 | 14 | ||
PI-Cr-MDES | 3 | 386 | 480 | 457 | 4 | |
14 | 371 | 407 | 445 | 7 | ||
PI-Zr-MDES | 3 | 387 | 550 | 497 | 10 | |
14 | 386 | 507 | 497 | 17 | ||
PI-Hf-MDES | 3 | 387 | 548 | 497 | 8 | |
14 | 393 | 573 | 497 | 18 | ||
PI-Nb-MDES | 3 | 381 | 566 | 497 | 12 | |
14 | 386 | 572 | 502 | 13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serenko, O.; Andropova, U.; Tebeneva, N.; Buzin, M.; Afanasyev, E.; Tarasenkov, A.; Bukalov, S.; Leites, L.; Aysin, R.; Novikov, L.; et al. Influence of the Composition of the Hybrid Filler on the Atomic Oxygen Erosion Resistance of Polyimide Nanocomposites. Materials 2020, 13, 3204. https://doi.org/10.3390/ma13143204
Serenko O, Andropova U, Tebeneva N, Buzin M, Afanasyev E, Tarasenkov A, Bukalov S, Leites L, Aysin R, Novikov L, et al. Influence of the Composition of the Hybrid Filler on the Atomic Oxygen Erosion Resistance of Polyimide Nanocomposites. Materials. 2020; 13(14):3204. https://doi.org/10.3390/ma13143204
Chicago/Turabian StyleSerenko, Olga, Ulyana Andropova, Nadezhda Tebeneva, Mihail Buzin, Egor Afanasyev, Aleksander Tarasenkov, Sergey Bukalov, Larisa Leites, Rinat Aysin, Lev Novikov, and et al. 2020. "Influence of the Composition of the Hybrid Filler on the Atomic Oxygen Erosion Resistance of Polyimide Nanocomposites" Materials 13, no. 14: 3204. https://doi.org/10.3390/ma13143204
APA StyleSerenko, O., Andropova, U., Tebeneva, N., Buzin, M., Afanasyev, E., Tarasenkov, A., Bukalov, S., Leites, L., Aysin, R., Novikov, L., Chernik, V., Voronina, E., & Muzafarov, A. (2020). Influence of the Composition of the Hybrid Filler on the Atomic Oxygen Erosion Resistance of Polyimide Nanocomposites. Materials, 13(14), 3204. https://doi.org/10.3390/ma13143204