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Abstract: In the present study, we propose a novel biosensor platform using a gold-tellurium (Au–Te)
nanoworm structure through surface-enhanced Raman spectroscopy (SERS). Au–Tenanoworm was
synthesized by spontaneous galvanic replacement of sacrificial Te nanorods templated with Au (III)
cations under ambient conditions. The fabricated Au–Te nanoworm exhibited an interconnected
structure of small spherical nanoparticles and was found to be effective at enhancing Raman
scattering. The Au–Te nanoworm-immobilized substrate exhibited the ability to detect thyroxine
using an aptamer-tagged DNA three-way junction (3WJ) and glycoprotein 120 (GP120) human
immunodeficiency virus (HIV) using an antibody. The modified substrates were investigated by
scanning electron microscopy and atomic force microscopy (AFM). The optimal Au–Te nanoworm
concentration and immobilization time for the thyroxine biosensor platform were further determined
by SERS experimentation. Thus, the present study showed that the Au–Te nanoworm structure could
be applied to various biosensor platforms.

Keywords: surface-enhanced Raman spectroscopy; aptamer; antibody; Au–Te nanoworm; biosensor

1. Introduction

A biosensor is an analytical device used to precisely detect diseases based on changes in
target-receptor signaling or non-target-receptor interaction [1,2]. Several types of biosensors, including
electrochemical, electrical, optical, and spectrochemical, have been developed [3,4]. In most cases,
biosensors have been devised to improve several functionalities: (1) sensitivity, (2) selectivity,
(3) portability, (4) small volume loading, and (5) a user-friendly interface [5–7]. Since 2000, advances
in nanotechnology have led to the development of biosensors designed to detect various pathogens,
including bacteria, viruses, and other microorganisms [8–11]. By introducing the nanomaterial to
the biosensor electrode, the biosensor increased the surface roughness and area, which enhanced the
sensitivity [12]. Moreover, some nanomaterials, including quantum dots, upconversion nanoparticles,
and graphene, allow the fabrication of new types of fluorescence-based biosensors and magnetic
biosensors, among others [13]. In addition, the nanopattern on the biosensor electrode only required a
small amount of bioprobe volume, which can reduce the manufacturing cost [14]. Those nanobiosensors
have several advantages, such as label-free operation, easy-to-fabricate, and fast response.

Conventional Raman spectroscopy was considered as hard to use in biosensor application due to
its weak signal for determining the target. To overcome this problem, the surface-enhanced Raman
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spectroscopy (SERS) technique can use Raman spectroscopy for biosensor application. In 1974, the first
SERS enhancement effect of nanostructure-adsorbed pyridine was reported [15] and there have been
reports that the introduction of nanostructures can improve Raman scattering [16–20]. SERS enhancement
can be elucidated by electromagnetic field enhancement (EM) and chemical enhancement (CM) [21].
In particular, EM enhancement is regarded as a major contributor to the SERS effect that generates a SERS
hotspot between interfaces [22]. SERS-based biosensors have been widely investigated because of their
high resolution, molecular fingerprinting ability, non-invasive method, and their support for qualitative
analysis of target species.

Recently, various metal nanoparticles with different shapes have provided unique plasmonic
behavior to construct SERS-based biosensors [23]. For example, it was reported that through an
enhancement of Au nanorods a Raman signal could be elucidated by longitudinal and transverse
plasmon bands, an effect which had not been observed in spherical Au nanoparticles [24]. Moreover,
it was shown to be the nanospike structure and porous nanostructure that provided this SERS
effect [25,26]. Several groups have reported the control of nanoparticle shape for the SERS effect
improvement [27–29]. Several groups have developed SERS-based biosensors for detecting various
pathogen cues, including bacteria, viruses, proteins, and nucleic acids [30–33]. In the meantime,
various Au-based nanocomposite structures have been synthesized for various applications including
battery, material, and biomedical applications. Among the applications, Au–Te nanocomposite showed
unique characteristics [34,35]. In addition to its unique physicochemical properties, including high
surface-to-volume ratio and photo-responsive heat generation, the environmentally friendly synthesis
strategy, which does not require the addition of cytotoxic surfactants, can be regarded as a major
advantage in various bio-application fields. Moreover, the Au–Te nanoworm structure has a short
transverse distance and long longitudinal distance, which can enhance the SERS signal due to the
subsequent dual plasmon bands [36,37].

In the present study, we synthesized Au–Te nanoworms and applied them to SERS-based biosensor
applications to fabricate aptamer-based biosensors, antibody-based biosensors, and protein-based
biosensors. These applications were applied to detect thyroxine (T4), glycoprotein 120 (GP120: the target
of human immunodeficiency virus (HIV)), and acute myocardial infarction (AMI) biomarkers, respectively.
Preparation of Au–Te nanoworms was accomplished by a spontaneous galvanic replacement reaction
of a sacrificial Te nanorod template, as previously reported. The synthesis of the Au–Te nanoworm
structure was confirmed by field emission scanning electron microscopy (FE-SEM), ultraviolet-visible
spectroscopy (UV-VIS) spectroscopy, and transmission electron microscopy (TEM). The prepared Au–Te
nanoworm structure was immobilized on an indium-tin-oxide (ITO) substrate by a chemical linker.
Then, each bioprobe, including T4 DNA aptamer, HIV antibody, and myoglobin was self-assembled
onto a modified substrate. The fabrication process of each bioprobe-modified Au–Te nanoworm
structure was investigated by atomic force microscopy (AFM). The binding events between each target
and bioprobe were confirmed by SERS experiments. Figure 1 shows a schematic diagram of the
proposed biosensor application.
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Figure 1. Schematic image of the fabricated biosensor platform. Note: SERS = surface-enhanced
Raman spectroscopy, ITO = indium-tin-oxide.
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2. Materials and Methods

ITO-glass (3 × 1 cm) was purchased from National Nanofab Center (10 Ω resistance, Daejeon,
Korea). L-thyroxine was purchased from Thermo Fisher Scientific (Waltham, MA, USA). GP120 antibody
was purchased from Sino Biological (Beijing, China) and GP120 was purchased from ACRO Biosystem
(Newark, DE, USA). Triton-X solution, EDC, NHS, and (3-aminopropyl)triethoxysilane (APTES)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ethylene glycol and sodium hydrogen
carbonate were purchased from DaeJung (Siheung-si, Korea). For Au–Te nanoparticle synthesis,
poly (vinylpyrrolidone) (Mw = 40 kDa), sodium tellurite, sodium hydroxide, ethylene glycol, hydrazine
monohydrate, and chloroauric acid hydrate were purchased from Sigma-Aldrich (St. Louis, MO, USA).
All chemicals were used as received. The sequences of the strands used as thyroxine probes were as
follows: the aptamer of thyroxine used to create the DNA 3WJ-a strand was 5′-TAA TAC GAC TCA
CTA TAG GGA ATT CGT CGA CGG ATC CGC CGT TGG TGT TCG GTC AGG CTT CCG TGG CAA
CGG GGC AAA ATG GTA ATC GCG GGG AAC CCT GCA GGT CGA CGC ATG CGC CGT TGC
CAT GTG TAT GTG GG-3′ and was synthesized by IDT (Coralville, IA, USA); DNA 3WJ-b modified
methylene blue was MB-5′-CCC ACA TAC TTT GTT GAT CC-3′; and DNA 3WJ-c modified thiol was
SH-5′-GGA TCA ATC ATG GCA A-3′. DNA 3WJ-b and DNA 3WJ-c were synthesized and purified
using HPLC by Bioneer (Daejeon, Korea). The ultrapure water used in the experiment was purified by
VENUS ROUP-15-S from Jeongbiotech (Incheon, Korea).

2.1. Preparation of Au–Te Nanoworms

Au–Te nanoworms were synthesized by galvanic replacement of sacrificial Te nanorods under
aqueous dispersion conditions [38]. Briefly, Te nanorods were first prepared by seed-mediated growth
in ethylene glycol solvent. More specifically, 1 g of poly(vinylpyrrolidone) (PVP, Mw = 40 kDa), 92.2 mg
of sodium telluride, and 0.5 mg of NaOH were fully dissolved in 40 mL of ethylene glycol by vortexing.
Ultrasonication was not applied to avoid nucleation; 1.3 mL of hydrazine monohydrate was added,
followed by heating for 3 h at 70 ◦C with vigorous magnetic stirring. The synthesized Te nanorods
were purified by dialysis using a 30 kDa cutoff membrane in a distilled water reservoir.

A quantity of 2.5 mL of 10 mM HAuCl4 aqueous stock solution was rapidly injected to the
20 mL of as-prepared Te nanorods, followed by 2 h of incubation at room temperature to achieve
galvanic replacement and nanoworm formation. Manufactured Au–Te nanoworms were purified by
centrifugation (8000 rpm for 10 min) and further washed three times with distilled water to confirm the
removal of unreacted and dissolved ions. Finally, the Au–Te nanoworms were re-dispersed in 20 mL
of distilled water for further use.

2.2. Immobilization of Au–Te on ITO

The ITO substrate was treated with atmospheric plasma for 5 min to form a hydrophilic surface.
Subsequently, 30 µL of 5% APTES was covered for 12 min on the surface for silanization, rinsed in
ethanol, and dried under a stream of nitrogen gas. After drying, the substrate was heat-treated at 70 ◦C
for 1 h to prepare an amine-modified SAM. Thereafter, 40 µL of Au–Te nanoparticles were dropped on
the surface of the ITO, which was then incubated for 3 h at room temperature to prepare Au–Te/ITO
substrates through self-assembly of amine groups and Au. Finally, unbound Au–Te was washed with
deionized water (DIW) and dried under a nitrogen gas stream.

2.3. Fabrication of Target/Biomolecules/Au–Te on ITO

In this experiment, a biosensor of thyroxine and GP120 was prepared. First, the DNA 3WJ
structure was used as the thyroxine detection probe. Each of the three DNA strands is functional and
assembled to form a single nanostructure. The DNA 3WJ-a strand can capture thyroxine, and the DNA
3WJ-b strand was labeled with methylene blue to confirm the Raman signal of the DNA probe. Strand
c labeled thiols and formed covalent bonds with Au–Te particles, allowing the DNA 3WJ probe to
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be immobilized on the substrate. To assemble each of these DNA fragments, they underwent 5 min
of heat treatment at 80 ◦C in the TMS buffer and were then cooled at 4 ◦C for 30 min; 30 µL of the
assembled DNA 3WJ probe solution was placed on an Au–Te/ITO glass substrate, incubated at room
temperature overnight, washed with distilled water, and dried under nitrogen gas to prepare the DNA
3WJ/Au–Te/ITO substrate. To detect thyroxine, 30 µL of 1 mM thyroxine diluted in dilution buffer
(50% ethylene glycol, 500 mM NaHCO3) was dropped on the substrate and immobilized at room
temperature for 3 h.

For immobilization of GP120 antibodies on Au–Te/ITO, 100µL of the GP120 antibody (5µg/mL) was
mixed with 100 µL of EDC (4 mg/mL) and NHS (6 mg/mL) for 1 h at room temperature. The Au–Te/ITO
electrode was treated with cysteamine; 10 µL of 10 mM cysteamine (dissolved in ethanol) was dropped
onto the Au–Te/ITO substrate to form a self-assembled thin film. Then, the unbound cysteamine was
removed by washing under DIW and N2 gas. Thirty microliters of the EDC/NHS-treated antibody
solution was dropped on the cysteamine-treated Au–Te/ITO and allowed to react overnight at room
temperature. All samples were washed with deionized water and dried under a nitrogen gas stream
before measurement.

2.4. Surface Morphology Analysis

The surface of the Au–Te/ITO substrate was confirmed by FE-SEM (Auriga, Carl Zeiss, Germany)
and compared with the AFM (Digital Instruments, Billerica, MA, USA) results. Au–Te/ITO substrates
were investigated using the tapping mode AFM, using phosphorous (n-type doped Si, RTESP, Bruker,
Billerica, MA, USA) tips. The integral gain, proportional gain, and setpoint current were optimized for
the force between the tip and the substrate surface before scanning the sample.

2.5. Measurement of Surface-Enhanced Raman Scattering

SERS measurements were performed for DNA 3WJ aptamer-thyroxine binding, GP120 antibody
GP120 protein binding, and myoglobin. SERS was measured using a SENTERRA confocal Raman
spectroscope (Bruker Optics, Billerica, MA, USA) using a 785 nm diode laser with 10 mW power;
an exposure time of 5 s was set for all experiments. Raman spectra were obtained using the average
results from 10 different points in 10 independent samples.

3. Results

3.1. Investigation of Immobilized Biomolecules/Au–Te on the ITO Substrate

The surface of the ITO substrate immobilized with biomolecules/Au–Te was investigated by
AFM and FE-SEM. Figure 2a,b shows the FE-SEM results before and after immobilization of Au–Te
nanoworms structure on an ITO substrate. Figure 2b shows that the earthworm-shaped Au–Te
nanoworms structure was well immobilized on ITO. The Au–Te nanoworms structure immobilized on
the ITO substrate were approximately 200–220 nm in length and 20 nm in height. Figure 2d,e shows
the AFM results after immobilization of T4 DNA 3WJ and GP120 antibody on Au–Te/ITO substrate.
An increase of approximately 2–3 nm in height was measured on substrates immobilized with T4 DNA
3WJ (Figure 2d). Figure 2e shows that the total vertical height increased by 5 nm due to the addition
of the GP120 antibody to the Au–Te particles immobilized with EDC/NHS. Compared to the Au–Te
nanoworms structure, the surface morphology and surface roughness analysis showed different shapes
and values. When the biomolecules (T4 DNA 3WJ and GP120 antibody) were added on the Au–Te
nanoworm-modified substrate, respectively, we found some of the values and morphology changed.
Presumably, the interaction between some of biomolecule and nanostructure gives the difference of
values. Moreover, the increment of vertical distance can be interpreted to be stacking of biomolecules
on the Au–Te nanowrom structure. The overall result confirmed that the biomolecule/Au–Te layer is
well immobilized on the ITO substrate.
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3.2. Enhancement Factor of Au–Tenanoworms

To calculate the EF of the Au–Te nanoworm, the ratio of SERS to the normal Raman spectrum
(NRS) of methylene blue was determined using the following equation [39,40]. The laser was irradiated
at 785 nm and compared to the intensity at 495 cm−1, where the methylene blue peak was apparent
as shown in Figure 3. The Raman intensity was compared by measuring a sample in which 40 µL of
1 mM methylene blue was dropped on the cleaned ITO and a sample of the same amount of methylene
blue on ITO with 1× concentration of Au–Te nanoparticles (1× reference absorbance Figure A1).

EF = (ISERS/NSERS/INRS/NNRS) (1)

NSERS = NAnSIrr/Sdif (2)

NNRS = dNAhSIrr/M (3)



Materials 2020, 13, 3234 6 of 12

ISERS and NSERS are the intensity of SERS and NRS, respectively, and the ratio is calculated as 3.2. NA is
the Avogadro’s constant, n is the number of moles of the molecule, SIrr is the irradiation region under
the laser beam (1.5 µm in diameter), and Sdif is the diffusion region of the sample material to be tested.
In the test, 1 mM of methylene blue 40 µL solution was dropped on an Au–Te nanoworm substrate,
dried, and a circle having a diameter of 3 mm was formed. Therefore, about 1.5 × 10−9 molecules were
present in the laser beam spot (NSERS).
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The term d is the packing density of methylene blue, the size of methylene blue is about 14 × 9 Å,
but it is assumed to be a spherical molecule having a diameter of 10 Å, and it is calculated assuming
that it is composed of a monolayer, and the result is 1.1954 × 10−15 g/1.178 × 10−3 µm3. The term h
refers to the laser confocal depth (2.8 µm) and M corresponds to the molecule weight of methylene
blue. Therefore, about 3 × 10−9 molecules were present in the laser beam spot (NNRS). Finally, the EF
value is 6.4.

This shows that the EF of the Au–Te based SERS application is significantly lower compared to
the fact that the EF of the SERS applications using gold or silver is 106–1011, but the small molecule
thyroxine can be detected without labeling [41,42]. In addition, it is considered to be utilitarian when
introducing biosensors because it is possible to synthesize large quantities of nanoparticles that can
enhance Raman signals without using precious metal nanoparticles.

3.3. Optimization of Au–Te Immobilization on ITO

In order to maximize the Raman enhancement effect of Au–Te particles, we monitored the
change in Raman intensity by varying the concentration and immobilization time, and set the optimal
concentration and immobilization time accordingly. Figure 4a shows the Raman spectra at various
concentrations of Au–Te (1× reference absorbance Figure A1). The initial 2× spectra were the Raman
spectra of ITO itself, indicating presence of few Au–Te particles. The Raman intensity was observed
to increase with increasing Au–Te concentration (Figure 4b). The plot of the Raman spectrum of
Au–Te 10× particles with immobilization time is shown. The Raman intensity gradually increased with
immobilization time. However, after 3 h, the spectrum was almost the same. As a result, we adopted a
10× concentration of Au–Te and a 3 h immobilization, as this showed the greatest efficiency.
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3.4. Detection of Biomolecules by SERS

Before confirming the binding peak between DNA 3WJ and T4, the Raman peak of T4 enhanced
by Au–Te nanoworm was identified. The enhanced Raman scattering peak of T4 was found to be very
high at 783, 891, 974, 1087 and 1615 cm−1. Table 1 shows the vibration allocation for the Raman peak
of T4 [43]. The peaks of T4 DNA 3WJ were found to be 501, 780, 1360 and 1656 cm−1. The peak at
501 cm−1 was typical of methylene and was confirmed to be due to the methylene blue modification of
the T4 DNA 3WJ strand [44]. The peak at 780 cm−1 was confirmed by the peak of the DNA phosphate
band and thyroxine cytosine [45]. To confirm the detection performance of T4, 3 mM T4 was dropped
on a T4 DNA 3WJ/Au–Te ITO substrate, and then SERS measurement was performed. As a result,
peaks of 495, 779, 872, 896, 1092, 1267, 1607 and 1656 cm−1 were observed after T4 binding to T4 DNA
3WJ. The peaks of 779, 896, 1092, and 1607 cm−1 are believed to be the result of the presence of T4.
The frequencies of 779 and 896 cm−1 are common frequencies that appeared in both T4 and T4 DNA
3WJ, but the intensity was much increased, and Raman signals in the 1092 and 1607 cm−1 regions,
which were not present in T4 DNA 3WJ, were detected. However, the frequency shift appears to have
occurred at 1087 and 1615 cm−1, which was the peak of the original T4. In addition, it was confirmed
that the Raman signal of 495 and 1656 cm−1 frequency identified as the peak of T4 DNA 3WJ was
present, indicating that T4 DNA 3WJ was also present on the substrate and that T4 and T4 DNA 3WJ
were detected together. These results confirmed that T4 was detected using T4 DNA 3WJ.
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Table 1. Assignments of SERS peak of Thyroxine.

Wave Number (cm−1) Vibrational Assignments

783 υ(C3—O)10, υ(C32—C27)10, β(C2—C1—C6),
β(C4—C5—C6)10, β(C5—C6—O17)13

891 τ(H15—C10—C11—C12)48

974 υ(C27—N), y(C24—C27)17, β(H30—N29—C27)20,
τ(H7—C1—C2—C3)10

1087 υ(C9—C24)11, β(H16—C14—C13)45

1615 β(N29H2)84, τ(H30—N29—C27—C24),
τ(H31—N29—C27—C24)13

The second Raman spectrum that detected GP120 is shown in Figure 5b. After measuring the
Raman spectra of the GP120 antibody and GP120 individually, we compared the results after the
binding of GP120 to the GP120 antibody. The most prominent frequency of the HIV antibody was
1177 cm−1, and the highest peak was found at 1196 cm−1 in GP120. Looking at the enlarged spectrum
at 1200 cm−1 on the right side of Figure 5b, there are 1177 and 1199 cm−1 peaks in the Raman spectrum
in which the HIV antibody and GP120 are bound, and a slight frequency shift occurs. In addition,
a high peak in the region of 1341 cm−1 in the HIV antibody and a low intensity in 1354 cm−1 in
GP120 were observed. In the antibody–antigen conjugation, peaks of 1341 and 1354 cm−1 were
both confirmed and intensity increased. Lastly, in the 1561–1576 cm−1 region a prominent peak in
GP120 disappeared after binding with the antibody. It has been reported that frequency shifting in
SERS-based immunoassays may be due to structural modifications that occur during antibody–antigen
conjugation [46,47]. In addition, there have been no reports of the extinction of the Raman signal in the
immunoassay method, but there are reports of the extinction of the Raman signal at the single-molecule
level [48]. As a result, antigen antibody conjugation without labels could be confirmed by SERS.
Each peak assignment of GP120 is shown in Table 2 [49,50].
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Table 2. Assignments of SERS peak of GP120.

GP120

Wave Number (cm−1) Assignment

675 D-Mannose
798 C, U, Thr
891 β-C1 config. Trp, Val Man
987 Man, ribose

1200 Tyr, Phe
1354 Trp
1561 GlcNac(Amid II) Amide II, Trp
1576 G, A, Trp
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Compare this study with other SERS-based sandwich immunoassays, the experimental methods
label the antibody to cause signal amplification, but it is inconvenient to add further labeling to the
detector antibody, the entire protocol is very long, and only the antigen–binding antibody has to be
separated [51]. The disadvantage is that it takes much additional time to detect pathogenic substances
that need to be detected quickly, such as viruses, and thereby one cannot provide rapid results to
patients and medical staff. However, in this study, it can be said that the capture antibody is fixed on
the substrate without labeling, and after binding with the antigen, the unbound sample can be easily
separated by washing, and it is easy to detect quickly due to the short production step. As a result,
this study is a SERS platform that can quickly detect the antigen without labeling of target substances
with only the augmented Raman signal of Au–Te nanoparticles. We believe this platform will be easier
to apply in the field where rapid detection is needed.

4. Conclusions

In this study, authors developed a SERS biosensor platform using Au–Te nanoworm particles.
For validating the biosensor platform, we introduced two types of bioprobes. The first bioprobe is
the aptamer for T4 recognition, and the second bioprobe is the antigen–antibody immune response
sensor for detecting HIV via the target GP120 protein. The aptamer peak was clearly identified by
labeling the aptamer with methylene blue, and the peak of the target molecule was observed even
after binding to the target molecule. Antigen–antibody immune response sensors were able to detect
the presence of antigen through peak analysis without labeling. The EF of the Au–Te based SERS
application showed a low level of 3.2, but showed that a single molecule level can be detected without
labeling. In addition, Au-based nanostructures formed by galvanic replacement with high-complexity
have low yields. This is because noble metal nanoparticles such as Ag and Cu used as sacrificial
nanotemplates are difficult to synthesize in large quantities. However, when Te, a typical element,
is used, the yield of the template is improved by about 100 times or more, so it can be said that it has
an advantage in practical use. As a result, it was confirmed that it has a high potential for application
to SERS-based biosensors because it measures target materials without labels and has the advantages
of fast detection time and small samples. In the near future, Au–Te nanoworm can be used as the
powerful candidate for SERS biosensor construction.
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Appendix A

The synthesized Au–Te nanoworm particle solution was based on a concentration of 1× when
absorbance was 1. The absorbance graph is shown below (Figure A1).
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