Finite Beam Element for Curved Steel–Concrete Composite Box Beams Considering Time-Dependent Effect
Abstract
:1. Introduction
2. Two-Node Finite Beam Element with 26 DOFs for Curved Composite Box Beams
2.1. Basic Hypotheses of the Model
2.2. Geometric Dimensions and Coordinate System of the Curved Composite Box Beam
2.3. Displacement Modes and Strain Components of Curved Composite Box Beams
2.4. Equilibrium Equation for Curved Composite Box Beams
2.5. Finite Beam Element for Curved Composite Box Beams
3. Numerical Validation of the Beam Element Model
4. Parametric Analysis
4.1. Influence of the Time-Dependent Effects on Shear Lag
4.2. Influence of Time-Dependent Effects on Mechanical Behavior for Different Initial Curvatures
4.3. Influence of the Time-Dependent Effects on Mechanical Behavior for Different Interfacial Shear Connection Stiffness Values
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Pnevmatikos, N.; Sentzas, V. Preliminary estimation of response of curved bridges subjected to earthquake loading. J. Civ. Eng. and Archit. 2012, 6, 1530–1535. [Google Scholar]
- Vlasov, V.Z. Thin-Walled Elastic Beams, 2nd ed.; Israel Program for Scientific Translation: Jerusalem, Israel, 1961. [Google Scholar]
- Nakai, H.; Yoo, C.H. Analysis and Design of Curved Steel Bridges; McGraw-Hill Co.: New York, NY, USA, 1988. [Google Scholar]
- Nakai, H.; Murayama, Y. Distortional stress analysis and design aid for horizontally curved box girder bridges with diaphragms in steel box girder bridges. Proc. Jpn. Soc. Civ. Eng. 1981, 309, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Arizumi, Y.; Hamada, S.; Oshiro, T. Experimental and Analytical Studies on Behavior of Curved Composite Box Girders; Bulletin of the Faculty of Engineering, University of the Ryukyus: Okinawa, Japan, 9 May 1987; pp. 175–195. [Google Scholar]
- Zhu, L.; Wang, J.J.; Su, R.K.L. Finite beam element with 26 DOFs for curved composite box girders considering constrained torsion, distortion, shear lag and biaxial slip. Eng. Struct. 2020. under review. [Google Scholar]
- Bazant, Z.P. Numerical analysis of creep of an indeterminate composite beam. J. Appl. Mech. 1970, 37, 1161–1164. [Google Scholar] [CrossRef]
- Tarantino, A.M.; Dezi, L. Creep effects in composite beams with flexible shear connectors. J. Struct. Eng. 1992, 118, 2063–2081. [Google Scholar] [CrossRef]
- Dezi, L.; Tarantino, A.M. Creep in composite continuous beams. I: Theoretical treatment. J. Struct. Eng. 1993, 119, 2095–2111. [Google Scholar] [CrossRef]
- Dezi, L.; Tarantino, A.M. Creep in composite continuous beams. II: Parametric Study. J. Struct. Eng. 1993, 119, 2112–2133. [Google Scholar] [CrossRef]
- Dezi, L.; Ianni, C.; Tarantino, A.M. Simplified creep analysis of composite beams with flexible connectors. J. Struct. Eng. 1993, 119, 1484–1497. [Google Scholar] [CrossRef]
- Dezi, L.; Leoni, G. Tarantino AM. Algebraic methods for creep analysis of continuous composite beams. J. Struct. Eng. 1996, 122, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Dezi, L.; Gara, F.; Leoni, G.; Tarantino, A.M. Time-dependent analysis of shear-lag effect in composite beams. J. Eng. Mech. 2001, 127, 71–79. [Google Scholar] [CrossRef]
- Dezi, L.; Leoni, G. Effective slab width in prestressed twin-girder composite decks. J. Struct. Eng. 2006, 132, 1358–1370. [Google Scholar] [CrossRef]
- Gara, F.; Leoni, G.; Dezi, L. A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks. Eng. Struct. 2009, 31, 1888–1902. [Google Scholar] [CrossRef]
- Ranzi, G.; Bradford, M.A. Analytical solutions for the time-dependent behavior of composite beams with partial interaction. Int. J. Solids Struct. 2006, 43, 3770–3793. [Google Scholar] [CrossRef] [Green Version]
- Ranzi, G.; Bradford, M.A. Analysis of composite beams with partial interaction using the direct stiffness approach accounting for time effects. Int. J. Numer. Methods Eng. 2009, 78, 564–586. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Hjiaj, M.; Uy, B. Time-dependent analysis of composite beams with continuous shear connection based on a space-exact stiffness matrix. Eng. Struct. 2010, 32, 2902–2911. [Google Scholar] [CrossRef]
- Li, G.H. Torsion and bending of thin-walled box girder with great initial curvature. Chin. Civ. Eng. J. 1987, 20, 65–75. (In Chinese) [Google Scholar]
- Lu, P.Z. Triaxial Theoretic Analysis and Application Research of Steel-Concrete Composite Box Beams. Ph.D. Dissertation, Southwest Jiaotong University, Chengdu, China, 2010. (In Chinese). [Google Scholar]
- Bazant, Z.P. Prediction of concrete creep effects using age-adjusted effective modulus method. J. Am. Concr. Inst. 1972, 69, 212–217. [Google Scholar]
- Guo, J.Q.; Fang, Z.Z.; Zheng, Z. Design Theory of Box Girder; China Communication Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Li, M.J. Finite Beam Element Considering Multi-Mechanical, Geometrical and Time-Dependent Effects of Curved Composite Box-Shape Beams. Master’s Dissertation, Beijing Jiaotong University, Beijing, China, 2019. (In Chinese). [Google Scholar]
- Comite Euro-International du Beton-Federation International de la Precontrainte (CEB-FIP). CEB-FIP Model Code 1990: Design Code; Thomas Telford Ltd.: London, UK, 1993. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.-M.; Zhu, L.; Ji, X.-L.; Ji, W.-Y. Finite Beam Element for Curved Steel–Concrete Composite Box Beams Considering Time-Dependent Effect. Materials 2020, 13, 3253. https://doi.org/10.3390/ma13153253
Wang G-M, Zhu L, Ji X-L, Ji W-Y. Finite Beam Element for Curved Steel–Concrete Composite Box Beams Considering Time-Dependent Effect. Materials. 2020; 13(15):3253. https://doi.org/10.3390/ma13153253
Chicago/Turabian StyleWang, Guang-Ming, Li Zhu, Xin-Lin Ji, and Wen-Yu Ji. 2020. "Finite Beam Element for Curved Steel–Concrete Composite Box Beams Considering Time-Dependent Effect" Materials 13, no. 15: 3253. https://doi.org/10.3390/ma13153253
APA StyleWang, G. -M., Zhu, L., Ji, X. -L., & Ji, W. -Y. (2020). Finite Beam Element for Curved Steel–Concrete Composite Box Beams Considering Time-Dependent Effect. Materials, 13(15), 3253. https://doi.org/10.3390/ma13153253