

Supplementary Materials: Biomimetic Design for a Dual Concentric Porous Titanium Scaffold with Appropriate Compressive Strength and Cells Affinity

Han Lee ¹, Jiunn-Der Liao ^{12,*}, Yao-Sheng Guo ¹ and Yung-Der Juang ³

- ¹ Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan; rick594007@hotmail.com (H.L.); sunrise10727@gmail.com (Y.-S.G.)
- ² International Center for Wound Repair and Regeneration, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
- ³ Department of Materials Science, National University of Tainan, Tainan 700, Taiwan; juang@mail.nutn.edu.tw
- * Correspondence: jdliao@mail.ncku.edu.tw; Tel.: +886-6-275-7575 (ext. 62971); Fax: +886-6-234-6290

Figure S1. EDS data presenting the elements distribution upon the surfaces of (#1) CP-Ti, (#2) CP-Ti_{10_45}, (#3) CP-Ti_{20_45}, (#4) CP-Ti_{20_55} (#5) CP-Ti_{20_65}, and (#6) CP-Ti_{30_65}.

Figure S2. SEM photo-images showing pore sizes of dual porous structures on the surfaces of: (a) CP-Ti, (b) CP-Ti $_{10_45}$, (c) CP-Ti $_{20_45}$, (d) CP-Ti $_{20_55}$ (e) CP-Ti $_{20_65}$, and (f) CP-Ti $_{30_65}$.

Figure S3. AFM topographical images illustrating for the surfaces of (a) CP-Ti₁ (b) CP-Ti_{10_45}, (c) CP-Ti_{20_45}, (d) CP-Ti_{20_55} (e) CP-Ti_{20_65}, and (f) CP-Ti_{30_65}.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).