RETRACTED: Effect of Final Rolling Temperature on Microstructures and Mechanical Properties of AZ31 Alloy Sheets Prepared by Equal Channel Angular Rolling and Continuous Bending
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Microstructure and Texture Evolution
3.2. Mechanical Properties
4. Conclusions
- For the ECAR-CB AZ31 magnesium alloy sheets, {10–12} extension twins could be observed, and the amount of {10–12} extension twins increased with increasing temperature, which might be attributed to the larger grain size and faster grain boundary migration. The deformation texture contained a basal (c-axis//ND) texture component and a prismatic (c-axis//RD) texture component, which could be attributed to the formation of extension twins.
- For the ECAR-CB-A AZ31 magnesium alloy sheets, the grain structures at different final rolling temperatures were recrystallized completely. A non-basal recrystallization texture (pyramidal texture) with double peaks tilting from ND towards RD could be identified, and the tilting angle increased gradually with the increasing final rolling temperature.
- Increasing the final rolling temperature could improve the plasticity and formability of ECAR-CB-A (ECAR-CB and then annealing) AZ31 Mg alloy sheets at room temperature, which might result from the increase in the tilting angle of the non-basal (pyramidal) recrystallization texture.
Author Contributions
Funding
Conflicts of Interest
References
- Ko, Y.G.; Hamad, K. Structural features and mechanical properties of AZ31 Mg alloy warm-deformed by differential speed rolling. J. Alloy. Compd. 2018, 744, 96–103. [Google Scholar] [CrossRef]
- Joost, W.; Krajewski, P.E. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 2017, 128, 107–112. [Google Scholar] [CrossRef]
- Suh, B.-C.; Shim, M.-S.; Shin, K.; Kim, N.J. Current issues in magnesium sheet alloys: Where do we go from here? Scr. Mater. 2014, 84, 1–6. [Google Scholar] [CrossRef]
- Jin, Z.-Z.; Cheng, X.-M.; Zha, M.; Rong, J.; Zhang, H.; Wang, J.-G.; Wang, C.; Li, Z.-G.; Wang, H. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg-Al-Zn alloys during gradient hot rolling. J. Mater. Sci. Technol. 2019, 35, 2017–2026. [Google Scholar] [CrossRef]
- Huang, X.; Suzuki, K.; Chino, Y.; Mabuchi, M. Influence of initial texture on rolling and annealing textures of Mg-3Al-1Zn alloy sheets processed by high temperature rolling. J. Alloy. Compd. 2012, 537, 80–86. [Google Scholar] [CrossRef]
- Somekawa, H.; Kinoshita, A.; Washio, K.; Kato, A. Enhancement of room temperature stretch formability via grain boundary sliding in magnesium alloy. Mater. Sci. Eng. A 2016, 676, 427–433. [Google Scholar] [CrossRef]
- Dogan, E.; Vaughan, M.; Wang, S.; Karaman, I.; Proust, G. Role of starting texture and deformation modes on low-temperature shear formability and shear localization of Mg-3Al-1Zn alloy. Acta Mater. 2015, 89, 408–422. [Google Scholar] [CrossRef]
- Chapuis, A.; Liu, P.; Liu, Q. An experimental and numerical study of texture change and twinning-induced hardening during tensile deformation of an AZ31 magnesium alloy rolled plate. Mater. Sci. Eng. A 2013, 561, 167–173. [Google Scholar] [CrossRef]
- Yi, S.-B.; Davies, C.H.J.; Brokmeier, H.-G.; Bolmaro, R.E.; Kainer, K.; Homeyer, J. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Mater. 2006, 54, 549–562. [Google Scholar] [CrossRef]
- Park, S.H.; Hong, S.-G.; Lee, C.S. Enhanced stretch formability of rolled Mg-3Al-1Zn alloy at room temperature by initial {10–12} twins. Mater. Sci. Eng. A 2013, 578, 271–276. [Google Scholar] [CrossRef]
- Suh, J.; Victoria-Hernández, J.; Letzig, D.; Golle, R.; Yi, S.; Bohlen, J.; Volk, W. Improvement in cold formability of AZ31 magnesium alloy sheets processed by equal channel angular pressing. J. Mater. Process. Technol. 2015, 217, 286–293. [Google Scholar] [CrossRef]
- Del Valle, J.; Carreño, F.; Ruano, O.A. Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling. Acta Mater. 2006, 54, 4247–4259. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Chen, Z.H.; Xia, W.J.; Zhou, T. Effect of channel clearance on crystal orientation development in AZ31 magnesium alloy sheet produced by equal channel angular rolling. J. Mater. Process. Technol. 2007, 184, 97–101. [Google Scholar] [CrossRef]
- Kim, W.; Yoo, S.; Chen, Z.; Jeong, H. Grain size and texture control of Mg–3Al–1Zn alloy sheet using a combination of equal-channel angular rolling and high-speed-ratio differential speed-rolling processes. Scr. Mater. 2009, 60, 897–900. [Google Scholar] [CrossRef]
- Huang, X.; Suzuki, K.; Watazu, A.; Shigematsu, I.; Saito, N. Mechanical properties of Mg-Al-Zn alloy with a tilted basal texture obtained by differential speed rolling. Mater. Sci. Eng. A 2008, 488, 214–220. [Google Scholar] [CrossRef]
- Onuki, Y.; Hara, K.; Utsunomiya, H.; Szpunar, J.A. High-speed Rolling of AZ31 magnesium alloy having different initial textures. J. Mater. Eng. Perform. 2014, 24, 972–985. [Google Scholar] [CrossRef]
- Pérez-Prado, M.T.; Del Valle, J.; Ruano, O.A. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scr. Mater. 2004, 50, 667–671. [Google Scholar] [CrossRef]
- Huang, G.S.; Xu, W.; Huang, G.J.; Li, H.C.; Song, B. Textural evolution of AZ31B magnesium alloy sheets undergoing repeated unidirectional bending at room temperature. Mater. Sci. Technol. 2009, 25, 365–369. [Google Scholar]
- Zhang, L.; Huang, G.; Zhang, H.; Song, B. Cold stamping formability of AZ31B magnesium alloy sheet undergoing repeated unidirectional bending process. J. Mater. Process. Technol. 2011, 211, 644–649. [Google Scholar] [CrossRef]
- Huo, Q.; Yang, X.; Ma, J.; Sun, H.; Qin, J.; Jiang, Y. Microstructural and textural evolution of AZ61 magnesium alloy sheet during bidirectional cyclic bending. Mater. Charact. 2013, 79, 43–51. [Google Scholar] [CrossRef]
- Yanagida, A.; Hirai, Y.; Sekido, K. Improvement of formability of AZ31magnesium alloy by repeated roll bending process. Procedia Eng. 2017, 207, 920–925. [Google Scholar] [CrossRef]
- Song, D.; Zhou, T.; Tu, J.; Shi, L.; Song, B.; Hu, L.; Yang, M.; Chen, Q.; Lu, L. Improved stretch formability of AZ31 sheet via texture control by introducing a continuous bending channel into equal channel angular rolling. J. Mater. Process. Technol. 2018, 259, 380–386. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.; Zhang, W.; Cui, G.; Wang, E. Weakened anisotropy of mechanical properties in rolled ZK60 magnesium alloy sheets with elevated deformation temperature. J. Mater. Sci. Technol. 2018, 34, 2042–2050. [Google Scholar] [CrossRef]
- Huo, Q.; Yang, X.; Wang, J.; Sun, H.; Guo, J.; Jiang, L. Mechanical behavior and deformation mechanisms of AZ31 Mg alloy at liquid nitrogen temperature. Mater. Lett. 2013, 109, 78–82. [Google Scholar] [CrossRef]
- Lu, S.; Wu, D.; Chen, R.; Han, E.-H. The influence of temperature on twinning behavior of a Mg-Gd-Y alloy during hot compression. Mater. Sci. Eng. A 2018, 735, 173–181. [Google Scholar] [CrossRef]
- Luo, J.; Wang, L.; Liu, S.; Li, M. The correlation between the flow behavior and the microstructure evolution during hot working of TC18 alloy. Mater. Sci. Eng. A 2016, 654, 213–220. [Google Scholar] [CrossRef]
- Xin, Y.; Zhou, H.; Wu, G.; Yu, H.; Chapuis, A.; Liu, Q. A twin size effect on thermally activated twin boundary migration in a Mg-3Al-1Zn alloy. Mater. Sci. Eng. A 2015, 639, 534–539. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, J.U.; Kim, S.-H.; Kim, Y.M.; Park, S.H. Grain size effect on twinning and annealing behaviors of rolled magnesium alloy with bimodal structure. Mater. Sci. Eng. A 2019, 754, 38–45. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, J.; Jiang, Y.; McCabe, R.; Li, N.; Tomé, C.N. Twin–twin interactions in magnesium. Acta Mater. 2014, 77, 28–42. [Google Scholar] [CrossRef]
- Jiang, L.; Jonas, J.J.; Mishra, R.K.; Luo, A.A.; Sachdev, A.K.; Godet, S. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater. 2007, 55, 3899–3910. [Google Scholar] [CrossRef]
- Pandey, A.; Kabirian, F.; Hwang, J.-H.; Choi, S.-H.; Khan, H. Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations. Int. J. Plast. 2015, 68, 111–131. [Google Scholar] [CrossRef]
- Song, B.; Xin, R.; Liao, A.; Yu, W.; Liu, Q. Enhancing stretch formability of rolled Mg sheets by pre-inducing contraction twins and recrystallization annealing. Mater. Sci. Eng. A 2015, 627, 369–373. [Google Scholar] [CrossRef]
- Somekawa, H.; Mukai, T. Fracture toughness in Mg-Al-Zn alloy processed by equal-channel-angular extrusion. Scr. Mater. 2006, 54, 633–638. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, L.; Zhang, H.; Cao, X.-Q. Enhanced stretch formability of AZ31 magnesium alloy thin sheet by pre-crossed twinning lamellas induced static recrystallizations. J. Mater. Process. Technol. 2018, 254, 302–309. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, C.; Koo, J.; Lee, J.; Lee, Y.-S.; Kim, D. Improving the room-temperature formability of a magnesium alloy sheet by texture control. Mater. Sci. Eng. A 2018, 724, 156–163. [Google Scholar] [CrossRef]
- Wang, L.; Song, B.; Zhang, Z.; Zhang, H.; Han, T.; Cao, X.; Wang, H.; Cheng, W. Enhanced stretch formability of AZ31 magnesium alloy thin sheet by induced precompression and sequent annealing. Materials 2018, 11, 1401. [Google Scholar] [CrossRef]
Final Rolling Temperature | Region 1 | Region 2 | Region 3 | Average Value |
---|---|---|---|---|
350 °C | 26.2% | 25.7% | 27.1% | 26.3% |
550 °C | 55.1% | 53.7% | 56.9% | 55.2% |
Sample | YS(MPa) | UTS(MPa) | FE(%) | n-Value | r-Value |
---|---|---|---|---|---|
350 °C | 82 ± 2 | 225 ±1 1 | 23.5 ± 1.5 | 0.40 ± 0.02 | 0.62 ± 0.02 |
450 °C | 79 ± 6 | 223 ± 12 | 24.6 ± 0.9 | 0.43 ± 0.01 | 0.58 ± 0.03 |
550 °C | 74 ± 5 | 220 ± 10 | 26.1 ± 2.1 | 0.47 ± 0.01 | 0.43 ± 0.01 |
Sample | 350 °C | 450 °C | 550 °C |
---|---|---|---|
ECAR-CB-A | 0.29 | 0.31 | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Liu, L.; Hu, L.; Zhou, T.; Yang, M.; Lian, Y.; Zhang, J. RETRACTED: Effect of Final Rolling Temperature on Microstructures and Mechanical Properties of AZ31 Alloy Sheets Prepared by Equal Channel Angular Rolling and Continuous Bending. Materials 2020, 13, 3346. https://doi.org/10.3390/ma13153346
Shi L, Liu L, Hu L, Zhou T, Yang M, Lian Y, Zhang J. RETRACTED: Effect of Final Rolling Temperature on Microstructures and Mechanical Properties of AZ31 Alloy Sheets Prepared by Equal Channel Angular Rolling and Continuous Bending. Materials. 2020; 13(15):3346. https://doi.org/10.3390/ma13153346
Chicago/Turabian StyleShi, Laixin, Lei Liu, Li Hu, Tao Zhou, Mingbo Yang, Yong Lian, and Jin Zhang. 2020. "RETRACTED: Effect of Final Rolling Temperature on Microstructures and Mechanical Properties of AZ31 Alloy Sheets Prepared by Equal Channel Angular Rolling and Continuous Bending" Materials 13, no. 15: 3346. https://doi.org/10.3390/ma13153346
APA StyleShi, L., Liu, L., Hu, L., Zhou, T., Yang, M., Lian, Y., & Zhang, J. (2020). RETRACTED: Effect of Final Rolling Temperature on Microstructures and Mechanical Properties of AZ31 Alloy Sheets Prepared by Equal Channel Angular Rolling and Continuous Bending. Materials, 13(15), 3346. https://doi.org/10.3390/ma13153346