Tunable Young’s Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles
Abstract
:1. Introduction
2. MRE Preparation
2.1. MRE Characteristics
2.2. Fabrication of MRE
3. Fabrication of the Soft Composite
4. Experimental Setup
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi, S.; Park, Y.; Jung, S. Modal characteristics of a flexible smart plate filled with electrorheological fluids. J. Aircr. 1999, 36, 458–464. [Google Scholar] [CrossRef]
- Yeh, J. Free vibration analysis of rotating polar orthotropic annular plate with ER damping treatment. Compos. Part B Eng. 2011, 42, 781–788. [Google Scholar] [CrossRef]
- Haiqing, G.; King, L.M.; Cher, T.B. Influence of a locally applied electro-rheological fluid layer on vibration of a simple cantilever beam. J. Intell. Mater. Syst. Struct. 1993, 4, 379–384. [Google Scholar] [CrossRef]
- Sun, Q.; Zhou, J.; Zhang, L. An adaptive beam model and dynamic characteristics of magnetorheological materials. J. Sound Vibrat. 2003, 261, 465–481. [Google Scholar] [CrossRef]
- Rajamohan, V.; Sundararaman, V.; Govindarajan, B. Finite element vibration analysis of a magnetorheological fluid sandwich beam. Procedia Eng. 2013, 64, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Sun, L.; Hu, G. Dynamic properties of an axially moving sandwich beam with magnetorheological fluid core. Adv. Mech. Eng. 2017, 9, 1687814017693182. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Philen, M.; Lotfi, A.; Li, S.; Bakis, C.E.; Rahn, C.D.; Wang, K. Variable stiffness structures utilizing fluidic flexible matrix composites. J. Intell. Mater. Syst. Struct. 2009, 20, 443–456. [Google Scholar] [CrossRef]
- Allen, E.A.; Taylor, L.D.; Swensen, J.P. Smart material composites for discrete stiffness materials. Smart Mater. Struct. 2019, 28, 074007. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Chen, Y. Principles and methods for stiffness modulation in soft robot design and development. Bio-Des. Manuf. 2018, 1, 14–25. [Google Scholar] [CrossRef]
- Choi, S.; Li, W.; Yu, M.; Du, H.; Fu, J.; Do, P.X. State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Mater. Struct. 2016, 25, 043001. [Google Scholar] [CrossRef] [Green Version]
- Mcknight, G.; Doty, R.; Keefe, A.; Herrera, G.; Henry, C. Segmented reinforcement variable stiffness materials for reconfigurable surfaces. J. Intell. Mater. Syst. Struct. 2010, 21, 1783–1793. [Google Scholar] [CrossRef]
- Shan, W.; Lu, T.; Majidi, C. Soft-matter composites with electrically tunable elastic rigidity. Smart Mater. Struct. 2013, 22, 085005. [Google Scholar] [CrossRef]
- Shiga, T.; Okada, A.; Kurauchi, T. Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci. 1995, 58, 787–792. [Google Scholar] [CrossRef]
- Kukla, M.; GÃrecki, J.; Malujda, I.; TalaÅ›ka, K.; Tarkowski, P. The determination of mechanical properties of magnetorheological elastomers (MREs). Procedia Eng. 2017, 177, 324–330. [Google Scholar] [CrossRef]
- Bhaktha, S.; Hegde, S.; Rao, S.U.; Gandhi, N. Investigation of tensile properties of RTV Silicone based Isotropic Magnetorheological Elastomers. In Proceedings of the MATEC Web of Conferences (RiMES 2017), Manipal, Karnataka, India, 21–23 December 2017; Volume 144, pp. 1–13. [Google Scholar]
- Gao, W.; Wang, X. Experimental and theoretical investigations on magnetoelastic shear behavior of isotropic MR elastomers under gradient magnetic fields. J. Magn. Mater. 2019, 483, 196–204. [Google Scholar]
- Nayak, B.; Dwivedy, S.; Murthy, K. Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions. J. Sound Vibrat. 2011, 330, 1837–1859. [Google Scholar] [CrossRef]
- Dyniewicz, B.; Bajkowski, J.M.; Bajer, C.I. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer. Mech. Syst. Signal Process. 2015, 60, 695–705. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Q. Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams. Smart Mater. Struct. 2005, 15, 59. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Gong, X.; Gong, X.; Zhang, X.; Jiang, W.; Zhang, P.; Chen, Z. New magnetorheological elastomers based on polyurethane/Si-rubber hybrid. Polym. Test. 2005, 24, 324–329. [Google Scholar] [CrossRef]
- Ge, L.; Gong, X.; Fan, Y.; Xuan, S. Preparation and mechanical properties of the magnetorheological elastomer based on natural rubber/rosin glycerin hybrid matrix. Smart Mater. Struct. 2013, 22, 115029. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Nakano, M. Fabrication and characterization of PDMS based magnetorheological elastomers. Smart Mater. Struct. 2013, 22, 055035. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Gong, X.; Li, W. Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym. Test. 2008, 27, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Poojary, U.R.; Hegde, S.; Gangadharan, K. Experimental investigation on the effect of carbon nanotube additive on the field-induced viscoelastic properties of magnetorheological elastomer. J. Mater. Sci. 2018, 53, 4229–4241. [Google Scholar] [CrossRef]
- Song, B.; Yoon, J.; Hong, S.; Choi, S. Field-Dependent Stiffness of a Soft Structure Fabricated from Magnetic-Responsive Materials: Magnetorheological Elastomer and Fluid. Materials 2020, 13, 953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Golnaraghi, M.F.; Heppler, G.R. Experimental research and modeling of magnetorheological elastomers. J. Intell. Mater. Syst. Struct. 2004, 15, 27–35. [Google Scholar] [CrossRef]
- Zhou, G. Shear properties of a magnetorheological elastomer. Smart Mater. Struct. 2003, 12, 139. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, X.; Zhang, P. Fabrication and characterization of isotropic magnetorheological elastomers. Polym. Test. 2005, 24, 669–676. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. ASTM Designation: D412 Standard Test Methods for Rubber Properties in Tension; Annual Book of ASTM Standards: Philadelphia, PA, USA, 1981. [Google Scholar]
- Manjunatha, C.; Taylor, A.; Kinloch, A.; Sprenger, S. The tensile fatigue behavior of a GFRP composite with rubber particle modified epoxy matrix. J. Reinf. Plast. Compos. 2010, 29, 2170–2183. [Google Scholar] [CrossRef]
- Gent, A.N. On the relation between indentation hardness and Young’s modulus. Rubber. Chem. Technol. 1958, 31, 896–906. [Google Scholar] [CrossRef]
- Guth, E. Theory of filler reinforcement. J. Appl. Phys. 1945, 16, 20–25. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Directions in ferrohydrodynamics. J. Appl. Phys. 1985, 57, 4259–4264. [Google Scholar] [CrossRef]
Specimen No. | Shore Hardness | Pattern | Concentration of CIP (wt.%) | MRF Injection | Weight of Specimens (g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | #4 | #5 | Mean | SD | |||||
1 (Reference) | 30 | ■ | 40 | Y | 14.8 | 15.6 | 14.8 | 15.2 | 14.9 | 15.1 | 0.344 |
2 | 70 | ■ | 40 | Y | 16.2 | 16.4 | 16.1 | 16.6 | 17.1 | 16.5 | 0.396 |
3 | 30 | ◆ | 40 | Y | 18.3 | 17.9 | 17.9 | 17.9 | 17.9 | 18.0 | 0.179 |
4 | 30 | ■ | 80 | Y | 25.4 | 25.2 | 25.3 | 25.2 | 25.0 | 25.2 | 0.148 |
5 | 30 | ■ | 40 | N | 11.4 | 10.6 | 10.8 | 10.7 | 10.6 | 10.8 | 0.335 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.-Y.; Hong, S.-W.; Park, Y.-J.; Kim, S.-H.; Kim, G.-W.; Choi, S.-B. Tunable Young’s Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles. Materials 2020, 13, 3378. https://doi.org/10.3390/ma13153378
Yoon J-Y, Hong S-W, Park Y-J, Kim S-H, Kim G-W, Choi S-B. Tunable Young’s Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles. Materials. 2020; 13(15):3378. https://doi.org/10.3390/ma13153378
Chicago/Turabian StyleYoon, Ji-Young, Seong-Woo Hong, Yu-Jin Park, Seong-Hwan Kim, Gi-Woo Kim, and Seung-Bok Choi. 2020. "Tunable Young’s Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles" Materials 13, no. 15: 3378. https://doi.org/10.3390/ma13153378
APA StyleYoon, J. -Y., Hong, S. -W., Park, Y. -J., Kim, S. -H., Kim, G. -W., & Choi, S. -B. (2020). Tunable Young’s Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles. Materials, 13(15), 3378. https://doi.org/10.3390/ma13153378