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Abstract: Initiation and propagation of cracks in composite materials can severely affect their global
mechanical properties. Due to the lower strength of the interlaminar bonding compared to fibers
and the matrix, delamination between plies is known to be one of the most common failure modes
in these materials. It is therefore deemed necessary to gain more insight into this type of failure to
guide the design of composite structures towards ensuring their robustness and reliability during
service. In this work, delamination of interlaminar bonding in composite end-notched flexure
(ENF) samples was modeled using a newly developed stochastic 3D extended finite element method
(XFEM). The proposed numerical scheme, which also incorporates the cohesive zone model, was
used to characterize the mode II delamination results obtained from ENF testing on polyphenylene
sulfide (PPS)/glass unidirectional (UD) composites. The nonrepeatable material responses, often seen
during fracture testing of UD composites, were well captured with the current numerical model,
demonstrating its capacity to predict the stochastic fracture properties of composites under mode II
loading conditions.

Keywords: composites; stochastic fracture behavior; end notched flexure testing; nonlinear extended
finite element model

1. Introduction

Nowadays, fiber reinforced polymer (FRP) composites are widely used in various engineering
applications, including aeronautical, marine, and automotive industries. These materials have high
strength-to-weight ratios as well as good corrosion resistance and can be engineered based on the
required strength or performance objectives of a given application. Although FRP composite structures
have proven to provide numerous advantages, initiation and propagation of cracks in these materials
can drastically affect their mechanical properties. The most common failure modes in these composites
are classified as fiber breakage, fiber pull-out, matrix cracking, and interlaminar delamination. Among
these, interlaminar delamination is perhaps the most common type and may occur because of weak
bonding between composite layers. This failure mechanism can significantly reduce the structural
stiffness of FRP structures and weaken their tensile or shear capacity under service loads [1].

To improve the mechanical performance of FRP composites in the presence of process-induced
or loading-induced cracks, extensive studies on their fracture properties have been performed, both
experimentally and numerically [2–5]. Gaggar and Broutman [2] utilized both single and double
edge-notched tensile tests as well as a notched bend test to extract the critical stress intensity factors
of these cracks in composite materials. Mower and Li [3] summarized the experimental results
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from previous investigations and concluded that linear elastic fracture mechanics (LEFM) is not a
valid approach for long-fiber composites and that a nonlinear material constitutive model is instead
required to accurately characterize their fracture response. In an attempt to measure mode II fracture
toughness, Russel [4] proposed end-notched flexure (ENF) testing. Murri and O’Brien [5] employed
ENF samples to study the mode II fracture toughness of FRP composites while investigating the error
associated with neglecting nonlinear terms in the calculation of strain energy release rate. ENF testing
is currently one of the most recognized experimental methods for studying the mode II fracture of FRP
composite materials.

Numerical models of crack initiation and propagation during ENF testing of composites have
also been developed in the past (e.g., Harper and Hallett [6] and Fan et al. [7]) to facilitate the design of
composite structures prior to prototyping and testing stages. However, these investigations do not
typically account for the heterogeneous and stochastic properties of composites, which are commonly
observed during material and product testing. There can be a variety of sources for such nonuniformity
of material properties in composites. Examples include random distributions of fibers within samples,
fiber penetration between layers, existence of voids within the matrix, human error in manufacturing
process, and uneven heating or cooling of samples during molding. Adopting deterministic approaches
and ignoring the spatial variability that exists in composites can introduce errors into large-scale
simulations. Consequently, stochastic modeling of effective material properties appears to be essential
for more precise assessment of the mechanical behavior of composites, especially during the prediction
of critical failure loads and crack formation patterns [8,9].

Among recent stochastic modeling works in the field, Ashcroft et al. [10] introduced microstructure
randomness in the fracture properties of carbon fiber reinforced polymer composite materials for
finite element simulation of double cantilever beam (DCB) tests using interface cohesive elements.
Nonuniformity and random distribution of material fracture properties were considered by means of
uniform and Weibull distributions. Jumel [11] employed a finite difference numerical method to study
crack initiation and propagation in DCB specimens with randomly fluctuating interface properties
along the crack path. The effect of this variability at the microscopic level on the parameters measured
at the macroscopic level was investigated. The results emphasized the need for further development of
computational approaches that account for randomness and variability in material properties.

The present study was aimed at developing and examining an enhanced numerical approach
for simulating fracture in unidirectional (UD) composite structures by considering both material
and geometric nonlinearities along with stochastic fracture properties. An Abaqus user element
subroutine was developed and linked to MATLAB to model under ENF testing (mode II fracture).
Here, we adopted the extended finite element method (XFEM) and enhanced it with contact and
cohesive zone modeling capabilities along with stochastic fracture properties to improve the simulation
of crack propagation in the composite laminates. The cohesive zone model constituted a bilinear
traction–separation law at the crack front, which enabled modelling of the fiber bridging mechanism
in the process zone ahead of the crack tip during loading. Stochastic distributions of the fracture
properties were captured within the bilinear traction–separation law. The numerical results were
compared with a set of tests performed on polyphenylene sulfide (PPS)/glass UD composites.

2. Experimental

PPS/glass UD composite samples comprising 14 plies and with nominal dimensions of 250 mm
length, 25 mm width, and 3 mm thickness were prepared for ENF testing. To introduce an edge crack
with a nominal size of 43 mm in each sample, a polyimide Teflon sheet was placed between the middle
layers of the stacked laminates before placing them in the oven for curing.

Cured specimens with preinserted delamination were put into a three-point bending test fixture
and made to undergo mid-span deflection at a rate of 2 mm/min on the grips. At the onset of
delamination extension, the force on the loading cell was recorded while the crack was permitted to
propagate (Figure 1).
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Figure 1. Experimental setup of end-notched flexure (ENF) testing.

During ENF testing, crack propagation occurs due to excessive shear deformation, thus exhibiting
mode II failure with an abrupt nature. Such behavior makes it difficult to control the external load to
achieve a target crack extension. Due to this limitation, only the first step of crack propagation during
ENF testing was considered in the present study following ASTM D7905/D7905M [12].

The results from ENF testing on five FRP samples are depicted in Figure 2. The points in Figure 2a
correspond to the load and the middle point deflection at which delamination started to propagate for
each sample. Mode II fracture toughness, GIIC, (Figure 2b) was calculated based on the compliance
method using the equation below [13]:

GIIC =
9a2P2

2w2t3Elongitudinal
(1)

where a is the initial crack length, P is the critical load at the onset of crack propagation, w is the sample
width, t is the sample thickness, and Elongitudinal is the elastic modulus of the composite along the
specimen length direction aligning with the fiber’s orientation. The elastic properties of these samples
in different directions have already been measured and reported in [14], where the modulus of elasticity
and elongation were found to be 44058.68 ± 3460.23 MPa and 7.93% ± 1.40% along the longitudinal
direction and 1814.72 ± 697.73 MPa and 0.08% ± 0.03% along the transverse direction, respectively.Materials 2020, 13, x FOR PEER REVIEW 4 of 13 
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Figure 2. ENF results with a constant crack length (43 mm). (a) Variation of critical load versus middle
point deflection and (b) variation of fracture toughness versus middle point deflection.

The variation in the test results demonstrates that the material fracture properties change from
one sample to another due to uneven distribution of fibers, pressure, heating, and cooling during
manufacturing as well as human error. Such behavior of UD laminated composites embraces the
necessity of considering the randomness of properties in simulation studies of these materials.
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3. XFEM Modeling of Delamination

In many cases during the early stages of product development, the structure’s dimensions and the
test setup configurations make full-scale experimental evaluation cumbersome, increasing the demand
for numerical analyses instead. A variety of numerical modeling techniques have been proposed in
the past decades, and they can be categorized into mesh-free methods, such as smoothed particle
hydrodynamics (SPH) [15], element-free Galerkin method (EFGM) [16], and finite difference method
(FDM) [17], and mesh-based methods, such as finite element method (FEM) [18] and boundary element
method (BEM) [19]. When it comes to modeling cracks, each method has its own advantages and
disadvantages, and while the formulations of some techniques allow easier definition of cracks, e.g.,
SPH [20], others require modifications to their mathematical foundations so that analytical information
about cracks can be included in the numerical space, e.g., FEM [21].

Various modifications to FEM have been proposed to account for crack nucleation and propagation.
In cohesive zone models [22,23], it is assumed that a fracture process zone exists ahead of the crack tip,
which develops according to a traction–separation law. With this approach, the stress singularity at
the crack tip is avoided; however, its major limitation is that it requires prior knowledge of the crack
paths for incorporating cohesive elements. Phase-field models [24,25] implicitly track cracks in the
computational domain by introducing an auxiliary scalar field variable to represent crack topology. A
governing equation defines the interaction between displacement and auxiliary parameter fields to
model crack initiation and propagation. Another method is the coupled criterion framework [26,27],
which combines energy-based and stress-based conditions for crack nucleation to improve the ability
and efficiency of FEM in predicting crack initiation loading.

FEM can also be enhanced and used in modeling discontinuities by enriching its polynomial
approximate functions, the so-called shape functions, with the partition of unity method (PUM)
proposed by Melenk and Babuška [28]. This hybrid scheme is known as the extended finite element
method (XFEM) [29,30], which offers a more accurate and efficient means to study the geometries
and evolution of cracks in structures. In XFEM, similar to conventional FEM, the finite element mesh
is generated regardless of the discontinuity locations. Then, specific search algorithms, such as the
level-set or fast marching methods are utilized to identify the location of any discontinuity with respect
to the existing mesh and apply enrichment on the affected elements. Next, additional auxiliary degrees
of freedom are added to a group of nodes around the discontinuity. These degrees of freedom assist
the model in capturing the displacement jumps caused by discontinuities.

Based on the XFEM modeling framework, we have previously developed a user-defined element
in the finite element (FE) software Abaqus to simulate delamination in UD composites under mode I
loading [31]. Here, in the next sections, we provide the fundamental formulations of our approach and
demonstrate its efficacy to analyze mode II delamination failure.

3.1. Modeling Cracks in XFEM

Assume a discontinuity (a crack) within an arbitrary finite element mesh (Figure 3). The
displacement field of point X, u(X), inside the domain is described with two parts: one related to the
conventional finite element approximation and the other associated with the XFEM enriched field
defining the discontinuity [29]:

u(X) =
∑

i
ni ∈ Nall

φi(X)uord
i +

∑
j

n j ∈ N f

φ j(X)ψ(X)uenr
j (2)

where φi(X) is the conventional shape function, ψ(X) is the general enrichment function, Nall is the
finite element mesh nodes, N f is the enriched nodes of the mesh, uord

i is the classic degrees of freedom
at the node i, and uenr

j is the additional enriched degree of freedom at the enriched node j.
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Figure 3. An arbitrary finite element mesh with a discontinuity (circles represent the enriched nodes of
the mesh).

In order to choose the enrichment function, i.e., ψ(X), any discontinuous function in the problem
domain can be employed to estimate the displacement field approximation in the vicinity of the crack.
A function that satisfies such a requirement is the Heaviside step function, H(X). It gains a value of +1
on one side of the crack and −1 on the other side and can be utilized when the crack propagation is
modeled by multiple straight line segments. To find the Heaviside function value at each node of an
element, tangential and normal vectors of the crack surface curve should be measured. If X∗ is the
nearest point of a crack to the node X (Figure 4) and en is the unit normal vector of the crack at point X∗

where es × en = ez (es is the unit tangential vector, and ez is the out of plane vector), then using a scalar
product between the distance vector of the element’s nodes and the normal vector of the crack surface,
the Heaviside function value can be calculated as follows:

H(X) =
{

+1, i f (X−X∗).en > 0
−1, otherwise

(3)
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3.2. Modeling Contact on Material Interfaces Using XFEM

During ENF testing, samples undergo large deformation and may experience plasticity (Figure 1).
We therefore adopted a technique proposed by Khoei et al. [32] that integrates large deformation and
contact modeling into XFEM formulations. Here, we provide the fundamental formulations for this
technique and invite the reader to refer to [32] for detailed development of the model.

For nonlinear problems, implementation of a finite element method results in a set of nonlinear
algebraic equations, R(u) = P, in which P is the external load and R is a nonlinear function of nodal
displacements, u(X). This set of nonlinear equations is solved through an incremental iterative
technique in which the problem is divided into incremental load steps, and a linear set of equations
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needs to be solved for each step, i.e., KT∆u = ∆P, where KT is the tangential stiffness matrix. In our
nonlinear XFEM model, KT is defined as follows [32]:

KT = KMat + KGeo =

∫
ΓV

B
T

Dep
S B dΓV +

∫
ΓV

Gs
TMSGs dΓV (4)

where KMat, KGeo, B, Dep
s , Gs, and Ms are matrices associated with materials stiffness, geometrical stiffness,

strain gradient, contact constitute behavior, Cartesian shape function derivatives, and rearranged
second Piola–Kirchhoff stress, respectively. ΓV also denotes the element domain. In addition to the
conventional FEM part of nodal vectors, B and Gs also includes enriched elements as given below:

B =
[

B
uord

B
uenr

]
(5)

Gs =
[

Guord
s Guenr

s

]
(6)

where B
uenr

and Guenr
s are defined as follows (H is the Heaviside function) [32]:

B
uenr

=



∂(NiH)
∂X

∂x
∂X

∂(NiH)
∂X

∂y
∂X

∂(NiH)
∂X

∂z
∂X

∂(NiH)
∂Y

∂x
∂Y

∂(NiH)
∂Y

∂y
∂Y

∂(NiH)
∂Y

∂z
∂Y

∂(NiH)
∂Z

∂x
∂Z

∂(NiH)
∂Z

∂y
∂Z

∂(NiH)
∂Z

∂z
∂Z

∂(NiH)
∂Y

∂x
∂X +

∂(NiH)
∂X

∂x
∂Y

∂(NiH)
∂Y

∂y
∂X +

∂(NiH)
∂X

∂y
∂Y

∂(NiH)
∂Y

∂z
∂X +

∂(NiH)
∂X

∂z
∂Y

∂(NiH)
∂Z

∂x
∂Y +

∂(NiH)
∂Y

∂x
∂Z

∂(NiH)
∂Z

∂y
∂Y +

∂(NiH)
∂Y

∂y
∂Z

∂(NiH)
∂Z

∂z
∂Y +

∂(NiH)
∂Y

∂z
∂Z

∂(NiH)
∂Z

∂x
∂X +

∂(NiH)
∂X

∂x
∂Z

∂(NiH)
∂Z

∂y
∂X +

∂(NiH)
∂X

∂y
∂Z

∂(NiH)
∂Z

∂z
∂X +

∂(NiH)
∂X

∂z
∂Z


(7)

Guenr

s =
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∂(NiH)
∂X 0 0

0 ∂(NiH)
∂X 0

0 0 ∂(NiH)
∂X

∂(NiH)
∂Y 0 0

0 ∂(NiH)
∂Y 0

0 0 ∂(NiH)
∂Y

∂(NiH)
∂Z 0 0

0 ∂(NiH)
∂Z 0

0 0 ∂(NiH)
∂Z



(8)

where (X,Y,Z) and (x,y,z) refer to material and spatial coordinates, respectively. The contact constitutive
matrix in Equation (4) is defined as follows [32]:

Dep
S =


K11

0
0

0
K22

0

0
0

K33

 (9)

where Kii is the penalty stiffness assigned to the local coordinates on the contact surfaces. K11
provides the impenetrable characteristic to the normal direction of the crack plane, which follows the
Kuhn–Tucker thresholds [33]:

δn ≥ 0, PContact ≤ 0, (δn) × (PContact) = 0 (10)

where δn is the crack opening displacement, and PContact contains the vector of contact forces.
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The remaining terms in the constitutive matrix, K22 and K33, create the friction forces and prevent
the contact surfaces from abrupt sliding. For these terms, standard static and dynamic friction laws
can be applied to perform the analysis [32].

3.3. Cohesive Zone Implementation

As reported in previous studies [6,7], depending on the lay-up of the FRP composite, a large
processing zone is expected to form during crack propagation. It is therefore necessary to incorporate
cohesive crack modeling into XFEM formulations to analyze mode II delamination in FRP composites.
Here, we have used a bilinear traction–separation law (Figure 5) that relates traction on crack faces, T,
to mode I and mode II nodal displacements. In the bilinear form, the traction at the interface increases
linearly with the crack tip opening displacement (CTOD) to a limit value, Tmax. The interface element
then experiences softening until a traction of zero is reached, which corresponds to complete debonding.
The total area enclosed by the bilinear curve represents the fracture toughness of the material.
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To model the cohesive behavior ahead of the crack tip, a cohesive transformation matrix (BCoh) is
used to relate crack normal opening and sliding displacements, δ, to the displacement of a point at the
crack interface, uk:

δ = BCoh uk (11)

In addition, the tractions on crack faces, T, is related to δ as defined below:

T = DInterfaceδ (12)

where DInterface includes the cohesive interface material properties [6].
The cohesive transformation matrix can be extracted by finding the displacement in an enriched

element. The displacement vector of a point in the enriched element, u(X), is as follow:

u(X) =
∑

i

(
Niuord

i

)
+

∑
j

N j

∑
k

NkHk −H j

uenr
j

 = [
N 0
0 Nenr

][
uord

uenr

]
(13)

where

Nenr
j = N j

∑
k

NkHk −H j

 (14)

The conventional finite element shape function’s value remains constant for different points in the
enriched element, while the enriched shape function’s value demonstrates an odd function property
with respect to the interface position:

Nenr(bottom) = −Nenr(top) (15)
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Thus, the global relative crack displacement, δ, can be described in the form of the displacement
difference between two points above and beneath the crack surface:

δ = uk(top) − uk(bottom) =
[

N Nenr
][ uord

uenr

]
−

[
N −Nenr

][ uord

uenr

]
(16)

δ = 2
[

N Nenr
][ uord

uenr

]
(17)

In order to find the relative crack displacements in a global coordinate system, a simple
transformation based on the normal and tangential directions, mi j, of the crack plane with respect to
the global coordinate can be employed:

δ =


m11 m12 m13

m21 m22 m23

m31 m32 m33



δX

δY

δZ

 = 2


m11 m12 m13

m21 m22 m23

m31 m32 m33

[ 0 Nenr
][ uord

uenr

]
= BCoh uk (18)

Consequently, Equation (18) can be substituted into Equation (12) and used in the tangential
stiffness formulation to introduce process zone properties within enriched elements:

KT = KMat + KGeo + KCoh =
∫

ΓV

B
T

Dep
S B dΓV +

∫
ΓV

GTMSG dΓV

+
∫
Γc

(BCoh)
T

DInter f aceBCoh dΓc
(19)

Finally, in order to evaluate the internal forces, one can simply employ Equation (20) as follows:

Fint =

∫
ΓV

B
T
σ dΓV +

∫
ΓC

NenrT f t dΓC (20)

Similar to conventional application of cohesive zone models, a predefined crack path was utilized
to model the cracking behavior. With regard to the parameters in the traction–separation law, Tmax

was defined as 5.5 MPa based on the shear strength of PPS/glass composite samples [31] considering
that the shear strength is 0.577 of tensile strength according to the maximum distortion energy theory.
To identify an optimal value for kpen, a range of 103 N/mm3 to 107 N/mm3 was considered in trial
simulations. It was observed that applying penalty stiffness lower than 104 N/mm3 would result in
extensive softening and a significant reduction in the peak load. Such behavior results from lower
rigidity in the hardening region of the traction–separation law for the given material. On the other
hand, excessive hardening was observed in simulations with kpen higher than 106 N/mm3, for which the
deflection of the specimen reduced unrealistically and prevented the physical crack opening behavior
from being modeled. A value of 105 N/mm3 for penalty stiffness was eventually selected and used for
subsequent simulations.

3.4. Stochastic Fracture Properties

Based on the experimental results given in Figure 2, we considered that the fracture properties of
the tested UD samples had a stochastic nature as opposed to deterministic approaches where averaged
values of experimental results are assumed for the estimation of material properties. The stochastic
fracture properties of the materials were incorporated into our XFEM model through the procedure
explained below.
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A random number within the range of experimentally measured mode II fracture toughness
values (GIIC) was picked to form a stochastic bilinear traction–separation law for the enriched elements
in the cohesive zone (Figure 6):

GIIC = GIIC(ave) + (−1)Rand1Rand2 ×GIIC(std) (21)

where Rand1 is a random integer (odd or even to assign a random sign), and GIIC(ave) and GIIC(std)
are average and standard deviations of fracture toughness, respectively. The second random number
(Rand2), corresponding to individual enriched elements in each stage of damage evolution, was taken
from a uniform distribution with a range of 0 to 1. The randomly selected values were then converted
to a Weibull two-parameter distribution between 0 and 1 via the following formula:

Rand2 weibull =

[
−1
α1

ln
(
1−Rand2 uni f orm

)] 1
β1

(22)

where α1 > 0 is a shape parameter, β1 > 0 is the scale parameter of distribution, and both are considered
to be equal to 3.

Materials 2020, 13, x FOR PEER REVIEW 9 of 13 

 

A random number within the range of experimentally measured mode II fracture toughness 
values (𝐺ூூ஼ ) was picked to form a stochastic bilinear traction–separation law for the enriched 
elements in the cohesive zone (Figure 6): 𝐺ூூ஼ = 𝐺ூூ஼(௔௩௘) + (−1)ோ௔௡ௗభ𝑅𝑎𝑛𝑑ଶ × 𝐺ூூ஼(௦௧ௗ) (21) 

where 𝑅𝑎𝑛𝑑ଵ  is a random integer (odd or even to assign a random sign), and 𝐺ூூ஼(௔௩௘)  and 𝐺ூூ஼(௦௧ௗ) are average and standard deviations of fracture toughness, respectively. The second random 
number (Rand2), corresponding to individual enriched elements in each stage of damage evolution, 
was taken from a uniform distribution with a range of 0 to 1. The randomly selected values were then 
converted to a Weibull two-parameter distribution between 0 and 1 via the following formula: 

( ) 1

1

2
1

2 1ln1 β

α 







−−= uniformweibull RandRand  (22) 

where 1α  > 0 is a shape parameter, 1β  > 0 is the scale parameter of distribution, and both are 
considered to be equal to 3. 

 
Figure 6. Proposed stochastic bilinear traction–separation behavior (Rand2 is a random number taken 
from a two-parameter Weibull distribution; GIICL and GIICH correspond to the lower and upper limits of 
GIIC. It was assumed that the onset of crack propagation was mainly influenced by the resin itself, and 
given that the resin showed more deterministic material properties, Tmax was assumed to have no 
variation in the model. 

Because the fracture toughness distribution is considered to be a function of the crack length, a 
linear interpolation was utilized to extract GIIC(ave) for each specific crack length. For GIIC(std), it can be a 
constant or, in a more general form, it can be scaled with GIIC(ave), which in turn becomes a function of 
crack length. It should also be added that according to the bilinear traction–separation law, a direct 

relationship exists between the critical fracture toughness, GIIC, critical sliding displacement, fδ , and 

maximum interface shear strength, maxT : 

𝐺ூூ஼ = 𝑇max𝛿௙2  (23) 

Therefore, the obtained statistical distribution of the fracture toughness can be converted into 
the variation of failure crack sliding and/or maximum interface strength of material via Equation (23). 
Khokhar et al. [34] introduced randomness into their simulation by implementing a relationship 
between random fracture toughness and the maximum interface strength by keeping the failure crack 
sliding displacement constant. To improve the convergence of the numerical simulation, the present 
study assumed a constant value for the maximum interface shear strength (𝑇max = 5.5 MPa), while the 
failure crack sliding displacement was randomly varied during damage evolution (see Figure 6). This 
approach relies on constant penalty stiffness and prevents the over-strengthening of the stiffness of 

Figure 6. Proposed stochastic bilinear traction–separation behavior (Rand2 is a random number taken
from a two-parameter Weibull distribution; GIICL and GIICH correspond to the lower and upper limits
of GIIC. It was assumed that the onset of crack propagation was mainly influenced by the resin itself,
and given that the resin showed more deterministic material properties, Tmax was assumed to have no
variation in the model.

Because the fracture toughness distribution is considered to be a function of the crack length, a
linear interpolation was utilized to extract GIIC(ave) for each specific crack length. For GIIC(std), it can be
a constant or, in a more general form, it can be scaled with GIIC(ave), which in turn becomes a function
of crack length. It should also be added that according to the bilinear traction–separation law, a direct
relationship exists between the critical fracture toughness, GIIC, critical sliding displacement, δ f , and
maximum interface shear strength, Tmax:

GIIC =
Tmaxδ f

2
(23)

Therefore, the obtained statistical distribution of the fracture toughness can be converted into
the variation of failure crack sliding and/or maximum interface strength of material via Equation
(23). Khokhar et al. [34] introduced randomness into their simulation by implementing a relationship
between random fracture toughness and the maximum interface strength by keeping the failure crack
sliding displacement constant. To improve the convergence of the numerical simulation, the present
study assumed a constant value for the maximum interface shear strength (Tmax= 5.5 MPa), while
the failure crack sliding displacement was randomly varied during damage evolution (see Figure 6).
This approach relies on constant penalty stiffness and prevents the over-strengthening of the stiffness



Materials 2020, 13, 3548 10 of 13

of elements in the process zone. It also stands with the fact that the crack length extension in test
specimens is a function of the CTOD and the energy release rate in front of the crack tip. Here, the
process zone size was selected based on experimental results. Sensitivity analysis was performed
with a range of process zones from 15 to 30 mm (length of approximately 15 to 30% of specimens)
to confirm the assumption. A value of 25 mm for the cohesive zone length was used for stochastic
simulations [35].

4. Results and Discussion

The above formulations were integrated into an Abaqus user-defined element subroutine, which
is accessible in [14], coupled with MATLAB. The implicit solver of Abaqus was used for accurate
evaluation of displacement field. Randomness was introduced into the analysis by means of the
constant standard deviation method. In each simulation, a preassigned initial crack was considered in
the specimen, and the stochastic fracture properties were assigned to the elements in the area near the
crack front. Once fracture toughness value was assigned to a given element, it remained unchanged
during the given simulation run. As the crack propagated, new elements would enter into the process
zone and stochastic fracture properties would similarly be assigned to them.

The results for continuous delamination are given in Figure 7. The results of the stochastic
simulations were in great agreement with the nonrepeatable experimental data obtained from ENF
testing. The critical sliding displacement, δ f , was different in each simulation run, affecting the value
of the maximum load at which the mid-plane crack started to propagate. However, the shape of
the load–displacement curve was the same irrespective of the δ f value. Based on the trend in the
simulation data, it can be concluded that the fiber bridging effect in ENF testing had minimal effect on
the global characteristics of the response. Figure 8 shows the XFEM model contours under different
stages of delamination during ENF testing. It should be noted that, from an application perspective,
particularity in the context of composite-forming processes, the mode II loading, similar to ENF testing,
would be more relevant due to the likelihood of sliding between layers of the laminate under the
punch load.
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5. Conclusion

In the present work, a framework is presented to numerically simulate the mode II fracture behavior
of FRP composite materials. For this purpose, extending the capability of modeling delamination
and contact interfaces in large deformation problems, a user-element subroutine was developed in
Abaqus by incorporating nonlinear XFEM element properties with the cohesive zone model and
contact formulation. In addition, the stochastic fracture properties of the composite samples were
incorporated into the code to capture the randomness in properties evidenced in nonrepeatable ENF
testing results of composite materials. The efficacy of the model was demonstrated by predicting
the stochastic fracture behavior of PPS/glass UD laminates, which was in good agreement with the
experimental data.
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