Si-QD Synthesis for Visible Light Emission, Color Conversion, and Optical Switching
Abstract
:1. Introduction
2. Photoluminescence of Si-QD
3. Porous Si LED
4. Si-Implanted Si-QD LEDs
5. PECVD Grown Si-QD LED
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Streeman, B.G.; Banerjee, S. Solid State Electronic Devices, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000; p. 524. [Google Scholar]
- Macfarlane, G.G.; McLean, T.P.; Quarrington, J.E.; Roberts, V. Exciton and phonon effects in the absorption spectra of germanium and silicon. J. Phys. Chem. Solids 1959, 8, 388–392. [Google Scholar] [CrossRef]
- Namazu, T.; Isono, Y.; Tanaka, T. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 2000, 9, 450–459. [Google Scholar] [CrossRef]
- Onida, O.; Andreoni, W. Effect of size and geometry on the electronic properties of small hydrogenated silicon clusters. Chem. Phys. Lett. 1995, 243, 183–189. [Google Scholar] [CrossRef]
- Furukawa, S.; Miyasato, T. Quantum size effects on the optical band gap of microcrystalline Si:H. Phys. Rev. B 1988, 38, 5726–5729. [Google Scholar] [CrossRef] [PubMed]
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Barbagiovanni, E.G.; Lockwood, D.J.; Simpson, P.J.; Goncharova, L.V. Quantum confinement in Si and Ge nanostructures. J. Appl. Phys. 2012, 111, 034307. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ono, T.; Esashi, M. Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers. Appl. Phys. Lett. 2000, 77, 3860–3862. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, V.; Hofmann, F.; Möller, F.; Grüning, U. Resistivity of porous silicon: A surface effect. Thin Solid Films 1995, 255, 20–22. [Google Scholar] [CrossRef]
- Goldstein, A.N. The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors. Appl. Phys. A 1996, 62, 33–37. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Lu, P.; Zhang, X.W.; Xu, J.; Xu, L.; Chen, K.J. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers. Nanoscale Res. Lett. 2014, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Askari, S.; Haq, A.U.; Macias-Montero, M.; Levchenko, I.; Yu, F.J.; Zhou, W.Z.; Ostrikov, K.; Maguire, P.; Svrcekg, V.; Mariotti, D. Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas. Nanoscale 2016, 8, 17141–17149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, C.; Gondorf, A.; Lüttjohann, S.; Lorke, A. Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap. J. Appl. Phys. 2007, 101, 103102. [Google Scholar] [CrossRef]
- Meier, C.; Lüttjohann, S.; Offer, M.; Wiggers, H.; Lorke, A. Silicon nanoparticles: Excitonic fine structure and oscillator strength. In Advances in Solid State Physics, 1st ed.; Haug, R., Ed.; Springer: New York, NY, USA, 2009; Volume 48, pp. 79–90. [Google Scholar]
- Xia, J.-B. Electronic structures of zero-dimensional quantum wells. Phys. Rev. B 1989, 40, 8500–8507. [Google Scholar] [CrossRef] [PubMed]
- Yoffe, A.D. Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 2002, 51, 799–890. [Google Scholar]
- Kanemitsu, Y.; Uto, H.; Masumoto, Y.; Matsumoto, T.; Futagi, T.; Mimura, H. Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites. Phys. Rev. B 1993, 48, 2827–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, H.; Ogawa, H.; Yamazaki, Y.; Ishizaki, A.; Nakagiri, T. Quantum size effects on photoluminescence in ultratfne Si particles. Appl. Phys. Lett. 1990, 56, 2379–2380. [Google Scholar] [CrossRef]
- Maeda, Y.; Tsukamoto, N.; Yazawa, Y.; Kanemitsu, Y.; Masumoto, Y. Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Appl. Phys. Lett. 1991, 59, 3168–3170. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Takahashi, J.; Tamaki, T.; Futagi, T.; Mimura, H.; Kanemitsu, Y. Blue-green luminescence from porous silicon carbide. Appl. Phys. Lett. 1994, 26, 226–228. [Google Scholar] [CrossRef]
- DiMaria, D.J.; Kirtley, J.R.; Pakulis, E.J.; Dong, D.W.; Kuan, T.S.; Pesavento, F.L.; Theis, T.N.; Cutro, J.A.; Brorson, S.D. Electroluminescence studies in silicon dioxide films containing tiny silicon islands. J. Appl. Phys. 1984, 56, 401–415. [Google Scholar] [CrossRef]
- Qin, G.G.; Wang, Y.Q.; Qiao, Y.P.; Zhang, B.R.; Ma, Z.C.; Zong, W.H. Synchronized swinging of electroluminescence intensity and peak wavelength with Si layer thickness in Au/SiO2/nanometer Si/SiO2/p-Si structures. Appl. Phys. Lett. 1999, 74, 2182–2184. [Google Scholar] [CrossRef]
- Pavesi, L.; Negro, L.D.; Mazzoleni, C.; Franzò, G.; Priolo, F. Optical gain in silicon nanocrystals. Nature 2000, 408, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Irrera, A.; Pacifici, D.; Miritello, M.; Franzò, G.; Priolo, F. Excitation and de-excitation properties of silicon quantum dots under electrical pumping. Appl. Phys. Lett. 2002, 81, 1866–1868. [Google Scholar] [CrossRef]
- Lin, G.-R.; Lin, C.-J.; Lin, C.-K.; Chou, L.-J.; Chueh, Y.-L. Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2. J. Appl. Phys. 2005, 97, 094306. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-Y.; Chen, W.-H.; Hong, F.C.-N. Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix. Appl. Phys. Lett. 2005, 86, 193506. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-L.; Lin, G.-R. Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot. AIP Adv. 2012, 2, 042162. [Google Scholar] [CrossRef]
- Lin, G.-R.; Lin, C.-J.; Lin, C.-T. Low-plasma and high-temperature PECVD grown silicon-rich SiOx film with enhanced carrier tunneling and light emission. Nanotechnology 2007, 18, 395202. [Google Scholar] [CrossRef]
- Huang, R.; Chen, K.J.; Han, P.G.; Dong, H.P.; Wang, X.; Chen, D.Y.; Li, W.; Xu, J.; Ma, Z.Y.; Huang, X.F. Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices. Appl. Phys. Lett. 2007, 90, 093515. [Google Scholar] [CrossRef]
- Lin, G.-R.; Lin, C.-J.; Kuo, H.-C.; Lin, H.-S.; Kao, C.-C. Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask. Appl. Phys. Lett. 2007, 90, 143102. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Wu, C.-L.; Pai, Y.-H.; Lin, G.-R. A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector. Opt. Express 2011, 19, 6563–6570. [Google Scholar] [CrossRef]
- Bsiesy, A.; Vial, J.C.; Gaspard, F.; Herino, R.; Ligeon, M.; Muller, F.; Romestain, R.; Wasiela, A.; Halimaoui, A.; Bomchil, G. Photoluminescence of high porosity and of electrochemically oxidized porous silicon layers. Surf. Sci. 1991, 254, 195–200. [Google Scholar] [CrossRef]
- Tsai, C.; Li, K.-H.; Sarathy, J.; Shih, S.; Campbell, J.C.; Hance, B.K.; White, J.M. Thermal treatment studies of the photoluminescence intensity of porous silicon. Appl. Phys. Lett. 1991, 59, 2814–2816. [Google Scholar] [CrossRef]
- Koshida, N.; Koyama, H. Efficient visible photoluminescence from porous silicon. Jpn. J. Appl. Phys. 1991, 30, L1221–L1223. [Google Scholar] [CrossRef]
- Mizuno, H.; Koyama, H.; Koshida, N. Oxide-free blue photoluminescence from photochemically etched porous silicon. Appl. Phys. Lett. 1996, 69, 3779–3781. [Google Scholar] [CrossRef]
- Tsu, R.; Shen, H.; Dutta, M. Correlation of Raman and photoluminescence spectra of porous silicon. Appl. Phys. Lett. 1992, 60, 112–114. [Google Scholar] [CrossRef]
- Ben-Chorin, M.; Kux, A.; Schechter, I. Adsorbate effects on photoluminescence and electrical conductivity of porous silicon. Appl. Phys. Lett. 1994, 64, 481–483. [Google Scholar] [CrossRef]
- Prokes, S.M.; Glembocki, O.J.; Bermudez, V.M.; Kaplan, R.; Friedersdorf, L.E.; Searson, P.C. SiHx excitation: An alternate mechanism for porous Si photoluminescence. Phys. Rev. B 1992, 45, 13788–13791. [Google Scholar] [CrossRef]
- Tsybeskov, L.; Vandyshev, J.V.; Fauchet, P.M. Blue emission in porous silicon: Oxygen-related photoluminescence. Phys. Rev. B 1994, 49, 7821–7824. [Google Scholar] [CrossRef]
- Mishra, J.K.; Bhunia, S.; Banerjee, S.; Banerji, P. Photoluminescence studies on porous silicon/polymer heterostructure. J. Lumin. 2008, 128, 1169–1174. [Google Scholar] [CrossRef]
- Mutti, P.; Ghislotti, G.; Bertoni, S.; Bonoldi, L.; Cerofolini, G.F.; Meda, L.; Grilli, E.; Guzzi, M. Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers. Appl. Phys. Lett. 1995, 66, 851–853. [Google Scholar] [CrossRef]
- Min, K.S.; Shcheglov, K.V.; Yang, C.M.; Atwater, H.A.; Brongersma, M.L.; Polman, A. Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2. Appl. Phys. Lett. 1996, 69, 2033–2035. [Google Scholar] [CrossRef] [Green Version]
- Shimizu-Iwayama, T.; Kurumado, N.; Hole, D.E.; Townsend, P.D. Optical properties of silicon nanoclusters fabricated by ion implantation. J. Appl. Phys. 1998, 83, 6018–6022. [Google Scholar] [CrossRef]
- Linnros, J.; Lalic, N.; Galeckas, A.; Grivickas, V. Analysis of the stretched exponential photoluminescence decay from nanometersized silicon crystals in SiO2. J. Appl. Phys. 1999, 86, 6128–6134. [Google Scholar] [CrossRef]
- Lin, G.-R.; Lin, C.-J.; Yu, K.-C. Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted on silicon substrate. J. Appl. Phys. 2004, 96, 3025–3027. [Google Scholar] [CrossRef]
- Wu, X.L.; Xue, F.S. Optical transition in discrete levels of Si quantum dots. Appl. Phys. Lett. 2004, 84, 2808–2810. [Google Scholar] [CrossRef]
- Samanta, A.; Das, D. SiOx nanowires with intrinsic nC-Si quantum dots: The enhancement of the optical absorption and photoluminescence. J. Mater. Chem. C 2013, 1, 6623–6629. [Google Scholar] [CrossRef]
- Hao, X.J.; Podhorodecki, A.P.; Shen, Y.S.; Zatryb, G.; Misiewicz, J.; Green, M.A. Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films. Nanotechnology 2009, 20, 485703. [Google Scholar] [CrossRef] [Green Version]
- Di, D.; Perez-Wurfl, I.; Conibeer, G.; Green, M.A. Formation and photoluminescence of Si quantum dots in SiO2/Si3N4 hybrid matrix for all-Si tandem solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 2238–2243. [Google Scholar] [CrossRef]
- Conibeer, G.; Green, M.; Corkish, R.; Cho, Y.; Cho, E.-C.; Jiang, C.-W.; Fangsuwannarak, T.; Pink, E.; Huang, Y.; Puzzer, T.; et al. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Film. 2006, 511–512, 654–662. [Google Scholar] [CrossRef]
- Ye, Q.-Y.; Tsu, R.; Nicollian, E.H. Resonant tunneling via microcrystalline-silicon quantum confinement. Phys. Rev. B 1991, 44, 1806–1811. [Google Scholar] [CrossRef]
- Kahler, U.; Hofmeister, H. Visible light emission from Si nanocrystalline composites via reactive evaporation of SiO. Opt. Mater. 2001, 17, 83–86. [Google Scholar] [CrossRef]
- Iacona, F.; Franzò, G.; Spinella, C. Correlation between luminescence and structural properties of Si nanocrystals. J. Appl. Phys. 2000, 87, 1295–1303. [Google Scholar] [CrossRef]
- Vinciguerra, V.; Franzò, G.; Priolo, F.; Iacona, F.; Spinella, C. Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices. J. Appl. Phys. 2000, 87, 8165–8173. [Google Scholar] [CrossRef]
- Hartel, A.M.; Hiller, D.; Gutsch, S.; Löper, P.; Estradé, S.; Peiró, F.; Garrido, B.; Zacharias, M. Formation of size-controlled silicon nanocrystals in plasma enhanced chemical vapor deposition grown SiOxNy/SiO2 superlattice. Thin Solid Film. 2011, 520, 121–125. [Google Scholar] [CrossRef]
- Lin, G.-R.; Chang, C.-H.; Cheng, C.-H.; Wu, C.-I.; Wang, P.-S. Transient UV and visible luminescent dynamics of Si-rich SiOx metal-oxide-semiconductor light-emitting diode. IEEE Photonics J. 2012, 4, 1351–1364. [Google Scholar]
- Lai, B.-H.; Cheng, C.-H.; Pai, Y.-H.; Lin, G.-R. Plasma power controlled deposition of SiOx with manipulated Si quantum dot size for photoluminescent wavelength tailoring. Opt. Express 2010, 18, 4449–4456. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Watanabe, E.; Ito, D.; Sakurai, Y.; Nagasawa, K.; Ohki, Y. Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2. J. Appl. Phys. 1996, 80, 3513–3517. [Google Scholar] [CrossRef]
- Zhu, M.; Han, Y.; Wehrspohn, R.B.; Godet, C.; Etemadi, R.; Ballutaud, D. The origin of visible photoluminescence from silicon oxide thin films prepared by dual plasma chemical vapor deposition. J. Appl. Phys. 1998, 83, 5386–5393. [Google Scholar] [CrossRef]
- Trwoga, P.F.; Kenyon, A.J.; Pitt, C.W. Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters. J. Appl. Phys. 1998, 83, 3789–3794. [Google Scholar] [CrossRef]
- Seo, S.-Y.; Cho, K.-S.; Shin, J.H. Intense blue–white luminescence from carbon-doped silicon-rich silicon oxide. Appl. Phys. Lett. 2004, 84, 717–719. [Google Scholar] [CrossRef] [Green Version]
- Hartel, A.M.; Gutsch, S.; Hiller, D.; Zacharias, M. Fundamental temperature-dependent properties of the Si nanocrystal band gap. Phys. Rev. B 2012, 85, 165306. [Google Scholar] [CrossRef]
- Chen, K.; Huang, X.; Xu, J.; Feng, D. Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures. Appl. Phys. Lett. 1992, 61, 2069–2071. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Park, N.-M.; Kim, K.-H.; Sung, G.Y.; Ok, Y.-W.; Seong, T.-Y.; Choi, C.-J. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 2004, 85, 5355–5357. [Google Scholar] [CrossRef]
- Negro, L.D.; Yi, J.H.; Kimerling, L.C.; Hamel, S.; Williamson, A.; Galli, G. Light emission from silicon-rich nitride nanostructures. Appl. Phys. Lett. 2006, 88, 183103. [Google Scholar] [CrossRef]
- Negro, L.D.; Yi, J.H.; Michel, J.; Kimerling, L.C.; Chang, T.-W.F.; Sukhovatkin, V.; Sargent, E.H. Light emission efficiency and dynamics in silicon-rich silicon nitride films. Appl. Phys. Lett. 2006, 88, 233109. [Google Scholar] [CrossRef]
- Kim, T.-W.; Cho, C.-H.; Kim, B.-H.; Park, S.-J. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl. Phys. Lett. 2006, 88, 123102. [Google Scholar] [CrossRef]
- Wang, M.; Li, D.; Yuan, Z.; Yang, D.; Que, D. Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters. Appl. Phys. Lett. 2007, 90, 131903. [Google Scholar] [CrossRef]
- Debieu, O.; Nalini, R.P.; Cardin, J.; Portier, X.; Perrière, J.; Gourbilleau, F. Structural and optical characterization of pure Si-rich nitride thin films. Nanoscale Res. Lett. 2013, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Kurokawa, Y.; Miyajima, S.; Yamada, A.; Konagai, M. Preparation of nanocrystalline silicon in amorphous silicon carbide matrix. Jpn. J. Appl. Phys. 2006, 45, L1064–L1066. [Google Scholar] [CrossRef]
- Coscia, U.; Ambrosone, G.; Basa, D.K. Room temperature visible photoluminescence of silicon nanocrystallites embedded in amorphous silicon carbide matrix. J. Appl. Phys. 2008, 103, 063507. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Ma, L.B.; Song, R.; Du, Y.; Shi, H.J.; Ye, J.P.; Lin, Y.; Cao, Z.X. Growth of nearly one nanometer large silicon particles in silicon carbide and their quantum-confined photoluminescence features. Nanotechnology 2007, 18, 445605. [Google Scholar] [CrossRef] [Green Version]
- Tai, H.-Y.; Cheng, C.-H.; Wang, P.-S.; Wu, C.-I.; Lin, G.-R. Nearly warm white-light emission of silicon-rich amorphous silicon carbide. RSC Adv. 2015, 5, 105239–105247. [Google Scholar] [CrossRef]
- Tai, H.-Y.; Chi, Y.-C.; Cheng, C.-H.; Wang, P.-S.; Wu, C.-I.; Lin, G.-R. Stoichiometry detuned silicon carbide as an orange and white light band solid-state phosphor. RSC Adv. 2016, 6, 7121–7128. [Google Scholar] [CrossRef]
- Cho, E.-C.; Green, M.A.; Conibeer, G.; Song, D.; Cho, Y.-H.; Scardera, G.; Huang, S.; Park, S.; Hao, X.J.; Huang, Y.; et al. Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells. Adv. Optoelectron. 2007, 2007, 69578. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.-R.; Lo, T.-C.; Tsai, L.-H.; Pai, Y.-H.; Cheng, C.-H.; Wu, C.-I.; Wang, P.-S. Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide. J. Electrochem. Soc. 2012, 159, K35–K41. [Google Scholar] [CrossRef]
- Cheang-Wong, J.C.; Oliver, A.; Roiz, J.; Hernandez, J.M.; Rodrigues-Fernandez, L.; Morales, J.G.; Crespo-Sosa, A. Optical properties of Ir2+-implanted silica glass. Nucl. Instrum. Methods Phys. Res. B 2001, 175–177, 490–494. [Google Scholar] [CrossRef]
- Lin, C.-J.; Lee, C.-K.; Diau, E.W.-G.; Lin, G.-R. Time-resolved photoluminescence analysis of multidose Si-ion-implanted SiO2. J. Electrochem. Soc. 2006, 153, E25–E32. [Google Scholar] [CrossRef] [Green Version]
- Tai, H.-Y.; Lin, Y.-H.; Lin, G.-R. Wavelength-shifted yellow electroluminescence of Si quantum-dot embedded 20-Pair SiNx/SiOx superlattice by Ostwald ripening effect. IEEE Photonics J. 2013, 5, 6600110. [Google Scholar] [CrossRef]
- Tohmon, R.; Shimogaichi, Y.; Mizuno, H.; Ohki, Y. 2.7-eV luminescence in as-manufactured high-purity silica glass. Phys. Rev. Lett. 1989, 62, 1388–1391. [Google Scholar] [CrossRef]
- Tyschenko, I.E.; Rebohle, L.; Yankov, R.A.; Skorupa, W.; Misiuk, A. Enhancement of the intensity of the short-wavelength visible photoluminescence from silicon-implanted silicon-dioxide films caused by hydrostatic pressure during annealing. Appl. Phys. Lett. 1998, 73, 1418–1420. [Google Scholar] [CrossRef]
- Bae, H.S.; Kim, T.G.; Whang, C.N.; Im, S.; Yun, J.S.; Song, J.H. Electroluminescence mechanism in SiOx layers containing radiative centers. J. Appl. Phys. 2002, 91, 4078–4081. [Google Scholar] [CrossRef]
- Shimizu-Iwayama, T.; Nakao, S.; Saitoh, K. Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si. Appl. Phys. Lett. 1994, 65, 1814–1816. [Google Scholar] [CrossRef]
- Sakurai, Y.; Nagasawa, K. Green photoluminescence band in γ-irradiated oxygen-surplus silica glass. J. Appl. Phys. 1999, 86, 1377–1381. [Google Scholar] [CrossRef]
- Skuja, L. Time-resolved low temperature luminescence of non-bridging oxygen hole centers in silica glass. Solid State Commun. 1992, 84, 613–616. [Google Scholar] [CrossRef]
- Song, H.Z.; Bao, X.M. Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms. Phys. Rev. B 1997, 55, 6988–6993. [Google Scholar] [CrossRef]
- Zerga, A.; Carrada, M.; Amann, M.; Slaoui, A. Si-nanostructures formation in amorphous silicon nitride SiNx:H deposited by remote PECVD. Physica E 2007, 38, 21–26. [Google Scholar] [CrossRef]
- Deshpande, S.V.; Gulari, E.; Brown, S.W.; Rand, S.C. Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition. J. Appl. Phys. 1995, 77, 6534–6541. [Google Scholar] [CrossRef] [Green Version]
- Gritsenko, V.A.; Kwok, R.W.M.; Wong, H.; Xu, J.B. Short-range order in non-stoichiometric amorphous silicon oxynitride and silicon-rich nitride. J. Non Cryst. Solids 2002, 297, 96–101. [Google Scholar] [CrossRef]
- Gardelis, S.; Rimmer, J.S.; Dawson, P.; Hamilton, B.; Kubiak, R.A.; Whall, T.E.; Parker, E.H.C. Evidence for quantum confinement in the photoluminescence of porous Si and SiGe. Appl. Phys. Lett. 1991, 59, 2118–2120. [Google Scholar] [CrossRef] [Green Version]
- Dimova-Malinovska, D.; Sendova-Vassileva, M.; Tzenov, N.; Kamenova, M. Preparation of thin porous silicon layers by stain etching. Thin Solid Film. 1997, 297, 9–12. [Google Scholar] [CrossRef]
- Lehmann, V.; Föll, H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J. Electrochem. Soc. 1990, 137, 653–659. [Google Scholar] [CrossRef]
- Theunissen, M.J.J. Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid. J. Electrochem. Soc. 1972, 119, 351–360. [Google Scholar] [CrossRef]
- Iatsunsky, I.; Nowaczyk, G.; Jurga, S.; Fedorenko, V.; Pavlenko, M.; Smyntyna, V. One and two-phonon Raman scattering from nanostructured silicon. Optik 2015, 126, 1650–1655. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.; Li, K.-H.; Kinosky, D.S.; Qian, R.-Z.; Hsu, T.-C.; Irby, J.T.; Banerjee, S.K.; Tasch, A.F.; Campbell, J.C.; Hance, B.K.; et al. Correlation between silicon hydride species and the photoluminescence intensity of porous silicon. Appl. Phys. Lett. 1992, 60, 1700–1702. [Google Scholar] [CrossRef]
- Kim, D.-A.; Shim, J.-H.; Cho, N.-H. PL and EL features of p-type porous silicon prepared by electrochemical anodic etching. Appl. Surf. Sci. 2004, 234, 256–261. [Google Scholar] [CrossRef]
- Richter, A.; Steiner, P.; Kozlowski, F.; Lang, W. Current-induced light emission from a porous silicon device. IEEE Electron. Device Lett. 1991, 12, 691–692. [Google Scholar] [CrossRef]
- Halimaoui, A.; Oules, C.; Bomchil, G.; Bsiesy, A.; Gaspard, F.; Herino, R.; Ligeon, M.; Muller, F. Electroluminescence in the visible range during anodic oxidation of porous silicon films. Appl. Phys. Lett. 1991, 59, 304–306. [Google Scholar] [CrossRef]
- Koshida, N.; Koyama, H. Visible electroluminescence from porous silicon. Appl. Phys. Lett. 1992, 60, 347–349. [Google Scholar] [CrossRef]
- Canham, L.T.; Leong, W.Y.; Beale, M.I.J.; Cox, T.I.; Taylor, L. Efficient visible electroluminescence from highly porous silicon under cathodic bias. Appl. Phys. Lett. 1992, 61, 2563–2565. [Google Scholar] [CrossRef]
- Koshida, N.; Koyama, H.; Yamamoto, Y.; Collins, G.J. Visible electroluminescence from porous silicon diodes with an electropolymerized contact. Appl. Phys. Lett. 1993, 63, 2655–2657. [Google Scholar] [CrossRef]
- Steiner, P.; Kozlowski, F.; Lang, W. Light-emitting porous silicon diode with an increased electroluminescence quantum efficiency. Appl. Phys. Lett. 1993, 62, 2700–2702. [Google Scholar] [CrossRef]
- Steiner, P.; Kozlowski, F.; Lang, W. Blue and green electroluminescence from a porous silicon device. IEEE Electron. Device Lett. 1993, 14, 317–319. [Google Scholar] [CrossRef]
- Li, K.-H.; Diaz, D.C.; He, Y.; Campbell, J.C.; Tsai, C. Electroluminescence from porous silicon with conducting polymer film contacts. Appl. Phys. Lett. 1994, 64, 2394–2396. [Google Scholar] [CrossRef]
- Linnros, J.; Lalic, N. High quantum efficiency for a porous silicon light emitting diode under pulsed operation. Appl. Phys. Lett. 1995, 66, 3048–3050. [Google Scholar] [CrossRef]
- Loni, A.; Simons, A.J.; Cox, T.I.; Calcott, P.D.J.; Canham, L.T. Electroluminescent porous silicon device with an external quantum efficiency greater than 0.1% under CW operation. Electron. Lett. 1995, 31, 1288–1289. [Google Scholar] [CrossRef]
- Nishimura, K.; Nagao, Y.; Ikeda, N. High external quantum efficiency of electroluminescence from photoanodized porous silicon. Jpn. J. Appl. Phys. 1998, 37, L303–L305. [Google Scholar] [CrossRef]
- Tsybeskov, L.; Duttagupta, S.P.; Hirschman, K.D.; Fauchet, P.M. Stable and efficient electroluminescence from a porous silicon-based bipolar device. Appl. Phys. Lett. 1996, 68, 2058–2060. [Google Scholar] [CrossRef]
- Lazarouk, S.; Jaguiro, P.; Katsouba, S.; Masini, G.; Monica, S.L.; Maiello, G.; Ferrari, A. Stable electroluminescence from reverse biased n-type porous silicon-aluminum Schottky junction device. Appl. Phys. Lett. 1996, 68, 1646–1648. [Google Scholar] [CrossRef]
- Gelloz, B.; Nakagawa, T.; Koshida, N. Enhancement of the quantum efficiency and stability of electroluminescence from porous silicon by anodic passivation. Appl. Phys. Lett. 1998, 73, 2021–2023. [Google Scholar] [CrossRef]
- Gelloz, B.; Koshida, N. Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode. J. Appl. Phys. 2000, 88, 4319–4324. [Google Scholar] [CrossRef]
- Gelloz, B.; Sano, H.; Boukherroub, R.; Wayner, D.D.M.; Lockwood, D.J.; Koshida, N. Stabilization of porous silicon electroluminescence by surface passivation with controlled covalent bonds. Appl. Phys. Lett. 2003, 83, 2042–2044. [Google Scholar] [CrossRef]
- Gelloz, B.; Koshida, N. Highly enhanced efficiency and stability of photo- and electro-luminescence of nano-crystalline porous silicon by high-pressure water vapor annealing. Jpn. J. Appl. Phys. 2006, 45, 3462–3465. [Google Scholar] [CrossRef]
- Kulakci, M.; Serincan, U.; Turan, R. Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation. Semicond. Sci. Technol. 2006, 21, 1527–1532. [Google Scholar] [CrossRef]
- Lin, G.-R. The structural and electrical characteristics of silicon-implanted borosilicate glass. Jpn. J. Appl. Phys. 2002, 41, L1379–L1382. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.-R.; Yu, K.-C.; Lin, C.-J.; Kuo, H.-C.; Ou-Yang, M.-C. Pumping intensity dependent surface charge accumulation and redshifted microphotoluminescence of silicon-implanted quartz. Appl. Phys. Lett. 2004, 85, 1000–1002. [Google Scholar] [CrossRef]
- Liao, L.-S.; Bao, X.-M.; Zheng, X.-Q.; Li, N.-S.; Min, N.-B. Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon. Appl. Phys. Lett. 1996, 68, 850–852. [Google Scholar] [CrossRef]
- Rebohle, L.; von Borany, J.; Yankov, R.A.; Skorupa, W.; Tyschenko, I.E.; Fröb, H.; Leo, K. Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers. Appl. Phys. Lett. 1997, 71, 2809–2811. [Google Scholar] [CrossRef]
- Song, H.-Z.; Bao, X.-M.; Li, N.-S.; Zhang, J.-Y. Relation between electroluminescence and photoluminescence of Si+-implanted SiO2. J. Appl. Phys. 1997, 82, 4028–4032. [Google Scholar] [CrossRef]
- Lalic, N.; Linnros, J. Light emitting diode structure based on Si nanocrystals formed by implantation into thermal oxide. J. Lumin. 1999, 80, 263–267. [Google Scholar] [CrossRef]
- Walters, R.J.; Bourianoff, G.I.; Atwater, H.A. Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 2005, 4, 143–146. [Google Scholar] [CrossRef]
- Lin, C.-J.; Lin, G.-R. Defect-enhanced visible electroluminescence of multi-energy silicon-implanted silicon dioxide film. IEEE J. Quantum Electron. 2005, 41, 441–447. [Google Scholar]
- Lin, G.-R.; Lin, C.-J. Improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO2/Si substrate. J. Appl. Phys. 2004, 95, 8484–8486. [Google Scholar] [CrossRef] [Green Version]
- Cen, Z.H.; Chen, T.P.; Ding, L.; Liu, Y.; Wong, J.I.; Yang, M.; Liu, Z.; Goh, W.P.; Zhu, F.R.; Fung, S. Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing. J. Appl. Phys. 2009, 105, 123101. [Google Scholar] [CrossRef] [Green Version]
- Cen, Z.H.; Chen, T.P.; Ding, L.; Liu, Y.; Wong, J.I.; Yang, M.; Liu, Z.; Goh, W.P.; Zhu, F.R.; Fung, S. Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions. Appl. Phys. Lett. 2009, 94, 041102. [Google Scholar] [CrossRef]
- Cen, Z.H.; Chen, T.P.; Liu, Z.; Liu, Y.; Ding, L.; Yang, M.; Wong, J.I.; Yu, S.F.; Goh, W.P. Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film. Opt. Express 2010, 18, 20439–20444. [Google Scholar] [CrossRef]
- Cen, Z.H.; Chen, T.P.; Ding, L.; Liu, Z.; Wong, J.I.; Yang, M.; Goh, W.P.; Fung, S. Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films. Appl. Phys. A 2011, 104, 239–245. [Google Scholar] [CrossRef]
- Lien, Y.-C.; Pai, Y.-H.; Lin, G.-R. Si nano-dots and nano-pyramids dependent light emission and charge accumulation in ITO/SiOx/p-Si MOS diode. IEEE J. Quantum Electron. 2010, 46, 121–127. [Google Scholar] [CrossRef]
- Lai, B.-H.; Cheng, C.-H.; Lin, G.-R. Electroluminescent wavelength shift of Si-rich SiOx based blue and green MOSLEDs induced by O/Si composition Si-QD size variations. Opt. Mater. Express 2013, 3, 166–175. [Google Scholar] [CrossRef]
- Franzò, G.; Irrera, A.; Moreira, E.C.; Miritello, M.; Iacona, F.; Sanfilippo, D.; Stefano, G.D.; Fallica, P.G.; Priolo, F. Electroluminescence of silicon nanocrystals in MOS structures. Appl. Phys. A 2002, 74, 1–5. [Google Scholar] [CrossRef]
- Lin, C.-J.; Lin, G.-R. Enhancing nanocrystallite Si electroluminescence by suppressing oxygen decomposition in high-temperature and low-plasma-power PECVD. J. Electrochem. Soc. 2007, 154, H743–H748. [Google Scholar] [CrossRef]
- Lin, G.-R.; Lin, C.-K.; Chou, L.-J.; Chueh, Y.-L. Synthesis of Si nanopyramids at SiOx/Si interface for enhancing electroluminescence of Si-rich SiOx. Appl. Phys. Lett. 2006, 89, 093126. [Google Scholar] [CrossRef]
- Lin, G.-R.; Lin, C.-J.; Lin, C.-K. Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids. Opt. Express 2007, 15, 2555–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perálvarez, M.; García, C.; López, M.; Garrido, B.; Barreto, J.; Domínguez, C.; Rodríguez, J.A. Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2006, 89, 051112. [Google Scholar] [CrossRef]
- Irrera, A.; Iacona, F.; Crupi, I.; Presti, C.D.; Franzò, G.; Bongiorno, C.; Sanfilippo, D.; Stefano, G.D.; Piana, A.; Fallica, P.G.; et al. Electroluminescence and transport properties in amorphous silicon nanostructures. Nanotechnology 2006, 17, 1428–1436. [Google Scholar] [CrossRef]
- Barreto, J.; Perálvarez, M.; Rodríguezc, J.A.; Morales, A.; Riera, M.; López, M.; Garrido, B.; Lechuga, L.; Dominguez, C. Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD. Physica E 2007, 38, 193–196. [Google Scholar] [CrossRef]
- Lin, G.-R.; Lin, C.-J. CO2 laser rapid-thermal-annealing based metal-oxide-semiconductor light emitting diode. Appl. Phys. Lett. 2007, 91, 072103. [Google Scholar] [CrossRef]
- Lin, G.-R.; Lin, C.-J.; Kuo, H.-C. Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array. Appl. Phys. Lett. 2007, 91, 093122. [Google Scholar] [CrossRef]
- Chen, D.Y.; Wei, D.Y.; Xu, J.; Han, P.G.; Wang, X.; Ma, Z.Y.; Chen, K.J.; Shi, W.H.; Wang, Q.M. Enhancement of electroluminescence in p-i-n structures with nano-crystalline Si/SiO2 multilayers. Semicond. Sci. Technol. 2008, 23, 015013. [Google Scholar] [CrossRef]
- Anopchenko, A.; Marconi, A.; Moser, E.; Prezioso, S.; Wang, M.; Pavesi, L.; Pucker, G.; Bellutti, P. Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers. J. Appl. Phys. 2009, 106, 033104. [Google Scholar] [CrossRef]
- Lai, B.-H.; Cheng, C.-H.; Lin, G.-R. Multicolor ITO/SiOx/p-Si/Al light emitting diodes with improved emission efficiency by small Si quantum dots. IEEE J. Quantum Electron. 2011, 47, 698–704. [Google Scholar]
- Lin, G.-R.; Pai, Y.-H.; Lin, C.-T. Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array. J. Lightwave Technol. 2008, 26, 1486–1491. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lien, Y.-C.; Wu, C.-L.; Lin, G.-R. Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency. Opt. Express 2013, 21, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Park, N.-M.; Kim, T.-S.; Park, S.-J. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 2001, 78, 2575–2577. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.S.; Park, N.-M.; Kim, T.-Y.; Kim, K.-H.; Sung, G.Y.; Shin, J.H. High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer. Appl. Phys. Lett. 2005, 86, 071909. [Google Scholar] [CrossRef]
- Kim, K.-H.; Shin, J.-H.; Park, N.-M.; Huh, C.; Kim, T.-Y.; Cho, K.-S.; Hong, J.C.; Sung, G.Y. Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern. Appl. Phys. Lett. 2006, 89, 191120. [Google Scholar] [CrossRef]
- Kim, B.-H.; Cho, C.-H.; Park, S.-J.; Park, N.-M.; Sung, G.Y. Ni/Au contact to silicon quantum dot light emitting diodes for the enhancement of carrier injection and light extraction efficiency. Appl. Phys. Lett. 2006, 89, 063509. [Google Scholar] [CrossRef]
- Huh, C.; Park, N.-M.; Shin, J.-H.; Kim, K.-H.; Kim, T.-Y.; Cho, K.S.; Sung, G.Y. Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes. Appl. Phys. Lett. 2006, 88, 131913. [Google Scholar] [CrossRef]
- Huh, C.; Cho, K.S.; Kim, K.-H.; Hong, J.; Ko, H.; Kim, W.; Sung, G.Y. Effects of an undoped Si1-xCx buffer layer on performance of Si nanocrystal light-emitting diodes. Electrochem. Solid State Lett. 2008, 11, H189–H192. [Google Scholar] [CrossRef]
- Lin, G.-R.; Pai, Y.-H.; Lin, C.-T.; Chen, C.-C. Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes. Appl. Phys. Lett. 2010, 96, 263514. [Google Scholar] [CrossRef]
- Lin, C.-D.; Cheng, C.-H.; Lin, Y.-H.; Wu, C.-L.; Pai, Y.-H.; Lin, G.-R. Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films. Appl. Phys. Lett. 2011, 9, 243501. [Google Scholar] [CrossRef]
- Huang, R.; Song, J.; Wang, X.; Guo, Y.Q.; Song, C.; Zheng, Z.H.; Wu, X.L.; Chu, P.K. Origin of strong white electroluminescence from dense Si nanodots embedded in silicon nitride. Opt. Lett. 2012, 37, 692–694. [Google Scholar] [CrossRef]
- Rui, Y.; Li, S.; Xu, J.; Song, C.; Jiang, X.; Li, W.; Chen, K.; Wang, Q.; Zuo, Y. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J. Appl. Phys. 2011, 110, 064322. [Google Scholar] [CrossRef]
- Rui, Y.; Li, S.; Xu, J.; Cao, Y.; Li, W.; Chen, K. Comparative study of electroluminescence from annealed amorphous SiC single layer and amorphous Si/SiC multilayers. J. Non Cryst. Solids 2012, 358, 2114–2117. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Abolmasov, S.; Kim, K.H.; i Cabarrocas, P.R. Strong visible and near-infrared electroluminescence and formation process in Si-rich polymorphous silicon carbon. J. Appl. Phys. 2012, 111, 053108. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Wu, C.-L.; Chen, C.-C.; Tsai, L.-H.; Lin, Y.-H.; Lin, G.-R. Si-rich SixC1-x light-emitting diodes with buried Si quantum dots. IEEE Photonics J. 2012, 4, 1762–1775. [Google Scholar] [CrossRef]
- Tai, H.-Y.; Cheng, C.-H.; Lin, G.-R. Blue-green light emission from Si and SiC quantum dots co-doped Si-rich SiC p-i-n junction diode. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 218–224. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Cheng, C.-H.; Wu, C.-L.; Pai, Y.-H.; Lin, G.-R. Nano-porous MOSLEDs with spatially confined Si quantum dots buried in anodic aluminum oxide membrane. IEEE J. Sel. Top. Quantum Electron. 2014, 23, 1–7. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, X.; Gu, W.; Liang, X.; Ni, Z.; Tan, H.; Huang, K.; Yan, Y.; Yu, X.; Xu, M.; et al. Al2O3-interlayer-enhanced performance of all-inorganic silicon-quantum-dot near-infrared light-emitting diodes. IEEE Trans. Electron. Devices 2018, 65, 577–583. [Google Scholar] [CrossRef]
- Ghosh, B.; Yamada, H.; Chinnathambi, S.; Özbilgin, I.N.G.; Shirahata, N. Inverted device architecture for enhanced performance of flexible silicon quantum dot light-emitting diode. J. Phys. Chem. Lett. 2018, 9, 5400–5407. [Google Scholar] [CrossRef]
- Ghosh, B.; Shirahata, N. All-inorganic red-light emitting diodes based on silicon quantum dots. Crystals 2019, 9, 385. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, B.; Chen, J.; Wang, D.; Zhang, Y.; Li, S.; Dai, X.; Zhang, S.; Lu, A.M. All-inorganic silicon white light-emitting device with an external quantum efficiency of 1.0%. Opt. Express 2020, 28, 194–204. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-H.; Lin, G.-R. Si-QD Synthesis for Visible Light Emission, Color Conversion, and Optical Switching. Materials 2020, 13, 3635. https://doi.org/10.3390/ma13163635
Cheng C-H, Lin G-R. Si-QD Synthesis for Visible Light Emission, Color Conversion, and Optical Switching. Materials. 2020; 13(16):3635. https://doi.org/10.3390/ma13163635
Chicago/Turabian StyleCheng, Chih-Hsien, and Gong-Ru Lin. 2020. "Si-QD Synthesis for Visible Light Emission, Color Conversion, and Optical Switching" Materials 13, no. 16: 3635. https://doi.org/10.3390/ma13163635
APA StyleCheng, C. -H., & Lin, G. -R. (2020). Si-QD Synthesis for Visible Light Emission, Color Conversion, and Optical Switching. Materials, 13(16), 3635. https://doi.org/10.3390/ma13163635