Polycarbonate/Sulfonamide Composites with Ultralow Contents of Halogen-Free Flame Retardant and Desirable Compatibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of 1,3,5,7-tetrakis (phenyl-4-sulfonyl chloride) adamantane
2.2.2. Synthesis of 1,3,5,7-tetrakis (phenyl-4-sulfonamide) adamantane (FRSN)
2.2.3. Preparation of PC/FRSN Composites
2.2.4. Characterization and Measurement
3. Results and Discussions
3.1. Chemical Structure of FRSN
3.2. Combustion Tests of the PC/FRSN Composites
3.2.1. LOI and UL 94 Test
3.2.2. Cone Calorimeter Test
3.3. Thermogravimetric Analyses (TGA)
3.4. Analysis of Residual Char
3.5. Mechanical Properties and Dispersity of FRSN in tPC matrix
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bendler, J.T. Handbook of Polycarbonate Science and Technology; Taylor & Francis: Abingdon, UK, 1999. [Google Scholar]
- Xi, C.; Kang, G.; Lu, F.; Zhang, J.; Jiang, H. An experimental study on uniaxial ratcheting of polycarbonate polymers with different molecular weights. Mater. Des. 2015, 67, 644–648. [Google Scholar] [CrossRef]
- Itagaki, H. Flame-Retardant Polycarbonate Resin Composition and Electrical and Electronic Components Made by Molding the Same. U.S. Patent 6,423,766B1, 23 July 2002. [Google Scholar]
- Qiu, Y.; Liu, Z.; Qian, L.; Hao, J. Gaseous-phase flame retardant behavior of a multi-phosphaphenanthrene compound in a polycarbonate composite. RSC Adv. 2017, 7, 51290–51297. [Google Scholar] [CrossRef] [Green Version]
- Heidar Pour, R.; Soheilmoghaddam, M.; Hassan, A.; Bourbigot, S. Flammability and thermal properties of polycarbonate/acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer graphene. Polym. Degrad. Stab. 2015, 120, 88–97. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. Flame retardants in commercial use or in advanced development in polycarbonates and polycarbonate blends. J. Fire Sci. 2006, 24, 137–151. [Google Scholar] [CrossRef]
- Swoboda, B.; Buonomo, S.; Leroy, E.; Cuesta, J.L. Fire retardant poly (ethylene terephthalate)/polycarbonate/triphenyl phosphite blends. Polym. Degrad. Stab. 2008, 93, 910–917. [Google Scholar] [CrossRef]
- Alaee, M.; Arias, P.; Sjödin, A.; Bergman, Å. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 2003, 29, 683–689. [Google Scholar] [CrossRef]
- Fromme, H.; Becher, G.; Hilger, B.; Völkel, W. Brominated flame retardants–exposure and risk assessment for the general population. Int. J. Hyg. Environ. Health 2016, 219, 1–23. [Google Scholar] [CrossRef]
- Nguyen, C.; Kim, J. Thermal stabilities and flame retardancies of nitrogen–phosphorus flame retardants based on bisphosphoramidates. Polym. Degrad. Stab. 2008, 93, 1037–1043. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, L.; Zhao, B.; Luo, Y.; Wang, D.-Y.; Wang, Y.-Z. A novel efficient halogen-free flame retardant system for polycarbonate. Polym. Degrad. Stab. 2011, 96, 320–327. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, Y.J.; Jiang, P. Phosphonium sulfonates as flame retardants for polycarbonate. Polym. Degrad. Stab. 2016, 130, 165–172. [Google Scholar] [CrossRef]
- Lanzinger, D.; Salzinger, S.; Soller, B.S.; Rieger, B. Poly (vinylphosphonate) s as macromolecular flame retardants for polycarbonate. Ind. Eng. Chem. Res. 2015, 54, 1703–1712. [Google Scholar] [CrossRef]
- Li, Z.; Yang, R. Flame retardancy, thermal and mechanical properties of sulfonate-containing polyhedral oligomeric silsesquioxane (s-poss)/polycarbonate composites. Polym. Degrad. Stab. 2015, 116, 81–87. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Sun, X.; Li, Y.; Sun, P.; Shen, D.; Wang, H.; Shi, H. Reinforced Flame Retardant Polycarbonate Composition and Molded Article Comprising Same. U.S. Patents 9,722,559,4B2, 4 August 2017. [Google Scholar]
- Dai, K.; Song, L.; Yuen, R.K.; Jiang, S.; Pan, H.; Hu, Y. Enhanced properties of the incorporation of a novel reactive phosphorus-and sulfur-containing flame-retardant monomer into unsaturated polyester resin. Ind. Eng. Chem. Res. 2012, 51, 15918–15926. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Yi, B.; Wu, B.; Yang, B.; Liu, Y. Thermal behaviors of flame-retardant polycarbonates containing diphenyl sulfonate and poly (sulfonyl phenylene phosphonate). J. Appl. Polym. Sci. 2003, 89, 882–889. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, H.; Cao, X.; Kong, W.; Cai, X. Preparation and characterization of a water resistance flame retardant and its enhancement on charring–forming for polycarbonate. J. Therm. Anal. Calorim. 2017, 129, 809–820. [Google Scholar] [CrossRef]
- Wei, Y.-X.; Deng, C.; Zhao, Z.-Y.; Wang, Y.-Z. A novel organic-inorganic hybrid sio2@dpp for the fire retardance of polycarbonate. Polym. Degrad. Stab. 2018, 154, 177–185. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, L.; Martin, F.H.; Zhang, X.-Q.; Wang, R.; Wang, D.-Y. Influence of phenylphosphonate based flame retardant on epoxy/glass fiber reinforced composites (gre): Flammability, mechanical and thermal stability properties. Compos. B Eng. 2017, 110, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Mark, V.; Hedges, C.V. Transparent to translucent flame-retardant polycarbonate composition. U.S. Patents 4,231,920A, 4 November 1980. [Google Scholar]
- Zhang, W.; Li, X.; Guo, X.; Yang, R. Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (dopo-poss)/polycarbonate composites. Polym. Degrad. Stab. 2010, 95, 2541–2546. [Google Scholar] [CrossRef]
- Kalali, E.N.; Wang, X.; Wang, D.-Y. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. J. Mater. Chem. A 2015, 3, 6819–6826. [Google Scholar] [CrossRef] [Green Version]
- Chiang, W.Y.; Tzeng, G.L. Effect of the compatibilizers on flame-retardant polycarbonate (pc)/acrylonitrile–butadiene–styrene (abs) alloy. J. Appl. Polym. Sci. 1997, 65, 795–805. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Guo, J.W.; Xian, J.X.; Fu, S.Q. Novel sulfonate-containing halogen-free flame-retardants: Effect of ternary and quaternary sulfonates centered on adamantane on the properties of polycarbonate composites. RSC Adv. 2017, 7, 39270–39278. [Google Scholar] [CrossRef] [Green Version]
- Wen, W.; Guo, J.; Zhao, X.; Li, X.; Yang, H.; Chen, J.-K. Synthesis of an efficient s/n-based flame retardant and its application in polycarbonate. Polymers 2018, 10, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, H.B.; Guo, J.W.; Fu, S.Q.; Li, X.; Wen, W.Q.; Jiang, W.Z.; Tong, R.; Haranczyk, M. Structural design, preparation and characterization of light, isotropic and robust statically determined organic frameworks as reusable adsorbents. Chem. Eng. J. 2018, 135, 58–64. [Google Scholar] [CrossRef]
- Guo, J.; Lai, X.; Fu, S.; Yue, H.; Wang, J.; Topham, P.D. Microporous organic polymers based on hexaphenylbiadamantane: Synthesis, ultra-high stability and gas capture. Mater. Lett. 2017, 187, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Baitinger, W.F. Fire retardance treatment of fabrics for the 80s: Smolder resistant cotton treated with boric acid. Text. Res. J. 1982, 52, 82–86. [Google Scholar] [CrossRef]
- Pannier, N.; Maison, W. Rigid c3-symmetric scaffolds based on adamantane. Eur. J. Org. Chem. 2008, 2008, 1278–1284. [Google Scholar] [CrossRef]
- Genovese, A.; Shanks, R.A. Fire performance of poly (dimethyl siloxane) composites evaluated by cone calorimetry. Compos. Part A Appl. Sci. Manuf. 2008, 39, 398–405. [Google Scholar] [CrossRef]
- Pérez, N.; Qi, X.-L.; Nie, S.; Acuña, P.; Chen, M.-J.; Wang, D.-Y. Flame retardant polypropylene composites with low densities. Materials 2019, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Guo, J.; Yue, H.; Wang, J.; Topham, P.D. Synthesis of thermochemically stable tetraphenyladamantane-based microporous polymers as gas storage materials. RSC Adv. 2017, 7, 16174–16180. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani-Vaghei, R.; Sarmast, N. Palladium stabilized on poly and mono sulfonamide ligands as novel, simple, effective, and recyclable nano catalysts for c–c cross-coupling reactions. Can. J. Chem. 2017, 95, 1073–1080. [Google Scholar] [CrossRef]
- Vinod, K.; Periandy, S.; Govindarajan, M. Spectroscopic [ft-ir and ft-raman] and molecular modeling (mm) study of benzene sulfonamide molecule using quantum chemical calculations. J. Mol. Struct. 2016, 1116, 226–235. [Google Scholar] [CrossRef]
- Rai, G.; Brimacombe, K.R.; Mott, B.T.; Urban, D.J.; Hu, X.; Yang, S.-M.; Lee, T.D.; Cheff, D.M.; Kouznetsova, J.; Benavides, G.A. Discovery and optimization of potent, cell-active pyrazole-based inhibitors of lactate dehydrogenase (ldh). J. Med. Chem. 2017, 60, 9184–9204. [Google Scholar] [PubMed]
- Kang, D.; Fang, Z.; Huang, B.; Lu, X.; Zhang, H.; Xu, H.; Huo, Z.; Zhou, Z.; Yu, Z.; Meng, Q. Structure-based optimization of thiophene [3, 2-d] pyrimidine derivatives as potent hiv-1 non-nucleoside reverse transcriptase inhibitors with improved potency against resistance-associated variants. J. Med. Chem. 2017, 60, 4424–4443. [Google Scholar] [PubMed]
- Burmistrov, V.; Morisseau, C.; Harris, T.R.; Butov, G.; Hammock, B.D. Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg. Chem. 2018, 76, 510–527. [Google Scholar] [CrossRef]
- Xu, L.; Weiss, R.A. The effect of tosylate salts and zinc sulfonated polystyrene ionomer on the thermal stability of bisphenol a polycarbonate. Polym. Degrad. Stab. 2004, 84, 295–304. [Google Scholar] [CrossRef]
- Liu, C.; Yao, Q. Design and synthesis of efficient phosphorus flame retardant for polycarbonate. Ind. Eng. Chem. Res. 2017, 56, 8789–8796. [Google Scholar] [CrossRef]
- Bai, Y.-J.; Li, M.; Lu, J.; Ma, H.-R. Studies on synthesis, crystal structure and thermal decomposition of n-(o-methylphenyl) ferrocenesulfonamide. Acta Chim. Sin. 2002, 60, 1479–1484. [Google Scholar]
- Innes, J.; Innes, A. Flame retardants for polycarbonate—New and classical solutions. Plast. Addit. Compd. 2006, 8, 26–29. [Google Scholar] [CrossRef]
Sample | LOI/% | UL 94 |
---|---|---|
PC | 25.8 | V−2 |
PC/FRSN (0.06 wt%) | 28.1 | V−1 |
PC/FRSN (0.08 wt%) | 33.7 | V−0 |
PC/FRSN (0.10 wt%) | 32.3 | V−0 |
PC/FRSN (0.12 wt%) | 30.8 | V−0 |
PC/FRSN (0.14 wt%) | 29.3 | V−1 |
PC/KSS (0.08 wt%) | 27.1 | V−2 |
Sample | TTI/s | pk–HRR (kW·m−2) | THR /MJ·m−2 | SEA/ m2·kg−1 | TSP/m2 | Mean COY /kg·kg−1 | Mean CO2Y /kg·kg−1 |
---|---|---|---|---|---|---|---|
PC | 102 | 313 | 61 | 680 | 19 | 0.148 | 1.652 |
PC/FRSN (0.08 wt%) | 86 | 251 | 51 | 580 | 18 | 0.096 | 1.781 |
Sample | T5%/°C | Tmax1/°C | Residue/wt% |
---|---|---|---|
PCs | 485 | 537 | 0.8 |
FRSN | 222 | 399 | 4.6 |
PC/FRSN (0.06 wt%) | 454 | 512 | 0.1 |
PC/FRSN (0.08 wt%) | 444 | 508 | 0.3 |
PC/FRSN (0.10 wt%) | 452 | 506 | 0.3 |
PC/FRSN (0.12 wt%) | 443 | 503 | 0.3 |
PC/FRSN (0.14 wt%) | 443 | 501 | 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yue, H.; Zhao, X.; Song, M.; Guo, J.; Cui, Y.; Fernández-Blázquez, J.P.; Wang, D.-Y. Polycarbonate/Sulfonamide Composites with Ultralow Contents of Halogen-Free Flame Retardant and Desirable Compatibility. Materials 2020, 13, 3656. https://doi.org/10.3390/ma13173656
Yang H, Yue H, Zhao X, Song M, Guo J, Cui Y, Fernández-Blázquez JP, Wang D-Y. Polycarbonate/Sulfonamide Composites with Ultralow Contents of Halogen-Free Flame Retardant and Desirable Compatibility. Materials. 2020; 13(17):3656. https://doi.org/10.3390/ma13173656
Chicago/Turabian StyleYang, Hangfeng, Hangbo Yue, Xi Zhao, Minzimo Song, Jianwei Guo, Yihua Cui, Juan P. Fernández-Blázquez, and De-Yi Wang. 2020. "Polycarbonate/Sulfonamide Composites with Ultralow Contents of Halogen-Free Flame Retardant and Desirable Compatibility" Materials 13, no. 17: 3656. https://doi.org/10.3390/ma13173656
APA StyleYang, H., Yue, H., Zhao, X., Song, M., Guo, J., Cui, Y., Fernández-Blázquez, J. P., & Wang, D. -Y. (2020). Polycarbonate/Sulfonamide Composites with Ultralow Contents of Halogen-Free Flame Retardant and Desirable Compatibility. Materials, 13(17), 3656. https://doi.org/10.3390/ma13173656