Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens
2.2. Surface Treatment
- Group Pr: Y-TZP surface + Zirconia primer
- Group NTP + Pr: Y-TZP surface + NTP treatment + Zirconia primer
- Group Sb + Pr: Y-TZP surface + Sandblasting + Zirconia primer
- Group Sb + NTP + Pr: Y-TZP surface + Sandblasting + NTP treatment + Zirconia primer
2.3. Contact Angle and Surface Energy (SE) Measurements
2.4. Shear Bond Strength (SBS) Test
2.4.1. Bonding Y-TZP with Self-Adhesive Resin Cement
2.4.2. Aging Process and SBS Test
2.5. Failure Mode Analysis
2.6. Statistical Analysis
3. Results
3.1. Surface Energy (SE) Analysis
3.2. Shear Bond Strength (SBS) Analysis
3.3. Failure Mode Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-Amleh, B.; Lyons, K.; Swain, M. Clinical trials in zirconia: A systematic review. J. Oral. Rehabil. 2010, 37, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Alao, A.-R.; Stoll, R.; Song, X.-F.; Miyazaki, T.; Hotta, Y.; Shibata, Y.; Yin, L.J. Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes. J. Mech. Behav. Biomed. Mater. 2017, 65, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y.J.D. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vechiato Filho, A.J.; dos Santos, D.M.; Goiato, M.C.; de Medeiros, R.A.; Moreno, A.; da Rocha Bonatto, L.; Rangel, E.C. Surface characterization of lithium disilicate ceramic after nonthermal plasma treatment. J. Prosthet. Dent. 2014, 112, 1156–1163. [Google Scholar] [CrossRef]
- Piascik, J.R.; Swift, E.J.; Braswell, K.; Stoner, B.R. Surface fluorination of zirconia: Adhesive bond strength comparison to commercial primers. Dent. Mater. 2012, 28, 604–608. [Google Scholar] [CrossRef]
- Liu, T.; Hong, L.; Hottel, T.; Dong, X.; Yu, Q.; Chen, M. Non-thermal plasma enhanced bonding of resin cement to zirconia ceramic. Clin. Plasma. Med. 2016, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Román-Rodríguez, J.L.; Fons-Font, A.; Amigó-Borrás, V.; Granell-Ruiz, M.; Busquets-Mataix, D.; Panadero, R.A.; Solá-Ruiz, M.F. Bond strength of selected composite resin-cements to zirconium-oxide ceramic. Med. Oral. Patol. Oral. Cir. Bucal. 2013, 18, e115. [Google Scholar] [CrossRef]
- Piascik, J.R.; Wolter, S.D.; Stoner, B.R. Development of a novel surface modification for improved bonding to zirconia. Dent. Mater. 2011, 27, e99–e105. [Google Scholar] [CrossRef]
- Colombo, M.; Gallo, S.; Padovan, S.; Chiesa, M.; Poggio, C.; Scribante, A. Influence of Different Surface Pretreatments on Shear Bond Strength of an Adhesive Resin Cement to Various Zirconia Ceramics. Materials 2020, 13, 652. [Google Scholar] [CrossRef] [Green Version]
- Guazzato, M.; Proos, K.; Quach, L.; Swain, M.V. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials 2004, 25, 5045–5052. [Google Scholar] [CrossRef]
- Aboushelib, M.N.; Matinlinna, J.P.; Salameh, Z.; Ounsi, H. Innovations in bonding to zirconia-based materials: Part I. Dent. Mater. 2008, 24, 1268–1272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B.R.; Rekow, E.D.; Thompson, V.P. Effect of sandblasting on the long-term performance of dental ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Kern, M. Bonding to oxide ceramics—laboratory testing versus clinical outcome. Dent. Mater. 2015, 31, 8–14. [Google Scholar] [CrossRef]
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The effect of resin bonding on long-term success of high-strength ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B.R.; Malament, K.A.; Thompson, V.P.; Rekow, E.D. Damage accumulation and fatigue life of particle-abraded ceramics. Int. J. Prosthodont. 2006, 19, 442–448. [Google Scholar] [PubMed]
- de Mendonça, B.C.; Negreiros, W.M.; Giannini, M. Effect of aluminum oxide sandblasting, plasma application and their combination on the bond strength of resin cement to zirconia ceramics. Braz. Dent. Sci. 2019, 22, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.; Bernasconi, M. Adhesion to Zirconia Used for Dental Restorations: A Systematic Review and Meta-Analysis. J. Adhes. Dent. 2015, 17, 7–26. [Google Scholar]
- de Souza, G.M.D.; Thompson, V.P.; Braga, R.R. Effect of metal primers on microtensile bond strength between zirconia and resin cements. J. Prosthet. Dent. 2011, 105, 296–303. [Google Scholar] [CrossRef]
- Amaral, M.; Belli, R.; Cesar, P.F.; Valandro, L.F.; Petschelt, A.; Lohbauer, U. The potential of novel primers and universal adhesives to bond to zirconia. J. Dent. 2014, 42, 90–98. [Google Scholar] [CrossRef]
- Yang, L.; Chen, B.; Xie, H.; Chen, Y.; Chen, Y.; Chen, C. Durability of resin bonding to zirconia using products containing 10-methacryloyloxydecyl dihydrogen phosphate. J. Adhes. Dent. 2018, 20, 279–287. [Google Scholar]
- Aboushelib, M.N.; Mirmohamadi, H.; Matinlinna, J.P.; Kukk, E.; Ounsi, H.F.; Salameh, Z. Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions. Dent. Mater. 2009, 25, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Chae, S.; Lee, Y.; Han, G.J.; Cho, B.H. Comparison of shear test methods for evaluating the bond strength of resin cement to zirconia ceramic. Acta. Odontol. Scand. 2014, 72, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Scaminaci Russo, D.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dent. J. 2019, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Tzanakakis, E.-G.C.; Tzoutzas, I.G.; Koidis, P.T. Is there a potential for durable adhesion to zirconia restorations? A systematic review. J. Prosthet. Dent. 2016, 115, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.T.; Cheng, K.Y.; Lin, Z.H.; Wu, C.J.; Wu, J.Y.; Wu, J.S. Effect of ground and floating electrode on a helium-based plasma jet and its applications in sterilization and ceramic surface treatment. IEEE Trans. Plasma Sci. 2016, 44, 3196–3200. [Google Scholar] [CrossRef]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Chu, P.K.; Chen, J.; Wang, L.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Huang, C.; Yu, Q.S. Cold plasma brush generated at atmospheric pressure. Rev. Sci. Instrum. 2007, 78, 015104. [Google Scholar] [CrossRef]
- Han, G.J.; Chung, S.N.; Chun, B.H.; Kim, C.K.; Oh, K.H.; Cho, B.H. Effect of the applied power of atmospheric pressure plasma on the adhesion of composite resin to dental ceramic. J. Adhes. Dent. 2012, 14, 461–469. [Google Scholar]
- Cruz, N.C.; Rangel, E.C.; Gadioli, G.Z.; Mota, R.P.; Honda, R.Y.; Algatti, M.A.; Schreiner, W.H. The influence of plasma composition on the properties of plasma treated biomaterials. MRS. Online. Proc. Libr. Arch. 2001, 672, O3.35. [Google Scholar] [CrossRef]
- Vechiato-Filho, A.J.; Marques, I.d.S.V.; Dos Santos, D.M.; Matos, A.O.; Rangel, E.C.; Da Cruz, N.C.; Barão, V.A.R. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin. Mater. Sci. Eng. C 2016, 60, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, G.B.; Coelho, P.G.; Janal, M.N.; Lorenzoni, F.C.; Carvalho, R.M.; Thompson, V.P.; Weltemann, K.-D.; Silva, N.R. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. J. Dent. 2013, 41, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.B.; Ayres, A.P.A.; Lopes, L.B.; Negreiros, W.M.; Giannini, M. The effect of atmospheric plasma treatment of dental zirconia ceramics on the contact angle of water. Appl. Adhes. Sci. 2014, 2, 17. [Google Scholar] [CrossRef]
- Kim, D.S.; Ahn, J.J.; Bae, E.B.; Kim, G.C.; Jeong, C.M.; Huh, J.B.; Lee, S.H. Influence of Non-Thermal Atmospheric Pressure Plasma Treatment on Shear Bond Strength between Y-TZP and Self-Adhesive Resin Cement. Materials 2019, 12, 3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizo-Gorrita, M.; Herráez-Galindo, C.; Torres-Lagares, D.; Serrera-Figallo, M.Á.; Gutiérre-Pérez, J.L. Biocompatibility of polymer and ceramic CAD/CAM materials with human gingival fibroblasts (HGFs). Polymers 2019, 11, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, M.; Poggio, C.; Lasagna, A.; Chiesa, M.; Scribante, A. Vickers micro-hardness of new restorative CAD/CAM dental materials: Evaluation and comparison after exposure to acidic drink. Materials 2019, 12, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwon, B.; Bae, E.B.; Lee, J.J.; Cho, W.T.; Bae, H.Y.; Choi, J.W.; Huh, J.B. Wear characteristics of dental ceramic CAD/CAM materials opposing various dental composite resins. Materials 2019, 12, 1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abi-Rached, F.O.; Martins, S.B.; Campos, J.A.; Fonseca, R.G. Evaluation of roughness, wettability, and morphology of an yttria-stabilized tetragonal zirconia polycrystal ceramic after different airborne-particle abrasion protocols. J. Prosthet. Dent. 2014, 112, 1385–1391. [Google Scholar] [CrossRef]
- Park, C.; Park, S.W.; Yun, K.D.; Ji, M.K.; Kim, S.; Yang, Y.P.; Lim, H.P. Effect of plasma treatment and its post process duration on shear bonding strength and antibacterial effect of dental zirconia. Materials 2018, 11, 2233. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Hsieh, J.P.; Chen, Y.C.; Kang, L.L.; Hwang, C.S.; Chuang, S.F. Promoting porcelain–zirconia bonding using different atmospheric pressure gas plasmas. Dent. Mater. 2018, 34, 1188–1198. [Google Scholar] [CrossRef]
- Park, C.; Yoo, S.H.; Park, S.W.; Yun, K.D.; Ji, M.K.; Shin, J.H.; Lim, H.P. The effect of plasma on shear bond strength between resin cement and colored zirconia. J. Adv. Prosthodont. 2017, 9, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.J.; Yoo, J.H.; Bae, E.B.; Kim, G.C.; Hwang, J.J.; Lee, W.S.; Kim, H.J.; Huh, J.B. The Effects of Atmospheric Pressure Argon Plasma Treated Bovine Bone Substitute on Bone Regeneration. Coatings 2019, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jeong, W.S.; Seo, S.J.; Kim, H.W.; Kim, K.N.; Choi, E.H.; Kim, K.M. Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration. Dent. Mater. 2017, 33, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, Y.; Driver, M.S.; Caruso, A.N.; Yu, Q.; Wang, Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent. Mater. 2013, 29, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H.; Jeong, W.S.; Cha, J.Y.; Lee, J.H.; Yu, H.S.; Choi, E.H.; Kim, K.M.; Hwang, Y. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium. Dent. Mater. 2016, 6, 33421. [Google Scholar]
- Amaral, R.; Özcan, M.; Bottino, M.A.; Valandro, L.F. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning. Dent. Mater. 2006, 22, 283–290. [Google Scholar] [CrossRef]
- Vechiato-Filho, A.J.; Matos, A.O.; Landers, R.; Goiato, M.C.; Rangel, E.C.; De Souza, G.M.; Barão, V.A.R.; dos Santos, D.M. Surface analysis and shear bond strength of zirconia on resin cements after non-thermal plasma treatment and/or primer application for metallic alloys. Mater. Sci. Eng. C 2017, 72, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Yap, A.U.J.; Wang, X.; Wu, X.; Chung, S.M. Comparative hardness and modulus of tooth-colored restoratives: A depth-sensing microindentation study. Biomaterials 2004, 25, 2179–2185. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Lehmann, F.; Wille, S.; Polonskyi, O.; Johannes, M.; Köbel, S.; Trottenberg, T.; Bornholdt, S.; Haase, H. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin. Dent. Mater. 2016, 32, 631–639. [Google Scholar] [CrossRef]
- Kiomarsi, N.; Saburian, P.; Chiniforush, N.; Karazifard, M.J.; Hashemikamangar, S.S. Effect of thermocycling and surface treatment on repair bond strength of composite. J. Clin. Exp. Dent. 2017, 9, e945. [Google Scholar] [CrossRef]
- Marshall, S.J.; Bayne, S.C.; Baier, R.; Tomsia, A.P.; Marshall, G.W. A review of adhesion science. Dent. Mater. 2010, 26, e11–e16. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical interaction mechanism of 10-MDP with zirconia. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, K.; Tsuo, Y.; Atsuta, M. Bonding of dual-cured resin cement to zirconia ceramic using phosphate acid ester monomer and zirconate coupler. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 77, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Tay, F.R.; Zhang, F.; Lu, Y.; Shen, S.; Chen, C. Coupling of 10-methacryloyloxydecyldihydrogenphosphate to tetragonal zirconia: Effect of pH reaction conditions on coordinate bonding. Dent. Mater. 2015, 31, e218–e225. [Google Scholar] [CrossRef]
- Tanış, M.Ç.; Akay, C.; Karakış, D.; Equipment, B. Resin cementation of zirconia ceramics with different bonding agents. Biotechnol. Biotechnol. Equip. 2015, 29, 363–367. [Google Scholar]
- Lee, S.E.; Bae, J.H.; Choi, J.W.; Jeon, Y.C.; Jeong, C.M.; Yoon, M.J.; Huh, J.B. Comparative shear-bond strength of six dental self-adhesive resin cements to zirconia. Materials 2015, 8, 3306–3315. [Google Scholar] [CrossRef] [Green Version]
- Linkevicius, T.; Caplikas, A.; Dumbryte, I.; Linkeviciene, L.; Svediene, O. Retention of zirconia copings over smooth and airborne-particle-abraded titanium bases with different resin cements. J. Prosthet. Dent. 2019, 121, 949–954. [Google Scholar] [CrossRef]
- Oyagüe, R.C.; Monticelli, F.; Toledano, M.; Osorio, E.; Ferrari, M.; Osorio, R. Effect of water aging on microtensile bond strength of dual-cured resin cements to pre-treated sintered zirconium-oxide ceramics. Dent. Mater. 2009, 25, 392–399. [Google Scholar] [CrossRef]
- Qeblawi, D.M.; Campillo-Funollet, M.; Muñoz, C.A. In vitro shear bond strength of two self-adhesive resin cements to zirconia. J. Prosthet. Dent. 2015, 113, 122–127. [Google Scholar] [CrossRef]
- Scribante, A.; Contreras-Bulnes, R.; Montasser, M.A.; Vallittu, P.K. Orthodontics: Bracket materials, adhesives systems, and their bond strength. Biomed. Res. Int. 2016, 2016, 1329814. [Google Scholar] [CrossRef]
Groups | Distribution of Y-TZP Specimens (n) | ||||
---|---|---|---|---|---|
Surface Energy (SE) | Shear Bond Strength (SBS) | ||||
G-CEM LinkAce | Rely X-U200 | ||||
Non-Thermal Cycling | Thermal Cycling | Non-Thermal Cycling | Thermal Cycling | ||
Pr | 3 | 10 | 10 | 10 | 10 |
NTP + Pr | 3 | 10 | 10 | 10 | 10 |
Sb + Pr | 3 | 10 | 10 | 10 | 10 |
Sb + NTP + Pr | 3 | 10 | 10 | 10 | 10 |
Material | Manufacturer | Type | Composition |
---|---|---|---|
G-CEM LinkAce | GC Corporation, Tokyo, Japan | Self-adhesive Dual-cure Automix | Paste A: Fluoroalumino silicate glass, Urethane dimethacrylate (UDMA), Dimethacrylate, Pigment, Silicon dioxide, Initiator, Inhibitor |
Paste B: Urethane dimethacrylate (UDMA), Dimethacrylate, Phosphoric acid ester monomer, Initiator, stabilizer | |||
Rely X-U200 | 3M ESPE, St. Paul, MN, USA | Self-adhesive Dual-cure Automix | Base paste: Methacrylate monomers containing phosphoric acid groups, Methacrylate monomers, Silanated fillers, Initiator components, Stabilizers, Rheological additives |
Catalyst paste: Methacrylate monomers, Alkaline (basic) fillers, Silanated fillers, Initiator components, Stabilizers, Pigments, Rheological additives | |||
Z-Prime Plus | Bisco Inc., Schaumberg, IL, USA | Zirconia primer | Ethanol, BisGMA, 2-Hydroxyethyl methacrylate, 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP) |
Groups | Minimum Surface Energy | Median Surface Energy | Maximum Surface Energy | Mean Surface Energy ± SD |
---|---|---|---|---|
Pr | 55.53 | 58.64 | 59.76 | 57.98 ± 2.19 |
NTP + Pr | 52.32 | 55.15 | 68.21 | 58.56 ± 8.48 |
Sb + Pr | 60.65 | 62.16 | 62.79 | 61.87 ± 1.10 |
Sb + NTP + Pr | 58.36 | 60.59 | 70.70 | 63.21 ± 6.57 |
Groups | SBS (Mpa) | |||||
---|---|---|---|---|---|---|
Thermal cycling | Cement type | Surface treatment | Minimum | Median | Maximum | Mean ± SD |
Non Thermal cycling | G-CEM LinkAce | Pr | 18.22 | 23.16 | 29.69 | 24.12 ± 3.95 *,A,a |
NTP + Pr | 11.87 | 18.68 | 27.89 | 19.99 ± 4.67 †,A,a | ||
Sb + Pr | 21.51 | 25.98 | 28.90 | 25.66 ± 2.55 †,A,a | ||
Sb + NTP + Pr | 15.08 | 21.91 | 31.48 | 21.82 ± 5.43 ‡,A,a | ||
Rely X-U200 | Pr | 5.37 | 10.91 | 15.03 | 10.49 ± 3.26 *,A,a | |
NTP + Pr | 6.58 | 11.70 | 19.42 | 12.62 ± 3.82 †,A,a | ||
Sb + Pr | 15.44 | 16.57 | 18.43 | 16.62 ± 0.90 *,†,‡,A,a | ||
Sb + NTP + Pr | 9.57 | 13.41 | 16.04 | 12.89 ± 2.34 ‡,A,a | ||
Thermal cycling | G-CEM LinkAce | Pr | 7.57 | 10.16 | 13.84 | 10.65 ± 2.01 *,†,A,a |
NTP + Pr | 5.69 | 6.67 | 7.87 | 6.66 ± 0.81 †,‡,§,A,a | ||
Sb + Pr | 11.66 | 14.65 | 19.03 | 15.03 ± 2.56 *,‡,¶,A,a | ||
Sb + NTP + Pr | 8.76 | 9.57 | 10.97 | 9.72 ± 0.75 ¶,§,A,a | ||
Rely X-U200 | Pr | 6.97 | 8.67 | 9.66 | 8.64 ± 0.94 *,†,A,b | |
NTP + Pr | 3.28 | 4.18 | 4.88 | 4.14 ± 0.61 †,‡,§,A,a | ||
Sb + Pr | 13.51 | 14.04 | 16.04 | 14.37 ± 0.93 *,‡,¶,B,a | ||
Sb + NTP + Pr | 5.57 | 9.66 | 12.56 | 9.39 ± 2.33 ¶,§,B,a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.-J.; Kim, D.-S.; Bae, E.-B.; Kim, G.-C.; Jeong, C.-M.; Huh, J.-B.; Lee, S.-H. Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement. Materials 2020, 13, 3934. https://doi.org/10.3390/ma13183934
Ahn J-J, Kim D-S, Bae E-B, Kim G-C, Jeong C-M, Huh J-B, Lee S-H. Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement. Materials. 2020; 13(18):3934. https://doi.org/10.3390/ma13183934
Chicago/Turabian StyleAhn, Jong-Ju, Dae-Sung Kim, Eun-Bin Bae, Gyoo-Cheon Kim, Chang-Mo Jeong, Jung-Bo Huh, and So-Hyoun Lee. 2020. "Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement" Materials 13, no. 18: 3934. https://doi.org/10.3390/ma13183934
APA StyleAhn, J. -J., Kim, D. -S., Bae, E. -B., Kim, G. -C., Jeong, C. -M., Huh, J. -B., & Lee, S. -H. (2020). Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement. Materials, 13(18), 3934. https://doi.org/10.3390/ma13183934