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Abstract: To study the dynamic mechanical characteristics and constitutive relation of concrete
materials under freeze–thaw (FT) cycle conditions, C35 concrete was taken as the research object in
this paper, and FT tests were carried out with a freeze–thaw range of −20–20 ◦C and a freeze–thaw
frequency up to 50 times. By using the separated Hopkinson pressure bar (SHPB) system, impact
compression tests of concrete specimens under different FT cycle actions were developed, then the
dynamic fracture morphology, fracture block distribution, stress–strain curve, peak stress and other
dynamic mechanical properties of concrete were analyzed, and the influence law of FT action and strain
rate was obtained. Through introducing the freeze–thaw deterioration damage factor and the stress
damage variable, the dynamic visco-elastic damage constitutive equation of freeze–thawed concrete
was constructed based on component combination theory. Furthermore, the damage evolution process
and mechanism of freeze–thawed concrete materials were revealed. The research results show that
the dynamic mechanical properties of concrete under a freeze–thaw environment are the combined
results of the freeze–thaw deterioration effect and the strain rate strengthening effect. The dynamic
visco-elastic damage constitutive model established in this paper can effectively describe the dynamic
mechanical properties of freeze–thawed concrete, and has the characteristics of few parameters and
good effect. The stress damage evolution path of concrete goes backward with the increase of FT
cycles and the development speed gradually slows down. The greater the difference in FT cycles,
the greater the difference in stress damage path.

Keywords: concrete; freeze–thaw cycle action; dynamic mechanical property; visco-elastic constitutive
model; damage evolution

1. Introduction

The cold areas in China are widely distributed, and the seasonal and permanent cold areas account
for more than three quarters of China’s land area. In recent years, with the rapid development of
the economy, there are more and more projects built in the cold region, such as the Qinghai–Tibet
Railway, the Sichuan–Tibet Railway, the China–Russia and China–Kazakhstan Oil Projects, as well as
many long tunnels and dams. As a kind of material widely used in railway, highway, dam, tunnel
and other cold region engineering, concrete will suffer from freeze–thaw damage in the long service
of freeze–thaw environment. Under the action of the freeze–thaw cycle, the residual moisture in the
interior pores will continuously freeze and thaw, and then cause the continuous development of the
internal pores, the performance of the concrete structure will be greatly affected, easily causing structure
cracking, deformation and even instability failure [1,2]. Therefore, in cold regions, concrete structural
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deterioration due to freeze–thaw damage is a common problem. In recent years, many researchers
have studied the freeze–thaw resistance of concrete [3–7] and established corresponding freeze–thaw
damage models [8,9]. For example, Petros Petrounias [3,4] and Wojciech Piasta et al. [5] studied the
effect of coarse aggregate performance on concrete under ordinary temperature and freeze–thaw
conditions, respectively, and the results showed that the resistance of the aggregate to freezing and
thawing was demonstrated to agree with the values of crushing resistance and the lowest contents
of pores with diameters unsafe in terms of the freeze–thaw resistance. Bahram M. Taheri et al. [6]
evaluated the freeze–thaw durability of pervious concrete specimens using the JC446-91 test method
and revealed that the conditions and number of cycles used in JC446-91 were inadequate to evaluate
the freeze–thaw durability of pervious concrete, especially for strong mixes. Rong-xin Peng et al. [7]
proposed a meso-numerical simulation method to analyze the mechanical properties of freeze–thaw
concrete, and the simulation model can effectively describe the stress–strain evolution behavior of
freeze–thaw concrete. Ben Li et al. [8] developed an innovative mesoscopic damage parameter by
following a unique calculation procedure in which the damage parameter is cumulatively computed
from the minimum to the maximum by iterative cycles instead of using a direct calculation method.
Sun Ming et al. [9] proposed a cohesion reduction parameter and investigated the mechanism of
damage evolution and plasticity development of concrete materials subjected to freeze–thaw cycles
during the load process.

The above studies on the mechanical properties of freezing-thawing concrete are of great
significance for guiding the prevention of freezing-thawing injury in civil engineering in cold regions.
However, most of them focus on the static mechanical properties. Studies have shown that [10,11]
concrete projects in cold areas are often subjected to dynamic loads during construction and use, such as
excavation blasting load, and impact load caused by vehicles, waves and earthquakes. The study of
the dynamic mechanical properties and constitutive relation of freeze–thawed concrete is of important
engineering and theoretical significance, and can provide experimental data and a theoretical basis for
the mechanism and prediction of freeze–thaw disasters.

The constitutive model is one of the important bases on which to study the strength and
deformation of concrete, and reflects the stress–strain curve, the most basic mechanical property
of concrete [12]. The component model is often used to study the dynamic constitutive relation
of concrete. It is composed of the components in series or in parallel, and it simulates the actual
stress–strain relationship by adjusting the parameters and the number of combined components,
so that the stress–strain curve of the model is consistent with the test results. Component models
established in this way are one-dimensional models, such as the Bingham Model, the Elastoplastic
Model, the Maxwell Model, the Merchant Model, and so on. To better fit the test results, some models
use multiple components. Although this approach achieves a good fitting effect, it increases the number
of parameters, such as in the Zhu-Wang-Tang (Z-W-T) Model [13,14] and the various modified Z-W-T
models [15,16]. The Z-W-T model is a nonlinear viscoelastic constitutive model that is based on the
Green–Rivlin multi-integral nonlinear constitutive theory and is suitable for a strain rate of 10−4–103 s−1.
Due to the good fitting accuracy, the Z-W-T model has been widely used in simulating constitutive
relations of brittle materials such as concrete and rock [15,16]. Nevertheless, its expression is relatively
complex, and the number of fitting parameters is relatively large. Therefore, the constitutive model with
good prediction accuracy and simple expression has become the research target of many researchers.

Directed at C35 concrete suffering from different numbers of freeze–thaw cycles (0, 10, 20, 30,
40, 50), a series of impact compression tests was carried out on a Φ50 mm (i.e., the diameter of the
bar is 50 mm) separated Hopkinson pressure bar (SHPB) system in this paper. The dynamic fracture
morphology, fracture block distribution, stress–strain curve, peak stress and other dynamic mechanical
properties of concrete were analyzed, and the influence law of freeze–thaw cycle and strain rate
was obtained. By introducing the freeze–thaw deterioration damage factor and the stress damage
variable, the dynamic visco-elastic damage constitutive equation of freeze–thawed concrete was
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constructed based on component combination theory. The damage evolution process and mechanism
of freeze–thawed concrete materials were revealed.

2. Test Design

2.1. Specimen Preparation

C35 concrete was applied in this experiment, the proportion of the basic materials of Portland
cement, stone, sand, water, fly ash, and water reducing agent was 1:3.80:2.03:0.56:0.40:0.02. The Portland
cement was P.0.42.5 ordinary Portland cement produced by Shaanxi Qinling Cement Building Materials
Limited Liability Company, with a density of 3.05 g/cm3, an initial setting time of 208 min, a final setting
time of 260 min, a bending strength of 8.6 MPa, a compressive strength of 51 MPa, and the volume
stability was qualified. The coarse aggregate was 5–16 mm continuously graded gravel. The fine
aggregate was continuously graded medium river sand, with a fineness modulus of 2.42. Before the
concrete was prepared, the soil in the river sand was washed clean and the sand was then placed in a
drying box to dry for 24 h. The water was laboratory tap water and conformed to the specification
requirements. Fly ash was secondary ash, fineness 43 µm, density 2.4 g/cm3, moisture content about
5%. The pH value of the water-reducing agent was 7–9, the water-reducing rate was about 20–35%,
and the solution was prepared with a concentration of 26–28%.

The mixture was placed into a 100 mm × 100 mm × 100 mm steel mold, and compacted on
the shaking table. After 24 h, the mold was removed for 28 days of curing in the standard curing
room. Through coring and cutting, the specimens were processed into cylinders with a diameter
of 50 mm and a height of 25 mm. Then the two end faces of the specimen were polished to ensure
that the non-parallelism and non-perpendicularity were both less than 0.02 mm [17]. On this basis,
the specimens were numbered, measured in height, diameter and mass, and then put into a drying box
for 48 h, and then into a saturation dish. Distilled water was injected into the saturation dish, and the
air was pumped continuously at a pressure of 0.1 MPa for 4 h until no bubbles spilled onto the surface
of the specimens; they were then soaked for more than 24 h to achieve saturation of the specimens.

2.2. Freeze–Thaw Cycle Test

According to the “standard for test methods of long-term performance and durability of ordinary
concrete (GB/T 50082-2009)”, frost resistance tests for concrete include the fast freezing method and
the slow freezing method. The slow freezing method is suitable for the determination of concrete
specimens under conditions of gas-freeze-water thawing. The fast freezing method is suitable for
speciments under conditions of water-freeze-water thawing.

The FT cycle test in this paper adopted the slow freezing method and was performed in an
automatic low-temperature freeze–thaw chamber (model: LD-1; temperature measurement accuracy:
±0.5 ◦C; temperature range: 50–−40 ◦C, produced by Xi’an Yaxing Civil Instrument Co. Ltd., Xi’an,
China). According to clause 4.1.4 of the “Standard for test methods of long-term performance and
durability of ordinary concrete (GB/T 50082–2009)”, “the time required from the time the specimen
is installed to the time when the temperature drops to −18 ◦C should be within (1.5–2.0) h, and the
temperature in the freezing-thawing chamber shall be maintained at (−20–−18) ◦C during freezing”,
“the freezing time of each FT cycle should not be less than 4h”, “Immediately after the freezing,
water with a temperature of (18–20) ◦C should be added, and the melting time should not be less than
4 h. After thawing, it is deemed that this freeze–thaw cycle has ended, and the next freeze–thaw cycle
can be started”.

Considering the above standard requirements, the temperature range and cooling rates were
determined as follows. The freeze–thaw temperature variation range was −20–+20 ◦C, and freeze–thaw
cycles were carried out 0, 10, 20, 30, 40 and 50 times, respectively. The time-history curve of one FT
cycle is shown in Figure 1, showing that the temperature was slowly decreased from 20 to −20 ◦C
(this process lasted for 120 min), this temperature was maintained constant for 240 min, then the
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temperature was rapidly increased to room temperature at 20 ◦C (this process lasted for 30 min),
and then this temperature was maintained constant for 240 min. The total time for one FT cycle was
630 min.Materials 2020, x, x FOR PEER REVIEW  4 of 24 
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2.3. Impact Compression Test

Aiming at the concrete suffering from different numbers of FT cycles (0, 10, 20, 30, 40, 50), uniaxial
impact compression tests under different strain rates were carried out on a Φ50 mm SHPB system
(custom-built device, Figure 2).
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To reduce the dispersion effect caused by transverse inertial motion of the bar particles, and to
extend the time before the incident pulse reached the peak value, so as to ensure that the specimen
had enough time to reach uniform stress before failure, waveform shaping should be considered [18].
In this paper, a large number of tests were conducted on red copper sheets of different sizes, and the
waveform effects after shaping were compared and analyzed. When the impact velocity was 5.4,
8.8 and 11.3 m/s, the thickness of the shaping sheets was determined to be 1 mm, and the diameter
was 25, 20 and 15 mm, respectively. During the SHPB test, the two end faces of the specimen and the
contact surface between the SHPB system and the specimen were uniformly daubed with molybdenum
disulfide to reduce the friction force. When loading, the valve switch was manually controlled.

3. Analysis of Test Results

3.1. Dynamic Fracture Morphology

Taking the 8.8 m/s condition as an example, the dynamic fracture morphology of concrete under
different numbers of FT cycles is shown in Figure 3. Taking the FT0 as an example, the dynamic fracture
morphology of concrete under different impact velocities is shown in Figure 4.
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Figure 3. Dynamic fracture morphology of concrete under different numbers of freeze–thaw cycles.
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Figure 4. Dynamic fracture morphology of concrete under different impact velocities.

It can be seen from Figures 3 and 4 that, when the number of FT cycles was less or the impact
velocity was lower, the dynamic compression failure of concrete specimens was in the form of large
or medium grain size fragments in strips and blocks. For example, under the conditions of FT0 and
5.4 m/s. With the increase of FT cycles and impact velocity, the concrete specimens were more and
more seriously broken, and most of the fragments were uniform fine particles. For example, under the
conditions of FT50 and 11.3 m/s. This is because when the number of FT cycles is less or the impact
velocity is lower, the internal cracks of the specimens are fewer, and the damage is lighter. When the
dynamic load was applied, the crack in the specimen extended directly through in situ, leading to
a small degree of fracture and a split failure mode. When the number of FT cycles increased or the
impact velocity improved, the distribution density of axial and transverse cracks grew, resulting in
more serious damage. Moreover, when applying dynamic load, the specimen absorbed energy and
produced more small cracks, which quickly became unstable, and “cut” the specimen into small
particles, resulting in serious crushing degree and a crushing failure mode.

3.2. Fragmentation Distribution and Fractal Characteristics

After the impact compression test, the concrete fragments were collected and screened statistically
by the ZBSX-92A standard vibration pendulum (produced by Xingye Test Instrument Co., Ltd.,
Cangzhou, China). The diameter of the sieve holes was 0.5, 1, 2.36, 4.75, 9.6, 16 and 19 mm, respectively.
After the screening test, the quality of the subscreen of each stage was weighed by a high-sensitivity
electronic scale. The scale–mass distribution law of concrete fragments under different conditions is
shown in Figure 5.
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As can be seen from Figure 5, the greater the number of FT cycles or the higher the impact velocity,
the greater the mass proportion of small and medium-sized broken blocks. For example, when the
impact velocity was 5.4 m/s, under the conditions of FT0 and FT50, the mass percentage of particle
size greater than or equal to 9.6 mm was 53.73% and 13.00%, respectively, and that less than or equal
to 4.75 mm was 46.75% and 85.56%, respectively. When the FT cycle was 0 and the impact velocity
was 5.4, 8.8 and 11.3 m/s, the mass percentage of particle size greater than or equal to 9.6 mm was
53.73%, 29.32% and 13.14%, respectively, and that less than or equal to 4.75 mm was 46.75%, 70.64%
and 86.84%, respectively. This was because the greater the number of FT cycles, the more serious the
concrete degradation, and the higher the impact velocity, the greater the impingement energy, resulting
in smaller specimen crushing size.

According to the mass–frequency relationship [19], the distribution equation of concrete fragments
under the impact loading was

Y =
Mr

MT
=

( r
rm

)3−χ
(1)

where r, rm and χ are the particle size, the maximum size and the fractal dimension of crushing blocks,
respectively; Mr is the total mass of crushing blocks with particle size smaller than r; and MT is the
total mass of specimen crushing blocks.
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The natural logarithm on the both sides of Equation (1) is taken to get

ln Y = ln
( Mr

MT

)
= (3− χ) ln

( r
rm

)
(2)

In the ln(Mr/MT)~lnr coordinate system, the slope of the fitting line was K = 3− χ. Therefore, the
fractal dimension of the crushing blocks can be calculated using the mass-granularity method [20],
expressed as

χ = 3−K (3)

The logarithmic curves of the concrete crushing blocks under different conditions are shown in
Figure 6, and the fractal dimensions of the crushing blocks were computed as shown as Table 1.
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The logarithmic curves of the concrete crushing blocks under different conditions are shown in 
Figure 6, and the fractal dimensions of the crushing blocks were computed as shown as Table 1. 
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Table 1. Fractal dimensions of crushing blocks under different conditions.

v FT Cycles (Times) Fitting Equation χ

5.4

0 y = 1.1316x − 0.1577 1.8684
10 y = 0.862x − 0.4298 2.138
20 y = 0.882x − 0.0326 2.118
30 y = 0.7487x − 0.3193 2.2513
40 y = 0.8452x − 0.3875 2.1548
50 y = 0.8188x − 0.3351 2.1812

8.8

0 y = 0.8875x − 0.4721 2.1125
10 y = 0.6959x − 0.3039 2.3041
20 y = 0.7724x − 0.3328 2.2276
30 y = 0.7117x − 0.2985 2.2883
40 y = 0.6958x − 0.3367 2.3042
50 y = 0.7112x − 0.3101 2.2888

11.3

0 y = 0.7404x − 0.3232 2.2596
10 y = 0.677x − 0.2953 2.323
20 y = 0.6907x − 0.3081 2.3093
30 y = 0.6244x − 0.2572 2.3756
40 y = 0.6247x − 0.2556 2.3753
50 y = 0.5689x − 0.2044 2.4311

Note: v stands for the impact velocity.

It can be found in Figure 6 that all data points under different working conditions showed a
good linear correlation in the ln(Mr/MT)−lnr coordinate system, indicating that the distribution of the
concrete fragments had fractal characteristics. This was because the distribution of the mesoscopic
cracks and pores inside the concrete conformed to the fractal theory, and had self-similarity under
different scales. The freeze–thaw deterioration and the impact crushing process were the direct results
of crack extension; therefore, the crushing blocks of the specimens subjected different numbers of
freeze–thaw cycles and different levels of impact loading also showed a certain self-similarity, that is,
they satisfied the power law characteristics, and it was a fractal of statistical significance. In summary,
the concrete material had fractal properties from the microscopic damage to the macroscopic fracture,
and the smaller the fragment size, and the more serious the material breakage.

It can be drawn from Table 1 that, when under a certain loading rate, the more FT cycles the
concrete had suffered, the lager the fractal dimension of the crushing blocks was and the smaller
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the dynamic peak stress was. In addition, under the same FT cycle conditions, although the fractal
dimension increased with the increase of loading speed due to the obvious rate correlation of concrete
dynamic strength, the dynamic peak stress nevertheless tended to increase.

3.3. Dynamic Stress–Strain Curve

The dynamic stress–strain curves of the freeze–thawed concrete are shown in Figure 7.
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It can be drawn from Figure 7 that the freeze–thaw action has a significant deterioration effect
on the dynamic mechanical properties of concrete. For example, when the impact velocity was
5.4 m/s, the peak stress was 55.10 and 16.29 MPa, respectively, under the conditions FT0 and FT50,
which corresponds to a reduction of 70.44%. When the impact velocity was 11.3 m/s, the peak stress was
79.05 and 29.70 MPa, respectively, under the conditions FT0 and FT50, which corresponds to a decrease
of 62.43%. This is because under the action of freeze–thaw cycle, the water inside the concrete freezes
and expands, resulting in internal stress. When the internal stress exceeds the maximum allowable
value of concrete, pores and micro-cracks in concrete will gradually generate, increase, expand and
connect with each other, resulting in an increase in damage degree and a decrease in dynamic strength
in macroscopic mechanical properties. This conclusion is consistent with that of the reference [21].

By comparing Figure 7a–c, it can be found that the concrete material showed an obvious
strengthening effect of strain rate. For example, under the condition FT0, when the impact velocity was
5.4 m/s, the peak stress was 55.10 MPa, and when the impact velocity was 8.8 and 11.3 m/s, the peak stress
was 68.03 and 79.05 MPa, corresponding to increases of 23.47% and 43.47%, respectively. Under the
condition FT50, when the impact velocity was 5.4 m/s, the peak stress was 16.29 MPa, and when the
impact velocity was 8.8 and 11.3 m/s, the peak stress was 27.31 and 29.70 MPa, corresponding to
increases of 67.65% and 82.32%, respectively. This is because the larger the initial impact velocity is,
the higher the impact energy the specimen absorbs in a short time, and the internal damage of the
specimen will not have enough time to fully develop and penetrate, so the macro mechanical property
was relatively high.

In conclusion, the dynamic mechanical properties of concrete under a freeze–thaw environment
are a result of the combination of freeze–thaw deterioration and strain rate enhancement.

3.4. Quantitative Analysis of Freeze–Thaw Deterioration Effect and Strain Rate Enhancement Effect

Dynamic peak stress, the basic mechanical parameter, is taken as a characteristic index, and the
relative loss of peak stress is defined as the freeze–thaw degradation effect factor; then

ξ = 1−
σFTi
σFT0

(4)

where, ξ is the freeze–thaw degradation effect factor, reflecting the influence of freeze–thaw action on
the dynamic peak stress; σFTi is the peak stress of concrete under uniaxial impact after different FT
cycles; σFT0 is the peak stress of concrete under uniaxial impact under FT0.

Change laws of the freeze–thaw degradation effect factor ξ with the FT cycles are shown in
Figure 8.
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Figure 8 shows that the freeze–thaw degradation effect factor at different impact velocities
has similar characteristics under changing numbers of FT cycles, and these approximately satisfy a
linear relationship

ξ = aN + b (5)

where N is the number of FT cycles, and a and b are fitting parameters. By statistical regression, the fitting
correlations were 0.92, 0.84 and 0.80, respectively, under different loading conditions, suggesting that
Formula (5) could better reflect the changing law of the freeze–thaw degradation effect factor with the
FT cycles.

Figure 8 also indicates that, because of the FT degradation effect, ξ increases with the increase in
the number of FT cycles. In addition, due to the coupling effect of strain rate enhancement, ξ decreases
with the increase of impact velocity under the same FT conditions.

Variation rules of the dynamic peak stress of freeze–thawed concrete with strain rate are shown in
Figure 9.
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Figure 9 shows that the dynamic peak stress and strain rate satisfy a linear relationshipσFTi = c
.
ε+ d,

where
.
ε is the average strain rate, and c and d are fitting parameters. When the FT cycles were 0,

10, 20, 30, 40 and 50, the fitting correlations were 0.99, 0.80, 0.98, 0.99, 0.93 and 0.84, respectively,
which indicated that the linear expression could well reflect the change rules of dynamic peak stress
with strain rate.

Figure 9 further shows the rate correlation of the dynamic peak stress of concrete. It is suggested
that, in contrast to static mechanical properties, the influence of strain rate on the dynamic peak stress
of concrete cannot be ignored, and must be considered when constructing a constitutive model.

4. Dynamic Visco-Elastic Damage Constitutive Model

4.1. Construction Method of the Constitutive Equation

As the internal structure of concrete is not homogeneous, and contains many defects, the strength
of each micro-element is not the same. For the convenience of study, and considering the continuity
of concrete damage in the loading process, it is assumed that the concrete is divided into several
micro-elements with different defects. The micro-elements are divided into small ones, and meet the
duality of size, that is, on the one hand, their size is large enough to contain enough micro-joints,
micro-cracks and other micro-information from the microscopic perspective, while on the other hand,
from the macroscopic point of view, their size is small enough to be considered as a particle of
continuous damage mechanics.
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The test results showed that the dynamic mechanical properties of freeze–thawed concrete mainly
reflected the evolution process of micro-cracks under the thermal and force coupling action. That is
to say, the dynamic mechanical properties of freeze–thawed concrete are the composite damage
evolution of freeze–thaw fracture and stress-damage fracture, and the stress–strain curve will show
certain differences when the freeze–thaw action or strain rate is changed. Therefore, it is necessary to
reflect the above basic physical facts reasonably and appropriately in order to establish the dynamic
constitutive equation.

In this paper, freeze–thaw degradation effect factor ξ was adopted to consider the effect of
freeze–thaw degradation. Based on the classical Hooke law, damage variable was introduced to describe
the growth of micro-cracks, namely the degradation caused by stress damage fracture. Then the
stress–strain equation of freeze–thawed concrete can be expressed as

σ = (1− ξ)(1−D)E0ε (6)

where E0 was the initial elastic modulus of concrete; D was damage variable, 0 ≤ D ≤ 1.
On this basis, according to the component combination theory, concrete can be regarded as a union

of a damaged body and a viscous body, and the influence of the strain rate can be reflected through the
viscous body. Finally, the dynamic damage constitutive model of freeze–thaw concrete was derived.

4.2. Damage Variable

Concrete is obviously a brittle material under freeze–thaw action and impact load, and its plastic
strain is very small. Therefore, the plastic deformation part can be ignored [22]. The concrete damage
is continuous during the loading process. It was assumed that the strength of each micro-element
was subject to probability distribution [12], and the damage variable D had the following relationship
with ϕ(ε)

dD
dε

= ϕ(ε) (7)

Studies have shown that [22–27] Weibull distribution is particularly suitable for describing the
fracture process of materials such as concrete and rock, then

ϕ(ε) =
m
α
(ε− γ)m−1 exp[−

(ε− γ)m

α
] (8)

where α and m are the scale parameters and shape parameters, respectively. γ is the position parameter,
which was the damage threshold. Based on Formulas (7) and (8), the damage variable D was

D =

∫ ε

γ
ϕ(x)dx =

m
α

∫ ε

γ
(x− γ)m−1 exp[−

(x− γ)m

α
]dx= − exp[−

(x− γ)m

α

∣∣∣∣∣∣ε
γ

= 1− exp[−
(ε− γ)m

α
] (9)

As concrete is a kind of multiphase composite material, it contains many micro-cracks and
micro-defects. In other words, it has initial damage. Therefore, the damage threshold value was set as
0 in this paper, namely γ = 0. Therefore, the damage variable D can be further simplified as

D = 1− exp[−
εm

α
] (10)

4.3. Dynamic Visco-Elastic Damage Constitutive Model Based on Component Combination Theory

Because concrete has properties of both viscous liquid and statistical damage, it can be regarded
as a combination of the parallel connections of a viscous body and a damaged body [28], as shown in
Figure 10.
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Figure 10. Visco-elastic damage model.

Based on the component combination theory

σ = (1− ξ)(1−D)E0ε+ η
.
ε = (1− ξ) exp[−

εm

α
]E0ε+ η

.
ε (11)

Equation (11) is the dynamic visco-elastic damage constitutive equation of freeze–thawed concrete.
The unknown parameters in the equation can be obtained by inversion analysis based on the test results.

4.4. Z-W-T Model

The Z-W-T model is shown in Figure 11 [13,14].
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The Z-W-T model is composed of a nonlinear elastomer in parallel with two Maxwell models.
The first Maxwell model (E1,ϕ1) describes the visco-elastic response under quasi-static conditions and
low strain rates, and the second Maxwell model (E2,ϕ2) describes the visco-elastic response under high
strain rates. The expression of the Z-W-T model is

σ = E0ε+ α0ε
2 + β0ε

2 + E1

∫ t

0
ε(τ) exp(−

t− τ
ϕ1

)dτ+ E2

∫ t

0
ε(τ) exp(−

t− τ
ϕ2

)dτ (12)

where E0, E1, ϕ1, E2, ϕ2 are material constants, E0,α0,β0 are elastic constants, E1,E2 are linear elastic
modulus, and ϕ1,ϕ2 are relaxation time.

In the SHPB test, the deformation of concrete is very small, and the stress–strain curve in the
quasi-static test is approximately linear. Therefore, the first part of nonlinear elasticity in Formula (12)
can be regarded as linear elasticity, that is, Formula (12) can only take the first term. The SHPB test can
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be regarded as an approximately constant strain rate loading process. Therefore, the Z-W-T model
expression can be written as follows

σ = E0ε+ E1ϕ1
.
ε(1− e

−
ε.
εϕ1 ) + E2ϕ2

.
ε(1− e

−
ε.
εϕ2 ) (13)

Furthermore, the Z-W-T model expression after considering the damage was

σ = (1−D)
[
E0ε+ E1ϕ1

.
ε(1− e

−
ε.
εϕ1 ) + E2ϕ2

.
ε(1− e

−
ε.
εϕ2 )

]
= exp[− ε

m

α ]
[
E0ε+ E1ϕ1

.
ε(1− e

−
ε.
εϕ1 ) + E2ϕ2

.
ε(1− e

−
ε.
εϕ2 )

] (14)

4.5. Validation Analysis of Suitability

We took cases of FT0 with different impact velocities and an impact velocity of 8.8 m/s with
different numbers of FT cycles as examples. Based on the test results, the visco-elastic constitutive
model proposed in this paper and the Z-W-T model commonly used to describe the dynamic mechanical
properties of concrete were respectively used for comparative study. The comparison results are shown
in Figures 12 and 13, and the values of different model parameters are shown in Table 2.
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Table 2. Parameter inversion results of different constitutive models.

Models
FT

Cycles
(Times)

v
(m/s) m α

(×10−3 s) η
E0

(GPa)
E1

(GPa)
ϕ1
(s)

E2
(GPa)

ϕ2
(×10−6 s) ξ R2

V-E
model in
this paper

0
5.4
8.8

11.3

1.36
1.18
1.15

0.95
2.68
3.30

0.180
0.070
0.072

15
18
21

0
0
0

0.98
0.99
0.99

10 8.8 1.35 1.96 0.094 14 0.28 0.94
20 8.8 1.52 1.55 0.034 9 0.29 0.99
30 8.8 1.13 5.16 0.072 11 0.33 0.91
40 8.8 1.86 0.44 0.041 6 0.43 0.96
50 8.8 1.27 5.31 0.027 7 0.60 0.89

Z-W-T
model

0
5.4
8.8

11.3

0.84
0.97
0.84

12.96
9.46

18.60

7.4
5.2
3.3

11.4
6.5

10.5

8.5
32.6
32.1

15
18
21

33.4
21.6
15.3

0.96
0.98
0.97

10 8.8 1.05 12.10 1.0 1.3 94.4 14 30.6 0.99
20 8.8 1.10 9.60 1.1 2.2 91.1 9 53.5 0.99
30 8.8 1.09 10.73 1.1 3.3 69.0 11 19.7 0.90
40 8.8 1.07 9.86 0.8 1.2 43.1 6 159.2 0.95
50 8.8 1.04 15.57 0.9 2.0 18.3 7 11.0 0.93

It can be seen from Table 2 and Figures 12 and 13 that the visco-elastic constitutive model in this
paper and the Z-W-T model were both in good agreement with the test results, indicating that the
constitutive model deduced in this paper can effectively describe the dynamic mechanical properties
of freeze–thawed concrete under impact load. In addition, the visco-elastic constitutive model in this
paper had the advantages of fewer parameters and simpler expression compared with the Z-W-T model.

5. Damage Evolution Analysis

The damage of freeze–thawed concrete under impact load included two parts: freeze–thaw
deterioration damage and impact stress damage. Among these, the freeze–thaw degradation damage
is described by the freeze–thaw degradation factor ξ, and the stress fracture damage is characterized
by the damage variable D.

As shown in Figure 8, the freeze–thaw degradation damage increased approximately linearly
with the increase of FT cycles and decreased with the increase in impact velocity.

According to Equation (10) and Table 2, the stress damage evolution process of concrete under
different FT cycles and impact velocities can be obtained, as shown in Figure 14.
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As shown in Figure 14, under different conditions, the stress damage evolution curves of concrete
had roughly the same form. With the continuous accumulation of residual strain, the stress damage
developed from fast to slow and finally tended to be stable.

Figure 14 also shows that, with the increase of FT cycles, the stress damage evolution path of concrete
went backward, and the development rate of stress damage slowed down. Moreover, the greater the
difference in the number of FT cycles, the greater the difference in the stress damage path. The specific
differences in concrete stress damage path were mainly manifested as follows. When the cumulative
strain was the same, with the increase of FT cycles, the stress damage D decreased gradually, and the
slope of initial stress damage curves decreased constantly. This suggests that although the total damage of
freeze–thawed concrete under impact load, which was the coupling result of freeze–thaw deterioration
damage and impact stress damage, increased with the increase of the number of FT cycles, and as well as
the freeze–thaw deterioration damage factor, while the stress damage value decreased. This was because
the greater the number of FT cycles, the more serious the freeze–thaw deterioration; and the lower the
residual energy consumption performance of the specimen was, the fewer the cracks generated by the
specimen’s absorption of impact incident energy, namely, the smaller the stress damage was.
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6. Conclusions

• The test results show that the freeze–thaw action and impact velocity have a significant influence
on the dynamic fracture morphology, fracture block distribution and dynamic stress–strain curve
of concrete, and the dynamic mechanical properties of freeze–thawed concrete are the coupling
results of freeze–thaw deterioration effect and strain rate strengthening effect.

• By introducing the freeze–thaw deterioration damage factor and the stress damage variable,
the dynamic visco-elastic damage constitutive model was deduced based on component combination
theory. It can effectively describe the dynamic mechanical properties of freeze–thawed concrete,
and has the characteristics of few parameters and good prediction accuracy.

• The stress damage evolution path of concrete goes backward with the increase of FT cycles and
the development speed of stress damage gradually slows down. The greater the difference in FT
cycles, the greater the difference of the stress damage path.
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Abbreviations

FT Freeze–thaw
SHPB separated Hopkinson pressure bar
FT0 Freeze–thaw cycle carried out 0 times
FT10 Freeze–thaw cycle carried out 10 times
FT20 Freeze–thaw cycle carried out 20 times
FT30 Freeze–thaw cycle carried out 30 times
FT40 Freeze–thaw cycle carried out 40 times
FT50 Freeze–thaw cycle carried out 50 times
Z-W-T model Zhu–Wang–Tang model
V-E model visco-elastic constitutive model
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