Preparation of 1, 3, 6, 8-Pyrenesulfonic Acid Tetrasodium Salt Dye-Doped Silica Nanoparticles and Their Application in Water-Based Anti-Counterfeit Ink
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PTSA-SiNPs Using the Reverse Microemulsion Method
2.3. Screen Printing Process of the PTSA-SiNPs Anti-Counterfeit Ink
2.4. Dye Leakage Test
2.5. Photostability Test
2.6. Heat Stability Test
2.7. Characterization
3. Results and Discussion
3.1. Preparation and Characterization
3.1.1. Preparation Mechanism of PTSA-SiNPs
3.1.2. Morphology
3.1.3. UV Absorption and Optical Property
3.1.4. Fluorescence Emission Spectra
3.1.5. Fluorescence Lifetime
3.2. Application of PTSA-SiNPs in Anti-Counterfeit Ink
3.2.1. Heat Stability
3.2.2. Photostability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Irani, M.M.; Nourmohammadian, F.; Bastani, S.; Najafi, F.; Mahmoodi, H. Photophysical properties of novel functionalized fluorescent dyes based on diketopyrrolopyrrole and application in inkjet printing ink. J. Lumin. 2018, 199, 499–508. [Google Scholar] [CrossRef]
- Andres, J.; Hersch, R.D.; Moser, J.-E.; Chauvin, A.-S. A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks. Adv. Funct. Mater. 2014, 24, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Ataeefard, M.; Nourmohammadian, F. Producing fluorescent digital printing ink: Investigating the effect of type and amount of coumarin derivative dyes on the quality of ink. J. Lumin. 2015, 167, 254–260. [Google Scholar] [CrossRef]
- Gu, L.; Liu, R.; Shi, H.; Wang, Q.; Song, G.-L.; Zhu, X.; Yuan, S.; Zhu, H. Synthesis, Luminescent Properties of aza-Boron-Diquinomethene Difluoride Complexes and Their Application for Fluorescent Security Inks. J. Fluoresc. 2015, 26, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hu, B.; Zhang, J.; Zhang, J.; Huang, S.; Ren, P.; Zou, Y.; Ding, F.; Liu, X.; Li, H. A facile synthesis of 1,3,6,8-pyrenesulfonic acid tetrasodium salt as a hydrosoluble fluorescent ink for anti-counterfeiting applications. RSC Adv. 2019, 9, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yu, Y.; Li, C.; Liu, D.; Huang, H.; Liang, C.; Lou, Y.; Han, Y.; Shi, Z.; Feng, S. Facile Synthesis of Highly Water-Soluble Lanthanide-Doped t-LaVO4 NPs for Antifake Ink and Latent Fingermark Detection. Small 2017, 13, 1702305. [Google Scholar] [CrossRef]
- Liang, L.; Chen, C.; Lv, Z.; Xie, M.; Yu, Y.; Liang, C.; Lou, Y.; Li, C.; Shi, Z. Microwave-assisted synthesis of highly water-soluble LuVO4:Eu nanoparticles as anti-counterfeit fluorescent ink. J. Lumin. 2019, 206, 560–564. [Google Scholar] [CrossRef]
- Venkatachalaiah, K.; Nagabhushana, H.; Darshan, G.; Basavaraj, R.; Prasad, B. Novel and highly efficient red luminescent sensor based SiO2@Y2O3:Eu3+, M+ (M+ = Li, Na, K) composite core–shell fluorescent markers for latent fingerprint recognition, security ink and solid state lightning applications. Sens. Actuators B Chem. 2017, 251, 310–325. [Google Scholar] [CrossRef]
- Li, M.; Yao, W.; Liu, J.; Tian, Q.; Liu, L.; Ding, J.; Xue, Q.; Lu, Q.; Wu, W. Facile synthesis and screen printing of dual-mode luminescent NaYF4:Er,Yb (Tm)/carbon dots for anti-counterfeiting applications. J. Mater. Chem. C 2017, 5, 6512–6520. [Google Scholar] [CrossRef]
- Chen, B.; Xie, H.; Wang, S.; Guo, Z.; Hu, Y.; Xie, H. UV light-tunable fluorescent inks and polymer hydrogel films based on carbon nanodots and lanthanide for enhancing anti-counterfeiting. Luminescence 2019, 34, 437–443. [Google Scholar] [CrossRef]
- Song, Z.; Lin, T.; Lin, L.; Lin, S.; Fu, F.; Wang, X.; Guo, L. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem. Int. Ed. 2016, 55, 2773–2777. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, G.; Tan, X.; Qian, X.; Zhang, T.; Gui, J.; Yang, L.; Xie, X. Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Microchim. Acta 2019, 186, 67. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cui, C.; Tong, N.; Zhou, H.; Wang, X.; Wang, R. Water-Soluble and Low-Toxic Ionic Polymer Dots as Invisible Security Ink for MultiStage Information Encryption. ACS Appl. Mater. Interfaces 2018, 11, 1480–1486. [Google Scholar] [CrossRef]
- Feng, B.; Xu, Z.; Wang, J.; Gai, L. Water-soluble organic polymer/silica composite nanofilms with improved fluorescence quantum yield. J. Lumin. 2019, 211, 347–354. [Google Scholar] [CrossRef]
- Nair, K.S.; Abhilash, P.; Surendran, K.P. Silica-Based Organic–Inorganic Hybrid Fluorescent Ink for Security Applications. ACS Omega 2019, 4, 2577–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Liu, C.; Wang, M.-L.; Huang, W.; Zhou, S.-R.; Jiang, W.; Sun, Y.-M.; Cui, Y.-P.; Xu, C.-X. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye. J. Solid State Chem. 2009, 182, 862–868. [Google Scholar] [CrossRef]
- Göksel, M.; Durmuş, M.; Atilla, D. Amino-functionalized water-soluble zinc phthalocyanines: Synthesis, photophysical, photochemical and protein binding properties. J. Photochem. Photobiol. A Chem. 2013, 266, 37–46. [Google Scholar] [CrossRef]
- Dube, E.; Oluwole, D.O.; Nyokong, T. Photophysicochemical behaviour of anionic indium phthalocyanine when grafted onto AgxAuy and porous silica nanoparticles. J. Lumin. 2017, 190, 353–363. [Google Scholar] [CrossRef]
- Pakhomov, A.A.; Kononevich, Y.N.; Stukalova, M.V.; Svidchenko, E.A.; Surin, N.M.; Cherkaev, G.V.; Shchegolikhina, O.I.; Martynov, V.I.; Muzafarov, A.M. Synthesis and photophysical properties of a new BODIPY-based siloxane dye. Tetrahedron Lett. 2016, 57, 979–982. [Google Scholar] [CrossRef]
- Yan, L.; Wang, H.; Zhang, A.; Zhao, C.; Chen, Y.; Li, X. Bright and Stable Near-Infrared Pluronic-Silica Nanoparticles as a Contrast Agent for in vivo Optical Imaging. J. Mater. Chem. B 2016, 4, 5560–5566. [Google Scholar] [CrossRef] [Green Version]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Liang, J.; Lu, Z.; Xu, J.; Li, J.; Zhang, H.; Yang, W. Incorporating anionic dyes into silica nanoparticles by using a cationic polyelectrolyte as a bridge. J. Mater. Chem. 2011, 21, 1147–1152. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Jung, H.-S.; Lim, J.; Ryu, S.-J.; Lee, J.-K. Rapid Imaging of Latent Fingerprints Using Biocompatible Fluorescent Silica Nanoparticles. Langmuir 2016, 32, 8077–8083. [Google Scholar] [CrossRef]
- Gomes, E.C.; De Carvalho, I.M.; Diógenes, I.C.N.; Sousa, E.H.S.; Longhinotti, E. On the incorporation of Rhodamine B and 2′,7′-dichlorofluorescein dyes in silica: Synthesis of fluorescent nanoparticles. Opt. Mater. 2014, 36, 1197–1202. [Google Scholar] [CrossRef]
- Bagwe, R.P.; Yang, C.; Hilliard, L.R.; Tan, W. Optimization of Dye-Doped Silica Nanoparticles Prepared Using a Reverse Microemulsion Method. Langmuir 2004, 20, 8336–8342. [Google Scholar] [CrossRef]
- Rivera-Rangel, R.D.; González-Muñoz, M.P.; Avila-Rodriguez, M.; Razo-Lazcano, T.A.; Solans, C. Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 60–67. [Google Scholar] [CrossRef]
- Zhao, X.; Bagwe, R.P.; Tan, W. Development of Organic-Dye-Doped Silica Nanoparticles in a Reverse Microemulsion. Adv. Mater. 2004, 16, 173–176. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, Y.; Zhang, T.; Xu, L.; Ni, Z.-H. A series of short axially symmetrically 1,3,6,8-tetrasubstituted pyrene-based green and blue emitters with 4-tert-butylphenyl and arylamine attachments. Dye. Pigment. 2016, 130, 106–115. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Zeng, F.; Huang, S.; Huang, J.; Xie, H.; Yu, C.; Wu, S. Pyrene Derivative Emitting Red or near-Infrared Light with Monomer/Excimer Conversion and Its Application to Ratiometric Detection of Hypochlorite. ACS Appl. Mater. Interfaces 2016, 8, 1511–1519. [Google Scholar] [CrossRef]
- Angelatos, A.S.; Wang, Y.; Caruso, F. Probing the Conformation of Polyelectrolytes in Mesoporous Silica Spheres. Langmuir 2008, 24, 4224–4230. [Google Scholar] [CrossRef]
- Hoffmann, W.C.; Fritz, B.K.; Ledebuhr, M.A. Evaluation of 1, 3, 6, 8-pyrene tetra sulfonic acid tetra sodium salt (PTSA) as an agricultural spray tracer dye. Appl. Eng. Agric. 2014, 30, 25–28. [Google Scholar]
- Bekiari, V.; Lianos, P. Ureasil Gels as a Highly Efficient Adsorbent for Water Purification. Chem. Mater. 2006, 18, 4142–4146. [Google Scholar] [CrossRef]
- Oluwole, D.O.; Nyokong, T. Photophysicochemical behaviour of metallophthalocyanines when doped onto silica nanoparticles. Dye. Pigment. 2017, 136, 262–272. [Google Scholar] [CrossRef]
- Kumar, R.; Yadav, R.; Kolhe, M.A.; Bhosale, R.S.; Narayan, R. 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) based high fluorescent, pH stimuli waterborne polyurethane coatings. Polymers 2018, 136, 157–165. [Google Scholar] [CrossRef]
- Nagao, D.; Anzai, N.; Kobayashi, Y.; Gu, S.; Konno, M. Preparation of highly monodisperse poly(methyl methacrylate) particles incorporating fluorescent rhodamine 6G for colloidal crystals. J. Colloid Interface Sci. 2006, 298, 232–237. [Google Scholar] [CrossRef]
- Tian, D.; Hu, W.; Zheng, Z.; Liu, H.; Xie, H.-Q. Study on in situ synthesis of konjac glucomannan/silver nanocomposites via photochemical reduction. J. Appl. Polym. Sci. 2006, 100, 1323–1327. [Google Scholar] [CrossRef]
- Santra, S.; Zhang, P.; Wang, K.; Tapec, R.; Tan, W. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 2001, 73, 4988–4993. [Google Scholar] [CrossRef]
- Kabanov, V.; Press, D.J.; Heyne, B.J.; Huynh, R.P.; Shimizu, G.K.H. Assessment of encapsulated dyes’ distribution in silica nanoparticles and their ability to release useful singlet oxygen. Chem. Commun. 2018, 54, 6320–6323. [Google Scholar] [CrossRef]
- Ow, H.; Larson, D.R.; Srivastava, M.; Baird, B.A.; Webb, W.W.; Wiesner, U. Bright and Stable Core−Shell Fluorescent Silica Nanoparticles. Nano Lett. 2005, 5, 113–117. [Google Scholar] [CrossRef]
Composition | PTSA-SiNP Ink | PTSA Ink |
---|---|---|
polyurethane waterborne emulsion | 60 | 80 |
PTSA-SiNPs | 15 | − |
PTSA | − | 1 |
auxiliary | 5 | 4 |
water | 10–15 | 5–10 |
ethanol | 5–10 | 5–10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, L.; Zhang, M.; Li, H. Preparation of 1, 3, 6, 8-Pyrenesulfonic Acid Tetrasodium Salt Dye-Doped Silica Nanoparticles and Their Application in Water-Based Anti-Counterfeit Ink. Materials 2020, 13, 4074. https://doi.org/10.3390/ma13184074
Jiao L, Zhang M, Li H. Preparation of 1, 3, 6, 8-Pyrenesulfonic Acid Tetrasodium Salt Dye-Doped Silica Nanoparticles and Their Application in Water-Based Anti-Counterfeit Ink. Materials. 2020; 13(18):4074. https://doi.org/10.3390/ma13184074
Chicago/Turabian StyleJiao, Liyong, Mengnan Zhang, and Houbin Li. 2020. "Preparation of 1, 3, 6, 8-Pyrenesulfonic Acid Tetrasodium Salt Dye-Doped Silica Nanoparticles and Their Application in Water-Based Anti-Counterfeit Ink" Materials 13, no. 18: 4074. https://doi.org/10.3390/ma13184074
APA StyleJiao, L., Zhang, M., & Li, H. (2020). Preparation of 1, 3, 6, 8-Pyrenesulfonic Acid Tetrasodium Salt Dye-Doped Silica Nanoparticles and Their Application in Water-Based Anti-Counterfeit Ink. Materials, 13(18), 4074. https://doi.org/10.3390/ma13184074