Residually Stressed Fiber Reinforced Solids: A Spectral Approach
Abstract
:1. Introduction
2. Main Equations
2.1. Basic Concepts
2.2. Residual Stress
3. Spectral Representation
4. Transversely Isotropic Elastic Solid without Residual Stress
4.1. Infinitesimal Strain
4.2. Finite Strain
5. Strain Energy for RSPD
6. Boundary Value Problems
6.1. Residual Stress: Cylinder
6.2. Uniform Extension of a Cylinder
6.3. Spherically Symmetric Deformation of a Spherical Shell
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D. Limitations on the Ground State Constants
References
- Ahamed, T.; Dorfmann, L.; Ogden, R.W. Modelling of residually stressed materials with application to AAA. J. Mech. Behav. Biomed. Mater. 2016, 61, 221–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merodio, J.; Ogden, R.W. Extension, inflation and torsion of a residually stressed circular cylindrical tube. Contin. Mech. Therm. 2016, 28, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Vandiver, R.; Goriely, A. Differential growth and residual stress in cylindrical elastic structures. Philos. Trans. R. Soc. Lond. 2009, 367, 3607–3630. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, H.; Desena-Galarza, D.; Jha, N.K.; Reinoso, J.; Merodio, J. Bifurcation and post-bifurcation of an inflated and extended residually-stressed circular cylindrical tube with application to aneurysms initiation and propagation in arterial wall tissue. Finite Elem. Anal. Des. 2019, 161, 51–60. [Google Scholar] [CrossRef]
- Jha, N.K.; Reinoso, J.; Dehghani, H.; Merodio, J. A computational model for cord-reinforced rubber composites: Hyperelastic constitutive formulation including residual stresses and damage. Comput. Mech. 2019, 63, 931–948. [Google Scholar] [CrossRef] [Green Version]
- Merodio, J.; Ogden, R.W.; Rodriguez, J. The influence of residual stress on finite deformation elastic response. Int. J. Non-Linear Mech. 2013, 56, 43–49. [Google Scholar] [CrossRef]
- Baran, I.; Cinar, K.; Ersoy, N.; Akkerman, R.; Hattel, J. Review on the Mechanical Modeling of Composite Manufacturing Processes. Arch. Comput. Methods Eng. 2017, 24, 365–395. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, R.; Shariff, M.H.B.M. Principal axis formulation for non-linear magnetoelastic deformations: Isotropic bodies. Eur. J. Mech. A Solids 2015, 50, 17–27. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. Strain energy function for filled and unfilled rubberlike material. Rubber Chem. Technol. 2000, 73, 1–18. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. An anisotropic model for the Mullins effect. J. Eng. Math. 2009, 56, 415–435. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. Physical invariant strain energy function for passive myocardium. Biomech. Model. Mechanobiol. 2013, 12, 215–223. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. Direction dependent orthotropic model for Mullins materials. Int. J. Solids Struct. 2014, 51, 4357–4372. [Google Scholar] [CrossRef] [Green Version]
- Shariff, M.H.B.M. Anisotropic separable free energy functions for elastic and non-elastic solids. Acta Mech. 2016, 227, 3213–3237. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. On the spectral constitutive modelling of transversely isotropic soft tissue: Physical invariants. Int. J. Eng. Sci. 2017, 120, 199–219. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M.; Bustamante, R.; Merodio, J. A nonlinear constitutive model for a two preferred direction electro-elastic body with residual stresses. Int. J. Non-Linear Mech. 2020, 119. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M.; Bustamante, R.; Merodio, J. A nonlinear electro-elastic model with residual stresses and a preferred direction. Math. Mech. Solids 2020, 25, 838–865. [Google Scholar] [CrossRef]
- Spencer, A.J.M. Theory of invariants. In Continuum Physics: Volume I; Eringen, A.C., Ed.; Academic Press: New York, NY, USA, 1971; pp. 239–253. [Google Scholar]
- Demirkoparan, H.; Merodio, J. Bulging Bifurcation of Inflated Circular Cylinders of Doubly Fiber-Reinforced Hyperelastic Material under Axial Loading and Swelling. Math. Mech. Solids 2017, 22, 666–682. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. Nonlinear transversely isotropic elastic solids: An alternative representation. Q. J. Mech. Appl. Math. 2008, 61, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Shariff, M.H.B.M.; Merodio, J. Residually stressed two fibre solids: A spectral approach. Int. J. Eng. Sci. 2020, 148. [Google Scholar] [CrossRef]
- Valanis, K.C.; Landel, R.F. The strain-energy function of hyperelastic material in terms of the extension ratios. J. Appl. Phys. 1967, 38, 2997–3002. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. The number of independent invariants of an n-preferred direction anisotropic solid. Math. Mech. Solids 2017, 22, 1989–1996. [Google Scholar] [CrossRef]
- Truesdell, C.A.; Toupin, R. The classical field theories. In Handbuch der Physik, Vol.III/1; Flügge, S., Ed.; Springer: Berlin, Germany, 1960; pp. 226–902. [Google Scholar]
- Ogden, R.W. Non-Linear Elastic Deformations; Ellis Horwood: Chichester, UK, 1984. [Google Scholar]
- Ciarletta, P.; Izzo, I.; Micera, S.; Tendick, F. Stiffening by fiber reinforcement in soft materials: A hyperelastic theory at large strains and its application. J. Mech. Behav. Biomed. Mater. 2011, 4, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Shariff, M.H.B.M.; Bustamante, R.; Merodio, J. On the spectral analysis of residual stress in finite elasticity. IMA J. Appl. Math. 2017, 82, 656–680. [Google Scholar]
- Shariff, M.H.B.M.; Bustamante, R.; Merodio, J. Nonlinear electro-elastic bodies with residual stresses. Q. J. Mech. Appl. Math. 2018, 71, 485–504. [Google Scholar] [CrossRef]
- Kassianidis, F.; Ogden, R.W.; Merodio, J.; Pence, T.J. Azimuthal shear of a transversely isotropic elastic solid. Math. Mech. Solids 2008, 13, 690–724. [Google Scholar] [CrossRef] [Green Version]
- Merodio, J.; Saccomandi, G. Remarks on cavity formation in fiber-reinforced incompressible non-linearly elastic solids. Eur. J. Mech. A-Solid 2006, 25, 778–792. [Google Scholar] [CrossRef]
- Itskov, M. Tensor Algebra and Tensor Analysis for Engineers, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hill, R. On constitutive inequalities for simple materials-I. Int. J. Mech. Phys. Solids 1968, 16, 229–242. [Google Scholar] [CrossRef]
- El Hamdaoui, M.; Merodio, J.; Ogden, R.W. Loss of ellipticity in the combined helical, axial and radial elastic deformations of a fibre-reinforced circular cylindrical tube. Int. J. Solids Struct. 2015, 63, 99–108. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M.; Bustamante, R.; Hossain, M.; Steinmann, P. A novel spectral formulation for transversely isotropic magneto-elasticity. Math. Mech. Solids 2017, 22, 1158–1176. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shariff, M.H.B.M.; Merodio, J. Residually Stressed Fiber Reinforced Solids: A Spectral Approach. Materials 2020, 13, 4076. https://doi.org/10.3390/ma13184076
Shariff MHBM, Merodio J. Residually Stressed Fiber Reinforced Solids: A Spectral Approach. Materials. 2020; 13(18):4076. https://doi.org/10.3390/ma13184076
Chicago/Turabian StyleShariff, Mohd Halim Bin Mohd, and Jose Merodio. 2020. "Residually Stressed Fiber Reinforced Solids: A Spectral Approach" Materials 13, no. 18: 4076. https://doi.org/10.3390/ma13184076
APA StyleShariff, M. H. B. M., & Merodio, J. (2020). Residually Stressed Fiber Reinforced Solids: A Spectral Approach. Materials, 13(18), 4076. https://doi.org/10.3390/ma13184076