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Abstract: The synthesis and characterization of coordination polymers and metal–organic frameworks
(MOFs) has attracted a significant interest over the last decades due to their fascinating physical
properties, as well as their use in a wide range of technological, environmental, and biomedical
applications. The initial use of 2-pyridyl oximic ligands such as pyridine-2 amidoxime (H2pyaox)
and 2-methyl pyridyl ketoxime (Hmpko) in combination with 1,2,4,5-benzene tetracarboxylic
acid (pyromellitic acid), H4pma, provided access to nine new compounds whose structures
and properties are discussed in detail. Among them, [Zn2(pma)(H2pyaox)2(H2O)2]n (3) and
[Cu4(OH)2(pma)(mpko)2]n (9) are the first MOFs based on a 2-pyridyl oxime with 9 possessing
a novel 3,4,5,8-c net topology. [Zn2(pma)(H2pyaox)2]n (2), [Cu2(pma)(H2pyaox)2(DMF)2]n (6),
and [Cu2(pma)(Hmpko)2(DMF)2]n (8) join a small family of coordination polymers containing an
oximic ligand. 9 exhibits selectivity for FeIII ions adsorption, as was demonstrated by a variety of
techniques including UV-vis, EDX, and magnetism. DC magnetic susceptibility studies in 9 revealed
the presence of strong antiferromagnetic interactions between the metal centers, which lead to a
diamagnetic ground state; it was also found that the magnetic properties of 9 are affected by the
amount of the encapsulated Fe3+ ions, which is a very desirable property for the development of
magnetism-based sensors.

Keywords: coordination polymers; metal–organic frameworks (MOFs); carboxylates; pyridyl oximes;
mixed-ligand; detection; encapsulation; iron(III); magnetism

1. Introduction

The synthesis and characterization of metal coordination polymers has attracted an intense
research interest over the recent years due to their applications in a variety of fields, including catalysis,
drug delivery sensing, etc. [1–7]. The structure of such species is based on mononuclear or low
nuclearity inorganic units that are held together through organic ligands forming multidimensional
networks whose properties are strongly affected by the nature of the metal ions and the organic linkers.
For example, 1D coordination polymers of paramagnetic metal ions can display single chain magnetism
(SCM) behavior, i.e., they can exhibit slow relaxation of magnetization stemming from strong intrachain
exchange interactions between high spin structural building units along the chain [8–14]. SCMs are
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excellent candidates for applications in high-density information storage, molecular spintronics,
quantum computation, etc. [15–21]. As the dimensionality of the network increases, the induced
porosity can be combined with magnetism and/or another physical property (e.g., photoluminescence,
etc.), leading to the development of hybrid multifunctional materials. The synergistic effect between
two different properties often enhances the performance of such species in a variety of significant
applications including sensing, catalysis, drug delivery, spintronics, photonics, and others.

One growing family of multifunctional materials is the one of metal–organic frameworks
(MOFs) [22–24]; MOFs are crystalline porous materials built from inorganic secondary building
units (SBUs) that are connected through polytopic organic linkers. They display a range of appealing
structural features such as large surface area, high porosity, flexible structure, an amphiphilic internal
microenvironment, and the possibility of introducing functional groups in the pores and frameworks
in a spatially controlled way. The unique properties of MOFs and their structural tuneability [25–29]
make these materials especially suitable for encapsulating a large variety of guest molecules, and hence
they are promising candidates for a plethora of environmental and biomedical applications [30–35].
Restricting further discussion to the ability of MOFs to capture and remove toxic compounds from the
environment, MOFs display all the desirable features in terms of water stability, porosity, and surface
area, and can be used as alternate adsorbents for the adsorption and removal of toxic species [36–47].
In addition to their capturing capacity, MOFs often have sensing properties, which are based on the
change to the physical properties caused by the encapsulated metal ion [48,49]. Although there are a few
reports that take advantage of the impact of the guest species on the color, electrochemical, and other
properties for the development of sensors, the vast majority of them display luminescence-based
sensing, which happens due to the change of the emission and/or lifetime after the toxic chemical capture.
One recent such example is the FJI-C8 MOF, which exhibits a high sensitivity for Fe3+ with the detection
limit being 0.0233 mM [48]; it contains a π-conjugated aromatic ligand with free/uncoordinated N- and
O-atoms, which interact strongly with the encapsulated Fe3+ ions affecting the emission spectrum of
the anionic FJI-C8 MOF. Other luminescent-active MOFs have also been studied as metal ion sensors,
including examples of Ru-, Ln-MOFs, etc. [50–54].

The wide range of applications of MOFs and coordination polymers constitute an increasing
need for the development of new such species with suitable porosity, high stability, and fine-tuning
properties [55–63]. A large number of organic linkers have now been employed in MOFs synthesis
including imidazolates, pyridine, carboxylates, etc. [64–74], with the latter being one of the most
commonly used, resulting in MOFs with a wide range of pores sizes and shapes. The decoration of the
ligands with free (non-coordinated) groups provide valuable opportunity for the insertion of additional
functionalities to the framework, which can be useful for environmental and biomedical applications;
for example, the presence of pendent sulfonates enhances the MOF ability for the adsorption and
removal of heavy metals from aqueous systems, whereas the presence of π-electron-rich N-donor
groups enhances the sensing performance towards electron-deficient nitroaromatic explosives [75,76].

Although the impact of the ligand combination on the framework topology and porosity has
been well investigated, this is not the case for the nuclearity and properties of the SBU itself [72–78].
In fact, the SBUs significantly affect the properties of the overall framework; it has been shown that
the presence of an heterometal has a positive impact on the breathing effect, whereas the increase of
the metal nuclearity is possible to enhance the MOF’s pore size and surface area [79–81]. Thus, it is
essential that ligands with high bridging capability that have the potential to lead to species with
unprecedented metal topologies and/or high nuclearity SBUs be introduced into this field; to this
purpose, we decided to use 2-pyridyl oximes for the isolation and characterization of new MOFs and
coordination polymers. 2-pyridyl oximes is a family of ligands that have been extensively used in
metal cluster chemistry due to their ability to bridge a large number of metal ions and, often, promote
ferromagnetic interactions between the metal centers [82–95]. Although the use of such ligands has led
to significant breakthroughs in the areas of single-molecule and single-chain magnetism, they have
never been employed for MOF synthesis [82–95].
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Herein, we report on the synthesis, structural characterization, and physical properties of
nine new coordination polymers, including the first oxime-based MOFs, by the use of a 2-pyridyl
oxime (pyridine-2 amidoxime, H2pyaox, and 2-methyl pyridyl ketoxime, Hmpko) in combination
with 1,2,4,5-benzene tetracarboxylic acid (pyromellitic acid), H4pma (Scheme 1); the latter has been
employed in the field of MOFs [96–104], but its combination with an oximic ligand is unexplored.
The 3D MOF [Cu4(OH)2(pma)(mpko)2]n (9) displays selectivity for Fe3+ adsorption.
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Scheme 1. Schematic representation of the 2-pyridyl oximes (left) and the ligand H4pma (right)
discussed in this work.

2. Materials and Methods

2.1. Materials, Physical, and Spectroscopic Measurements

All the manipulations were performed under aerobic conditions using materials (reagent grade)
and solvents as received. Hmpko and H2pyaox was prepared as described elsewhere [105,106].
WARNING: Perchlorate salts are potentially explosive; such compounds should be used in small
quantities and treated with utmost care at all times.

Elemental analysis (C, H, N) were performed by the in-house facilities of National University
of Ireland Galway, School of Chemistry. IR spectra (4000–400 cm−1) were recorded on a PerkinElmer
Spectrum 400 FT-IR spectrometer. Powder X-ray diffraction data (pxrd) were collected using an Inex
Equinoz 6000 diffractometer. Solid-state, variable-temperature, and variable-field magnetic data were
collected on powdered samples using an MPMS5 Quantum Design magnetometer operating at 0.03 T
in the 300 to 2.0 K range. Diamagnetic corrections were applied to the observed susceptibilities using
Pascal’s constants. TGA experiments were performed on a STA625 thermal analyzer from Rheometric
Scientific (Piscataway, New Jersey). The heating rate was kept constant at 10 ◦C/min, and all runs were
carried out between 20–600 ◦C. The measurements were made in open aluminum crucibles, nitrogen
was purged in ambient mode, and calibration was performed using an indium standard.

2.2. Compound Synthesis

2.2.1. Synthesis of [Zn(H2pma)(H2pyaox)(H2O)2] (1)

Zn(ClO4)2·6H2O (0.149 g, 0.4 mmol) and H2pyaox (0.027 g, 0.20 mmol) were dissolved in H2O
(20 mL). The resultant solution was put in the oven and heated at 100 ◦C for 1 h. Then, solid H4pma
(0.025 g, 0.1 mmol) was added, the solution was stirred for 15 min, and the vial was left at R.T. for 24 h,
after which X-ray quality colorless crystal needles of 1 were formed. The crystals were collected by
filtration, washed with cold MeCN (2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 80%. Anal. Calc.
for 1: C, 39.16; H, 3.08; N, 8.56. Found: C, 39.47; H, 3.29; N, 8.17%. IR data: v (cm−1) = 3504m, 3403m,
3123w, 1725s, 1669m, 1609m, 1583s, 1497s, 1414m, 1376s, 1321m, 1295w, 1267w, 1218s, 1168s, 1118s,
1087m, 1062w, 1029s, 1015m, 944m, 916m, 858b, 816w, 794s, 761m, 744m, 725w, 701w, 679w, 667w, 651w.

2.2.2. Synthesis of [Zn2(pma)(H2pyaox)2]n (2)

Zn(ClO4)2·6H2O (0.149 g, 0.4 mmol) and H2pyaox (0.027 g, 0.20 mmol) were dissolved in H2O
(10 mL). The resultant solution was put in the oven and heated at 100 ◦C for 1 h. Solid H4pma (0.025 g,
0.1 mmol) was then added and the vial was placed into the oven for 24 h, after which X-ray quality



Materials 2020, 13, 4084 4 of 24

colorless crystal needles of 2 were formed. The crystals were collected by filtration, washed with cold
MeCN (2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 39%. Anal. Calc. for 2: C, 40.33; H, 2.46;
N, 12.83. Found: C, 40.56; H, 2.49; N, 13.09%. IR data: v (cm−1) = 3399w, 3215w, 2931w, 1603s, 1402m,
1369s, 1322w, 1253w, 1138w, 1103m, 1061w, 1039m, 915w, 865m, 813m, 783w, 762w, 739w, 683m, 664w.

2.2.3. Synthesis of [Zn2(pma)(H2pyaox)2(H2O)2]n (3)

Zn(ClO4)2·6H2O (0.149 g, 0.4 mmol) and H2pyaox (0.027 g, 0.20 mmol) were dissolved in H2O
(20 mL). The resultant solution was put in the oven and heated at 100 ◦C for 1 h. Solid H4pma (0.025 g,
0.1 mmol) was then added and the vial was placed into the oven for 2 h, after which X-ray quality
colorless polyhedral crystals of 3 were formed. The crystals were collected by filtration, washed with
cold MeCN (2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 50%. Anal. Calc. for 3: C, 38.23; H, 2.92;
N, 12.16. Found: C, 37.91; H, 2.63; N, 11.93%. IR data: v (cm−1) = 3423w, 3316w, 3202w, 2786w, 1675m,
1648w, 1619w, 1575w, 1548s, 1494s, 1415w, 1372s, 1324m, 1292w, 1267w, 1178w, 1158w, 1138m, 1097w,
1040s, 980w, 942m, 874m, 850w, 813m, 786s, 747s, 690m, 651w.

2.2.4. Synthesis of [Co2(pma)(H2pyaox)2(H2O)6] (4)

Co(ClO4)2·6H2O (0.146 g, 0.4 mmol) and H2pyaox (0.027 g, 0.2 mol) were dissolved in DMF/H2O
(10/10 mL). The resultant solution was put in the oven and heated at 100 ◦C for 1 h. Solid H4pma
(0.025 g, 0.1 mmol) was then added and the vial was placed into the oven for 24 h, after which X-ray
quality orange crystals of 4 were formed. The crystals were collected by filtration, washed with cold
MeCN (2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 45%. Anal. Calc. for 4: C, 35.22; H, 3.76; N,
11.20. Found: C, 35.17; H, 3.68; N, 11.19%. IR data: v (cm−1) = 3421w, 3308w, 3202w, 2780w, 1667w,
1648w, 1618w, 1573w, 1552s, 1493m, 1412m, 1368s, 1324m, 1293w, 1157w, 1137m, 1096m, 1096w, 1034s,
981m, 942m, 872m, 829w, 812m, 784s, 748m, 689m, 665w.

2.2.5. Synthesis of [Mn2(pma)(H2pyaox)2(H2O)6] (5)

Mn(ClO4)2·6H2O (0.102 g, 0.4 mmol) and H2pyaox (0.0549 g, 0.4 mmol) were dissolved in H2O
(10 mL). The resultant yellow solution was put in the oven and heated at 100 ◦C for 1 h. Then, solid
H4pma (0.025 g, 0.1 mmol) was added and the vial was placed into the oven for 24 h, after which
X-ray quality colorless needles of 5 were formed. The crystals were collected by filtration, washed with
cold MeCN (2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 50%. Anal. Cal. for 5: C, 35.59; H,
3.80; N, 11.32. Found: C, 35.72; H, 4,06; N, 11.23%. IR data: v (cm−1) = 3358w, 3280w, 2814w, 2229w,
1859m, 1667m, 1649m, 1602m, 1571w, 1545s, 1476s, 1440m, 1418s, 1368s, 1314s, 1259m, 1193w, 1175w,
1165m, 1141s, 1101m, 1071w, 1042s, 968w, 923m, 896w, 853m, 837w, 811w, 792m, 774s, 745s, 689s, 669m,
660w, 651w.

2.2.6. Synthesis of [Cu2(pma)(H2pyaox)2(DMF)2]n (6)

Cu(ClO4)2·6H2O (0.149 g, 0.4 mmol) and H2pyaox (0.027 g, 0.20 mmol) were dissolved in DMF/H2O
(7/7 mL). The resultant solution was put in the oven and heated at 100 ◦C for 1 h. Then, solid H4pma
(0.025 g, 0.1 mmol) was added and the vial was placed into the oven for 24 h, after which X-ray quality
green crystal needless of 6 were formed. The crystals were collected by filtration, washed with cold
MeCN (2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 39%. Anal. Calc. for 6: C, 42.16; H, 3.79;
N, 14.05. Found: C, 41.87; H, 3.64; N, 13.83%. IR data: v (cm−1) = 3355w, 3226w, 1647s, 1605m, 1483w,
1437w, 1407w, 1363m, 1322w, 1300w, 1245m, 1211m, 1142w, 1098s, 1063w, 1041m, 945w, 928w, 893w,
860w, 844w, 811w, 784m.

2.2.7. Synthesis of [Zn2(pma)(Hmpko)2(H2O)4]·2H2O (7·2H2O)

Zn(ClO4)2·6H2O (0.149 g, 0.4 mmol) and Hmpko (0.027 g, 0.20 mmol) were dissolved in DMF/H2O
(7/7 mL). The resultant solution was put in the oven and heated at 100 ◦C for 1 h. Solid H4pma (0.025 g,
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0.1 mmol) was then added and the vial was placed into the oven for 24 h, after which X-ray quality
colorless crystal needles of 7 were formed. The crystals were collected by filtration, washed with cold
MeCN (2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 40%. Anal. Calc. for 7: C, 37.87; H, 3.97;
N, 7.36. Found: C, 38.10; H, 3.93; N, 7.91%. IR data: v (cm−1) = 3102w, 1661m, 1619w, 1548s, 1490m,
1428m, 1375s, 1326s, 1259w, 1187w, 1140m, 1102w, 1046m, 1024w, 969w, 919w, 871m, 827m, 814m, 780w,
762w, 745w, 689m, 664w, 651w.

2.2.8. Synthesis of [Cu(pma)0.5(Hmpko)(DMF)]n (8)

Cu(ClO4)2·6H2O (0.148 g, 0.4 mmol) was added to a solution of Hmpko (0.027 g, 0.2 mmol) in
DMF/H2O (10/10 mL). The vial was placed into the oven (100 ◦C) and, after 1 h, H4pma (0.025 g,
0.1 mmol) was added. The vial was then left in the oven for a further 1 h, after which X-ray quality
green crystals of 8 were observed. The crystals were collected by filtration, washed with cold MeCN
(2 mL) and Et2O (2 × 5 mL), and dried in air. Yield 45%. Anal. Calc. for 8: C, 45.28; H, 4.05; N, 10.56.
Found: C, 45.41; H, 4.06; N, 10.64%. IR data: v (cm−1) = 3073w, 2342w, 2202w, 2168w, 2068w, 2018w,
1990w, 1623s, 1603w, 1572s, 1480m, 1438w, 1421w, 1399w, 1358bs, 1329w, 1308w, 1297w, 1273w, 1250w,
1170m, 1145m, 1101s, 1064s, 1047m, 1034w, 971w, 925s, 860s, 820w, 811s, 788s, 760s, 715m, 685s, 664s.

2.2.9. Synthesis of [Cu4(OH)2(pma)(mpko)2]n (9)

Method A: 9 was prepared in the same manner as 8, but was left in the oven for 4 h, instead of 1 h
in 9. The crystals were collected by filtration, washed with cold MeCN (2 mL) and Et2O (2 × 5 mL),
and dried in air. Yield 80%. Anal. Calc. for 9: C, 35.65; H, 2.24; N, 6.93. Found: C, 35.73; H, 2.52;
N, 6.33%. IR data: v (cm−1) = 3339b,1651w, 1616w, 1602w, 1567w, 1547w, 1481s, 1440m, 1416s, 1360s,
1316s, 1270w, 1165s, 1140m, 1102w, 1090m, 1046w, 1023w, 969b, 918m, 899w, 861m, 808s, 773s, 757m,
747m, 707s, 688m, 666w.

Method B: 9 (0.0760 g, ~0.1 mmol) in DMF/H2O (10/10 mL) was placed into the oven (100 ◦C) for
4 h, after which time green crystals of 9 were formed; the crystals were collected by filtration washed
with MeCN (2 × 5 mL) and dried under vacuum. Yield: 80%. The product was characterized by PXRD
and IR comparison with the authentic material.

2.3. Single-Crystal X-ray Crystallography

Single-crystal diffraction data for 1, 5, 6, and 8 were collected in an Oxford Diffraction Xcalibur CCD
diffractometer, whereas crystallographic data for 2–4, 7, and 9 were collected in an Oxford-Diffraction
SuperNova A diffractometer. Mo Ka radiation (λ = 0.71073 Å) was used for 1, 3, 5, 6, and 8, and Cu Ka
radiation (λ = 1.54184 Å) was used for 2, 4, 7, and 9. The structures were solved using SHELXT [107],
embedded in the OSCAIL software [108]. The non-H atoms were treated anisotropically, whereas the
hydrogen atoms were placed in calculated, ideal positions and refined as riding on their respective
carbon atoms. Molecular graphics were produced with DIAMOND [109].

Unit cell data and structure refinement details for 1–9 are listed in Table 1. CIF files can be obtained
free of charge from the Cambridge Crystallographic Data Centre, Cambridge, UK with the REF codes
2022403-2022411 for 1–9, respectively.
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Table 1. Crystallographic data for complexes 1–9.

Complex 1 2 3

Empirical formula C16H15N3O11Zn C11H8N3O5Zn C11H10N3O6 Zn
Formula weight 490.68 327.57 346.60
Crystal system Triclinic Triclinic Monoclinic

Space group Pı̄ Pı̄ P21/n
a (Å) 8.1151(3) 6.9864(7) 11.4913(8)
b (Å) 9.8550(4) 8.9530(8) 6.6261(5)
c (Å) 11.8506(5) 10.4524(9) 16.1381(12)
α (o) 93.283(3) 83.697(7)◦ 90
β (o) 105.135(3) 94.887(2) 104.335(8)◦

γ (o) 92.769(3) 71.582(9)◦ 90
V (Å3) 911.40(6) 612.98(10) 1190.54(16)

Z 2 2 4
ρcalc (g cm−3) 1.788 1.775 1.934

Radiation, λ (Å) 0.71073 1.54184 0.71073
µ (mm−1) 1.420 3.042 2.099

Temperature (K) 297.9(6) 100(2) 100(2)

Measd/independent reflns (Rint)
4250/3667
(0.0439)

3860/2400
(0.0451)

4714/2088
(0.0371)

Parameters refined 316 197 197
GoF (on F2) 1.059 1.078 1.055

R1
a (I > 2σ(I)) 0.0352 0.0517 0.0353

wR2
b (I > 2σ(I)) 0.0834 0.1377 0.0879

(∆ρ)max/(∆ρ)min
(e Å−3) 0.572/−0.504 2.839/−0.831 0.573/−0.632

Complex 4 5 6

Empirical formula C22H28N6O16Co2 C22H28N6O16Mn2 C14H15N4O6Cu
Formula weight 750.36 742.38 398.84
Crystal system Monoclinic Monoclinic Triclinic

Space group P21/n P21/n Pı̄
a (Å) 10.9732(9) 11.1773(8) 6.5039(4)
b (Å) 11.7514(8) 12.2116(8) 10.0104(9)
c (Å) 11.6014(13) 11.5293(9) 12.7604(9)
a (o) 90 90 96.743(6)
β (o) 107.619(10) 106.542(7) 91.660(5)
γ (o) 90 90 108.375(7)

V (Å3) 1425.8(2) 1508.5(2) 781.05(11)
Z 2 2 2

ρcalc (g cm−3) 1.748 1.634 1.696
Radiation, λ (Å) 1.54184 0.71073 0.71073

µ (mm−1) 9.917 0.921 1.440
Temperature (K) 100(2) 298.0(2) 299.0(1)

Measd/independent reflns (Rint)
5285/2830
(0.0324)

3603/2795
(0.0680)

3616/2040
(0.1137)

Parameters refined 212 244 240
GoF (on F2) 1.112 1.047 0.873

R1
a (I > 2σ(I)) 0.0547 0.0479 0.0526

wR2
b (I > 2σ(I)) 0.1500 0.1076 0.0868

(∆ρ)max/(∆ρ)min
(e Å−3) 0.586/−0.602 0.825/−0.399 0.823/−0.678
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Table 1. Cont.

Complex 7·2H2O 8 9

Empirical formula C24H34N4O18Zn2 C30H32N6O12Cu2 C12H9N2O6Cu2
Formula weight 797.29 795.69 404.29
Crystal system Triclinic Monoclinic Monoclinic

Space group Pı̄ P21/c I2/a
a (Å) 7.1623(7) 6.4617(3) 16.3272(7)
b (Å) 8.3966(8) 25.5232(9) 10.4575(4)
c (Å) 13.4476(10) 10.1083(5) 15.0472(7)
a (o) 106.056(8) 90 90
β (o) 104.078(8) 106.321(5) 102.188(5)
γ (o) 90.547(8) 90 90

V (Å3) 751.27(12) 1599.91(13) 2511.27(19)
Z 1 2 8

ρcalc (g cm−3) 1.762 1.652 2.139
Radiation, λ (Å) 1.54184 0.71073 1.54184

µ (mm−1) 2.785 1.404 4.522
Temperature (K) 100(2) 299.0(2) 100(2)

Measd/independent reflns (Rint)
4859/2943
(0.0323)

3877/2762
(0.0754)

4290/2480
(0.0297)

Parameters refined 225 233 204
GoF (on F2) 1.087 0.954 1.097

R1
a (I > 2σ(I)) 0.0638 0.0433 0.0501

wR2
b (I > 2σ(I)) 0.1890 0.0978 0.1471

(∆ρ)max/(∆ρ)min
(e Å−3) 0.957/−1.077 0.450/−0.496 1.587/−1.066

a R1 = Σ(|Fo| − |Fc|)/Σ(|Fo|). b wR2 = {Σ[w(Fo
2
− Fc

2)2]/Σ[w(Fo
2)2]}1/2.

2.4. Metal Ion and 2-methyluracil Adsorption Kinetic and Thermodynamic Studies

The metal adsorption capacity of 9 was investigated as described below: a salt of a metal ion
(0.027 g, 0.1 mmol for FeCl3; 0.040 g, 0.1 mmol for Fe(NO3)3) was added to a glass vial containing
distilled H2O (10 mL) and stirred until all solid is dissolved. Solid 9 (0.242 g) was then added and the
mixture was left stirring at room temperature. For the kinetic study, small volumes of aliquots were
taken at designated time intervals, centrifuged, and the metal content in the supernatant solution was
determined by spectroscopic (UV-vis) techniques. For the thermodynamic study, the same procedure
was repeated with varying 9: metal ratios; the mixture was stirred for 20 min, filtered, and the filtrate
was analyzed for its metal content. The metal encapsulation was also confirmed by magnetism studies.

The 2-methyluracil adsorption capacity of 9 was investigated following the same method used for
the metal adsorption studies.

3. Results and Discussion

3.1. Synthetic Discussion

We have developed an intense interest over the last years in the synthesis of metal clusters and
SMMs by the use of 2-pyridyl oximes as bridging ligands. These research efforts have resulted in a
large number of new homo- and heterometallic new species with interesting structural features and
magnetic properties, e.g., Ni5, Ni12, Ni16, Ni2Ln2, Ni8Ln8, Ni2Mn2, Mn8, etc. [83–89]. We recently
decided to explore the ability of such ligands to favor the formation of MOFs, when combined
with di- and tricarboxylic ligands, such as 1,4-benzenedicarboxylic and 1,3,5-benzenetricarboxylic
acid [110]. This study yielded a new family of 1D chains and prompted us to expand this work using a
tetracarboxylic ligand with higher bridging capability, in order to further increase the potential of the
reaction system to provide access to new MOFs. The ligand that was chosen, and discussed herein,
is the pyromellitic acid, H4pma. A variety of experiments were performed, studying how the different
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synthetic parameters (presence/absence or kind of base, molar ratio of the reactants, metal sources,
etc.) affect the identity of the isolated product. In particular, the use of other metal sources instead of
perchlorates (e.g., chlorides, nitrates, acetates, etc.) led to the precipitation of amorphous materials that
could not be further characterized.

In order to ensure the coordination of both the oxime and carboxylic ligand in the metal center,
the solution containing the metal salt and the oxime was left under stirring for at least one hour before
the addition of the H4pma. It is noteworthy that the appropriate ratio of oxime/H4pma, which is able
to yield binary species, was found to be 2:1; a 1:1 ratio results in known compounds that contain only
the teracarboxylic ligand, whereas a high excess of oxime leads to the formation of oximato metal
complexes, preventing the coordination of the ligand H4pma either in its neutral or anionic form.

The reaction mixture of Zn(ClO4)2·6H2O/H2pyaox/H4pma (4:2:1) in H2O gave a colorless solution
from which crystals of [Zn(H2pma)(H2pyaox)(H2O)2] (1) were subsequently isolated. Following
a similar reaction but by increasing the reaction temperature from R.T. to 100 ◦C, compounds
[Zn2(pma)(H2pyaox)2]n (2) and [Zn2(pma)(H2pyaox)2(H2O)2]n (3) were isolated, depending on the
reaction time; 2 is an 1D polymer and is formed after 24 h, whereas 3 is a 2D MOF, which is formed
after 2 h of reaction. The stoichiometric equation of the reactions that lead to the formation of 1–3 is
represented in Equations (1)–(3).

Zn(ClO4)2 · 6H2O + H2pyaox + H4pma
H2O
→

[Zn(H2pma)(H2pyaox)(H2O)2] + 4 H2O + 2 H+ + 2 ClO−4
1

(1)

2 Zn(ClO4)2 · 6H2O + 2 H2pyaox + H4pma
H2O
→

[Zn2(pma)(H2pyaox)2]n + 12 H2O + 4 H+ + 4 ClO−4
2

(2)

2 Zn(ClO4)2 · 6H2O + 2 H2pyaox + H4pma
H2O
→

[Zn2(pma)(H2pyaox)2(H2O)2]n + 10 H2O + 4 H+ + 4 ClO−4
3

(3)

After the determination of the crystal structures of 1–3, which revealed that small modification
in the reaction conditions affect the dimensionality of the compound (1, 0D; 2, 1D; 3, 2D),
we decided to investigate the impact of the kind of the metal ion on the identity of the isolated
products. Thus, compounds [Co2(pma)(H2pyaox)2(H2O)6] (4), [Mn2(pma)(H2pyaox)2(H2O)6] (5),
and [Cu2(pma)(H2pyaox)2(DMF)2]n (6) were isolated in good yield by a similar reaction to the one
that provided access to 1 and 2 (Equations (4) and (5)). 4 and 5 are discrete complexes (0D), whereas 6
is a 1D double chain.

2 M(ClO4)2 · 6H2O + 2 H2pyaox + H4pma
H2O/DMF
→

[M2(pma)(H2pyaox)2(H2O)6] + 6 H2O + 4 H+ + 4 ClO−4
M = CoII, 4; MnII, 5

(4)

2 Cu(ClO4)2 · 6H2O + 2 H2pyaox + H4pma + 2 DMF
H2O/DMF
→

[Cu2(pma)(H2pyaox)2(DMF)2]n + 12 H2O + 4 H+ + 4 ClO−4
6

(5)

Series of experiments were also performed in order to investigate the influence of the electronic
properties of the oximic ligand on the identity and structural properties of the isolated products;
to this end, 2-methyl pyridyl ketoxime (Hmpko) was used instead of H2pyaox. The reaction of
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M(ClO4)2·6H2O (M = Zn, Cu), Hmpko and H4pma in a 4:2:1 molar ratio in DMF/H2O provided access
to [Zn2(pma)(Hmpko)2(H2O)4]·2H2O (7·2H2O) and [Cu2(pma)(Hmpko)2(DMF)2]n (8), according to
the stoichiometric Equations (6) and (7).

2 Zn(ClO4)2 · 6H2O + 2 Hmpko + H4pma
H2O/DMF
→

[Zn2(pma)(Hmpko)2(H2O)4] · 2 H2O + 6 H2O + 4 H+ + 4 ClO−4
7 · 2H2O

(6)

2 Cu(ClO4)2 · 6H2O + 2 Hmpko + H4pma 2 DMF
H2O/DMF
→

[Cu2(pma)(Hmpko)2(DMF)2] n + 12 H2O + 4 H+ + 4 ClO−4
8

(7)

Following that, we investigated all the synthetic parameters that could lead to a different product
and the deprotonation of the oximic ligand, i.e., the molar ratio of reactants, presence/kind of base,
reaction conditions, metal source, etc. Indeed, by following the same experimental procedure, but
by increasing the reaction time from 1 h to 4 h, green crystals of [Cu4(OH)2(pma)(mpko)2]n (9) were
isolated. The formation of 9 is summarized in the stoichiometric Equation (8). 9 can be also produced
in good yield by reacting 8 and Cu(ClO4)2·6H2O in a 1:2 molar ratio, according to the stoichiometric
Equation (9). Note that the OH− ions in the structure of 9 come from the dissociation of H2O molecules.

4 Cu(ClO4)2 · 6H2O + 2 Hmpko + H4pma
H2O/DMF
→

[Cu4(OH)2(pma)(mpko)2]n + 22 H2O + 8 H+ + 8 ClO−4
9

(8)

[Cu2(pma)(Hmpko)2(DMF)2]n + 2 Cu(ClO4)2 · 6H2O
H2O/DMF
→

[Cu4(OH)2(pma)(mpko)2]n + 2 DMF + 10 H2O + 4 H+ + 4 ClO−4
9

(9)

3.2. Description of Structures

Representations of the molecular structures of 1–9 are shown in Figures 1–7 and Figures S1–S5
(Supplementary Information). Selected interatomic distances and angles are listed in Tables S1–S9.

1 crystallizes in the triclinic space group Pı̄. Its structure (Figure 1) consists of mononuclear
[Zn(H2pma)(H2pyaox)(H2O)2] species. The coordination sphere of the metal centre is completed by
one terminal N,N′-bidentate chelating H2pyaox ligand, two terminal water molecules, and one double
deprotonated H2pma2− ligand. Zn1 is five-coordinate adopting a distorted trigonal bipyramidal
geometry (τ = 0.8) with O2 and N3 occupying the axial positions [111].
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A network of intermolecular hydrogen bonding interactions stabilizes the crystal structure of 1;
this involves the protonated carboxylic groups (O4, O9), the amino group (N2), and the terminal H2O
molecules (O10, O11) as donors, and carboxylic groups from neighboring compounds (O3, O5, O6, O7,
and O8) as acceptors. Details of the metric parameters of the crystallographically established hydrogen
bonds in 1 are listed in Table S10.

2 crystallizes in the triclinic space group Pı̄; its structure (Figure 2) is a 1D double chain formed by
the connection of [Zn(pma)0.5(H2pyaox)] repeating units through the µ4-κO; κO′; κO”; κO′” pma4−

ligand. The coordination sphere of the metal ion is completed by two terminally ligated carboxylate
groups from two different pma4− ligands, and one neutral N,N′-bidentate chelating H2pyaox ligand.
Zn2+ adopts a tetrahedral coordination geometry. Both hydrogen atoms from the NH2 group participate
in hydrogen bonding interactions in which carboxylate groups from neighboring chains act as acceptors
(N3···O3 = 2.959 Å, H1N···O3 = 2.091 Å, N3-H1N···O3 = 168.57◦; N3···O4 = 3.046 Å, H2N···O4 = 2.292 Å,
N3-H1N···O4 = 150.68◦). The extensive hydrogen bonding interactions in 2 result in the formation of a
3D network (Figure S1 in Supplementary Materials).
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3 crystallizes in the monoclinic space group P21/n and is a 2D coordination polymer based on the
secondary building unit [Zn(pma)0.5(H2pyaox)(H2O)] (Figure 3). The latter possesses a similar formula
to that of the repeating unit in 2 with the main difference being the ligation of a terminal H2O molecule.
Similar to 2, the two oximic ligands are neutral adopting an N,N′-bidentate chelating coordination
mode. The pma4− ligands bridge four neighboring SBUs with two of the carboxylate groups adopting
a chelating coordination mode, whereas the other two being terminally ligated. It is noteworthy
that the different coordination mode of the pma4- ligand in comparison to that in 2, in addition to
the presence of the H2O molecule in the coordination sphere of the metal centre, result in the Zn
being six-coordinated with a distorted octahedral coordination geometry. Note that the coordination
geometry of the metal ion in 2 is tetrahedral. This difference in the coordination geometry of the
metal ions in 2 and 3 leads to a different orientation of the ligands around the metal ion, favoring the
formation of a two-dimensional framework in 3.



Materials 2020, 13, 4084 11 of 24
Materials 2018, 11, x FOR PEER REVIEW  12 of 25 

 12

 
Figure 3. Representation of the repeating unit (top) and a part of the 2D chain of 3 (bottom). Color 
code: Zn2+, turquoise; N, navy blue; O, red; C, grey. The hydrogen atoms are omitted for clarity. 

A network of hydrogen bonding interactions provide stability in the framework in 3; these are 
formed between the oximic group (O1, donor) and an oxygen atom (O2, acceptor) from a carboxylate 
group (O1···O2 = 2.610 Å, H1A···O2 = 1.816 Å, O1-H1A···O2 = 162.55°), as well as between the 
terminally ligated H2O molecule (O6, donor) and a different carboxylate oxygen atom (O4, acceptor; 
O4···O6 = 2.726 Å, H6B···O4 = 2.032 Å, O6-H6B···O4 = 137.01°).  

Compounds 4 and 5 display related structures with their main difference being the type of the 
3d metal ion (4, Co2+; 5, Mn2+). Thus, only the structure of 4 will be discussed in detail. Compound 4 
crystallize in the monoclinic space group P21/n and its structure consists of the dinuclear complex 
[Co2(pma)(H2pyaox)2(H2O)6] (Figure 4). The dinuclear molecules lie on a crystallographic inversion 
center with the two Co2+ atoms being bridged by the μ-κO;κO′ pma4− ligand. The coordination sphere 
of each metal ion is completed by one neutral N,N′-bidentate chelating H2pyaox, and three terminal 
water molecules. The metal ion is six-coordinated displaying a slightly distorted octahedral geometry 
as a result of the relatively small bite angle of the chelating ligand (N1-Co1-N2 = 75.1(2)°).  

 
Figure 4. Representation of the molecular structure of the dinuclear complex 4. Color code: Co2+, 
purple; N, navy blue; O, red; C, grey. The hydrogen atoms are omitted for clarity. 

The crystal structure of 4 is stabilized by a strong intramolecular H bonding interaction between 
the oximic oxygen atom (O1) as a donor and an oxygen atom (O6) from the pma4− ligand as an 
acceptor (O1···O6 = 2.533 Å, H1···O6 = 1.716 Å, O1-H1···O6 = 172.26°). A network of intermolecular 
hydrogen bonding interactions is formed between the terminal H2O molecules (O2, O3, O4) as donors 
and carboxylic groups from neighboring molecules as acceptors. The metric parameters of the 

Figure 3. Representation of the repeating unit (top) and a part of the 2D chain of 3 (bottom). Color
code: Zn2+, turquoise; N, navy blue; O, red; C, grey. The hydrogen atoms are omitted for clarity.

A network of hydrogen bonding interactions provide stability in the framework in 3; these are
formed between the oximic group (O1, donor) and an oxygen atom (O2, acceptor) from a carboxylate
group (O1···O2 = 2.610 Å, H1A···O2 = 1.816 Å, O1-H1A···O2 = 162.55◦), as well as between the
terminally ligated H2O molecule (O6, donor) and a different carboxylate oxygen atom (O4, acceptor;
O4···O6 = 2.726 Å, H6B···O4 = 2.032 Å, O6-H6B···O4 = 137.01◦).

Compounds 4 and 5 display related structures with their main difference being the type of the
3d metal ion (4, Co2+; 5, Mn2+). Thus, only the structure of 4 will be discussed in detail. Compound
4 crystallize in the monoclinic space group P21/n and its structure consists of the dinuclear complex
[Co2(pma)(H2pyaox)2(H2O)6] (Figure 4). The dinuclear molecules lie on a crystallographic inversion
center with the two Co2+ atoms being bridged by the µ-κO;κO′ pma4− ligand. The coordination sphere
of each metal ion is completed by one neutral N,N′-bidentate chelating H2pyaox, and three terminal
water molecules. The metal ion is six-coordinated displaying a slightly distorted octahedral geometry
as a result of the relatively small bite angle of the chelating ligand (N1-Co1-N2 = 75.1(2)◦).
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The crystal structure of 4 is stabilized by a strong intramolecular H bonding interaction between
the oximic oxygen atom (O1) as a donor and an oxygen atom (O6) from the pma4− ligand as an
acceptor (O1···O6 = 2.533 Å, H1···O6 = 1.716 Å, O1-H1···O6 = 172.26◦). A network of intermolecular
hydrogen bonding interactions is formed between the terminal H2O molecules (O2, O3, O4) as
donors and carboxylic groups from neighboring molecules as acceptors. The metric parameters of the
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crystallographically established, intermolecular hydrogen bonds for 4 are listed in Table S11 in the
Supplementary Material.

6 crystallizes in the triclinic space group Pı̄; its structure (Figure 5) is based on the connection
of [Cu(pma)0.5(H2pyaox)(DMF)] repeating units that result in the formation of a 1D double chain
coordination polymer. The pma4- ligand bridges four neighboring repeating units, adopting µ4- κO;
κO′; κO”; κO′” ligation mode. The coordination sphere of the metal ion is completed by two terminally
ligated carboxylate groups from two different pma4− ligands, one neutral N,N′-bidentate chelating
H2pyaox ligand, and one terminal DMF molecule. Cu2+ is five-coordinate with a square pyramidal
coordination geometry (τ = 0.15) with O6 from the DMF molecule occupying the axial position [111].
Both hydrogen atoms from the NH2 group form hydrogen bonds with oxygen atoms of carboxylate
groups from neighboring chains (N2···O3 = 2.813 Å, H2N2···O3 = 1.937 Å, N2-H2N2···O3 = 176.69◦;
N2···O4 = 2.873 Å, H1N2···O4 = 2.065 Å, N2-H1N2···O4 = 150.10◦). Furthermore, an intrachain
hydrogen bond between the oximic group (O1) and an oxygen atom of a carboxylate group
(O4) provide additional stability to the crystal structure (O1···O4 = 2.701 Å, H1O1···O4 = 1.921 Å,
O1-H1O1···O4 = 146.29◦).
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Compound 7·2H2O crystallizes in the triclinic group Pı̄ and its crystal structure is related to that
of 4, with the main differences being: 1) the type of the 3d metal ion (4, Co2+; 7, Zn2+), 2) the type of
the oximic ligand (4, H2pyaox; 7, Hmpko), and 3) the presence of two solvate H2O molecules in the
crystal structure of 7. The coordination sphere of the metal ions and the coordination modes of the
ligands in both compounds is similar (Figure S3). The crystal structure of 7 is stabilized by two strong
intramolecular H bonding interactions, which involve: 1) the oximic oxygen atom (O1) as a donor
and an oxygen atom (O6) from the pma4- ligand as an acceptor (O1···O6 = 2.656 Å, H1···O6 = 1.846 Å,
O1-H1···O6 = 170.36◦), and 2) the solvate H2O molecule (O9, donor) and a carboxylic oxygen atom (O6,
acceptor), O9···O6 = 2.815 Å, H9B···O6 = 1.965 Å, O9-H9B···O6 = 176.96◦. A network of intermolecular
hydrogen bonding interactions is formed between the terminal H2O molecules (O2, O3, O4; donors) and
carboxylic groups (O7, O8; acceptors) or the solvate H2O molecule (O9) from neighboring molecules.
The metric parameters of the intermolecular hydrogen bonding interactions for 7 are listed in Table S12
in the Supplementary Material.

Compound 8 crystallizes in the monoclinic space group P21/c. Its structure consists of
[Cu(pma)0.5(Hmpko)(DMF)]n repeating units that are held together to form a 1D-double chain.
(Figure 6) The coordination sphere of the Cu2+ atom is completed by one N,N’-bidentate chelating
Hmpko ligand, one terminal DMF molecule, and two O atoms (O3 and O6) that come from two
different pma4- ions; the symmetry equivalent atom of O6 (O6′) links the neighboring building units
forming a one-dimensional chain, whereas O3′ bridges two Cu atoms from two parallel chains, forming
a 1D-double chain.
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Cu1 is five-coordinate adopting a tetragonal pyramidal geometry (τ = 0.01) with O3, O6, N1,
and N2 occupying the basal plane vertices and O2 the apical position [111]. There are strong intrachain
hydrogen bonding interactions that stabilize the crystal structure of 8; these are formed between the
oximic group (O1, donor), and the carboxylic group of the pma4− ion (O5), which acts as the acceptor
(O1···O5 = 2.669 Å, H1O1···O5 = 1.912Å, O1-H1O1···O5 = 155.10◦). The shortest Cu···Cu distance (6.5 Å)
is between atoms of the same chain, whereas the shortest interchain metal···metal distance is 7.7 Å; it is
noteworthy that the latter is shorter than the intrachain distance between metal atoms that belong to
different chains of the 1D-double chain (8.8 Å) in 8.

9 crystallizes in the monoclinic space group I2/a. Its crystal structure contains a three-dimensional
network based on a [Cu4(OH)2(pma)(mpko)2] repeating unit (Figure 7). The latter possesses a
centrosymmetric “planar-butterfly” [Cu4(µ3-OH)2]6+ core with a Cu4 rhombus topology; the µ3-OH-

ions lie 0.841 Å above and below the plane formed by the four metal ions. Alternatively, the core of the
SBU in 9 can be described as two face-sharing defective cubanes, i.e., with a metal atom missing from
one vertex of each cubane; this motif is relatively common in metal cluster chemistry.
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Figure 7. Representations of the repeating unit (left) in 9 and its [Cu4(µ3-OH)2]6+ butterfly” shaped
core (right). Color code: CuII, green; N, blue; O, red; C, grey. The hydrogen atoms are omitted for
clarity, except from the hydrogens of the hydroxyl groups, which are cyan.

The coordination sphere of the metal atoms in 9 is completed by two doubly bridging anionic
mpko- ligands and four doubly bridging carboxylate groups; the mpko- adopts the µ-κO; κN; κN’
coordination mode. The pma- ligands link the neighboring SBUs, resulting in the formation of the
3D network, with each one bridging four Cu4 units. All metal atoms in 9 are five-coordinate with
a tetragonal pyramidal geometry (τ = 0.28, Cu1, Cu1′; τ = 0.20, Cu2, Cu2′); O2 (for Cu1 and its
symmetry equivalent) and O3 (for Cu2 and its symmetry equivalent) occupy the apical positions of
the pyramids [111]. The structure of 9 is stabilized by an intramolecular hydrogen bond involving
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the hydroxo group (O2, donor) and one of the carboxylate groups (O4, acceptor) of the pma4- ion
(O2···O4 = 2.722 Å, H2···O4 = 2.113 Å, O2-H2···O4 = 133.52◦), Figure S4.

The original framework in 9 can be simplified to its underlying net following two different
approaches, the so-called standard and cluster representations [112–114]. Applying the first one, each
Cu atom and the center of the mass of the organic ligands are the nodes, which leads to a 3,4,5,8-c
net with point symbol (3.42)2(3.43.52)2(3.44.53.62)2(412.1016) [112–114]. This topology (Figure S5) has
not been observed in the past, thus, 9 exhibits a network with an unprecedented architecture. On the
other hand, following the cluster representation, in which the Cu atoms with the organic ligands are
considered as a single four-coordinated node (ZA, ZB), a unimodal 4-c net is formed with lvt topology
(Figure S6) and a (42)(84) point symbol.

1–9 are a new family of oximic metal compounds, coordination polymers and MOFs that display
unprecedented structural features. Among them, 3 and 9 are the first MOFs based on a 2-pyridyl oxime
with 9 possessing a novel framework topology. 2, 6, and 8 join a small family of coordination polymers
containing an oximic ligand [110]. The purity and stability of these compounds has been verified by
pxrd studies.

3.3. Adsorption Studies

Thermal stability studies (Figure S17) in 9 indicated a promising adsorption potential (ca 30%
mass loss below 100◦C corresponding to adsorbed solvent), which prompted us to assess its metal
adsorption capacity in detail. The metal encapsulation studies for 9 were carried out by soaking MOF
crystals into aqueous solutions of Fe(NO3)3

.9H2O. The MOF crystals were activated prior to the Fe3+

encapsulation in order to reduce the amount of solvent present; this was carried out by stirring the
crystals in DMF for several hours and exchanging this solvent with volatile acetone, which is easily
removed at 80◦C. The metal encapsulation was initially investigated by batch studies using UV-vis
spectroscopy. The maximum loading capacity obtained for Fe3+ in the case of Fe(NO3)3.9H2O as a
metal source is 104 mg Fe3+/g 9 (1.50 mol Fe3+/mol 9).

The Fe3+ adsorption by 9 exhibits fast kinetics; there is a smooth increase in the adsorption capacity
over time, which after 5 min reaches a plateau (Figure 8, left). No metal adsorption is observed after
5 min. In order to get a better insight into the adsorption mechanism, the experimental kinetic data
were fitted to a theoretical model; pseudo-first order and pseudo-second order kinetic models were
used according to Equations (10) and (11), respectively [115–117].

ln
(
qe − qt

)
= ln qe − k1t (10)

t
qt

=
1

k2qe2 +
1
qe

t (11)

where k1 and k2 are the rate constants for the pseudo-first and pseudo-second kinetic models,
respectively. A good fit was obtained for the pseudo-second kinetic model (Figure 8, right), which is
indicative of a chemisorption mechanism, i.e., the formation of a strong interaction between the
encapsulated Fe3+ and 9. The corresponding fitting parameters are R2 = 0.9968, qe = 107.83 mg Fe3+/g
9, which is in very good agreement with the experimental data.
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Figure 8. Left: metal adsorption capacity (mg g−1) versus time (h) plot; right: simulation of the
experimental data to the pseudo-second order kinetic model. The solid lines represent the fitting of
the data.

The impact of the Fe3+ source, and in particular the impact of the kind of counterion, on the
kinetic and/or thermodynamic properties of the metal encapsulation by 9 was also studied by using
FeCl3 instead of Fe(NO3)3. It was found that the maximum loading capacity is 105 mg Fe3+/g 9
(1.52 mol Fe3+/mol 9) and is reached after 7 min stirring. The metal adsorption equilibrium data
are plotted in Figure 9. The best fitting of the data is provided by the Langmuir model [118,119],
considering a monolayer adsorption with a finite number of homogeneous and equivalent active sites,
Equation (12):

ce

qe
=

ce

qs
+

1
qsKL

(12)

where qe (mg/g) is the amount of metal ion per gram of 9 at the equilibrium concentration Ce (ppm of
metal ion remaining in solution), qs is the maximum adsorption capacity of 9, and KL is the Langmuir
constant; the fitting parameters are qs = 129.87 mg Fe/g 9, KL = 5 × 102 (L mol−1) and R2 = 0.9996.
The corresponding kinetic plot is shown in Figure S8. Hence, the nature of the counterion of the
Fe3+ source does not affect the metal encapsulation capacity of 9. Other metal ions were also tested,
including Co2+, Ni2+, Mn2+, and Cr3+; however, no adsorption was observed even after one day
stirring, indicating that 9 exhibits high selectivity for Fe3+.
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The Fe3+ adsorption capacity of 9 was further investigated by EDX studies. Figure 10 shows the
EDX spectra of 9 and Fe@9; Cu, C, and O are detected in both samples, with the the second sample
displaying one additional peak corresponding to the Fe3+ ion that has been adsorbed, hence confirming
the metal uptake. It is noteworthy that 9 can be easily regenerated from Fe@9 by treatment with a 0.2 M
EDTA solution. The activated MOF displays an identical sorption capacity with that of the original 9,
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which is retained for three cycles of regeneration/reuse experiments (Figure S9). Thus, 9 is reusable,
a property which is paramount for practical applications.Materials 2018, 11, x FOR PEER REVIEW  17 of 25 
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Figure 10. EDX spectra of 9 (left) and Fe@9 (right).

The good Fe3+ adsorption capacity of 9 prompted us to evaluate its encapsulation performance for
other species. 6-methyluracil is a compound for which the development of new sorbents or sensors is of
great importance; it is a key component of many drugs, including anti-ulcer agents, radiation protective
agents, and immunological adjuvants which help enhance immune responses, but on the other hand,
it can also be encountered as a toxic byproduct in the synthesis of biologically important DNA adducts.
If small impurities of such byproducts are not identified and removed, it could have devastating
consequences for the corresponding biological assays and medical treatments. Thus, the development
of efficient carriers/sorbents for the delivery or removal of these species would provide new insight
into drug manufacturing. Considering also the fact that MOFs have not yet been used for drug
purification, this would expand the range of potential applications of MOFs. With the above in mind,
and following a similar process to the one used for metal adsorption, the 6-methylyracil capacity of
9 was investigated. This is an ongoing project, but preliminary results (Figure S10) indicate that 9
possess a good performance in 6-methyluracil adsorption; the maximum uptake capacity is 167 mg
6-methyluracil/g 9 for a 1:1 ratio 6-methyluracil:9 in an aqueous solution. It exhibits fast kinetics with
the maximum encapsulation being reached after 6 min stirring. It is noteworthy, though, that the
regeneration of the MOF after the 6-methyluracil adsorption is not feasible. These initial results show
the potential of 9, and MOFs in general, to be used in purification processes during drug manufacturing.
Investigations are now in progress to assess the selectivity of 9 for 6-methyluracil and other toxic
byproducts, which is a requirement for the use of MOFs in such applications.

3.4. Magnetism Studies

Solid state DC magnetic susceptibility measurements were performed on a polycrystalline sample
of 9 in an applied field 0.03 T and temperature range 2–300 K. The obtained data are shown as a χMT
vs. T plot in Figure 11. The χMT value at 300 K is 0.075 cm3

·mol−1 K, appreciably lower than the
spin-only (g = 2) value of 1.5 cm3

·mol−1 K expected for four non-interacting Cu2+ centres (S = 1/2),
revealing strong antiferromagnetic coupling within the framework SBU. This is further supported
by the overall profile of the plot, which is indicative of strong antiferromagnetic interactions and a
diamagnetic ground state for 9.
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the best fit for 9. Inset: the exchange interactions in 9.

The isotropic Heisenberg spin Hamiltonian for 9 is given by Equation (13), where J1 is associated
with the Cu1 . . . Cu2′ interactions through a diatomic oximato group; J2 is associated with the Cu1 . . .
Cu2 interaction through one monoatomic carboxylate bridge; and J3 describes the coupling of Cu1 . . .
Cu1′ through a µ3-OH− group (Figure 11).

H = −2J1 (ŜCu1·ŜCu2′ + ŜCu1′ ·ŜCu2)-2J2(ŜCu1·ŜCu2+ ŜCu1′ ·ŜCu2′ ) −2J3(ŜCu1· ŜCu1′ ) (13)

The fitting of the experimental data to the Hamiltonian was performed using the PHI software [120]
and is shown with a solid line in Figure 10; the fitting parameters are J1 = −508 cm−1, J2 = −1.45 cm−1, J3

=−8.77 cm−1, and g = 2.07. J1 is significantly stronger than J2 and J3; this high value of antiferromagnetic
coupling is common in complexes containing oximes and Cu ions; such complexes often exhibit
diamagnetic behavior [82]. J2 and J3 are too small to take them as reliable values because at the
temperature they start to operate, the complex is diamagnetic due to the extremely high value of J1.

An initial investigation of the potential of magnetism to be used for the development of novel
MOF-based sensors was performed by exploring the impact of the encapsulated metal ion on the
magnetic properties of 9. To this end, DC magnetic susceptibility studies were performed on the
polycrystalline samples of Fe@9-1 and Fe@9-2, where Fe@9-1 is the Fe@9 aggregate after 1 min stirring,
during which 9 is expected to have reached ca. its half metal encapsulation capacity, and Fe@9-2 is
the aggregate at its maximum metal adsorption capacity. A closer inspection in Figure 11 shows that,
although the overall profile of the three plots is similar, the increase of the paramagnetic component in
the MOF pores have an effect on the observed χMT value at room temperature; the latter increases
from 0.073 cm3

·mol−1 K (for 9) to 0.115 cm3
·mol−1 K (for Fe@9-1) and 0.135 cm3

·mol−1 K (for Fe@9-2),
indicating that the magnetic properties of the Fe@9 aggregate are affected by the amount of metal
encapsulated in the MOF pores.

4. Conclusions

The initial employment of a 2-pyridyl oxime (pyridine-2 amidoxime, H2pyaox; 2-methyl pyridyl
ketoxime, Hmpko) in combination with 1,2,4,5-benzene tetracarboxylic acid (pyromellitic acid), H4pma,
provided access to nine new compounds with interesting structural features, paving the way to
the development of an alternative synthetic route towards new MOFs and coordination polymers.
[Zn2(pma)(H2pyaox)2(H2O)2]n (3) and [Cu4(OH)2(pma)(mpko)2]n (9) are the first examples of MOFs
based on a 2-pyridyl oxime, whereas [Zn2(pma)(H2pyaox)2]n (2), [Cu2(pma)(H2pyaox)2(DMF)2]n (6),
and [Cu2(pma)(Hmpko)2(DMF)2]n (8) are new members of a small family of coordination polymers
bearing this type of ligands. 9 has a novel 3,4,5,8-c net topology and is based on a butterfly-shaped Cu4
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SBU. DC magnetic susceptibility studies revealed that there are strong antiferromagnetic interactions
between the metal centers in 9, which lead to a diamagnetic ground state.

The metal encapsulation capacity of 9 was tested for a variety of different metal ions and showed
that it exhibits selectivity for Fe3+ adsorption. It is noteworthy that the magnetic properties of 9 depend
on the amount of Fe3+ present in to the MOF pores, revealing that magnetism can be an alternative
technique for the detection of environmentally hazardous chemicals, and this can be especially useful
for species that do not affect the photoluminescence properties or the color of a compound, hence they
cannot be detected by the commonly used sensors. Treatment of the Fe@9 aggreagate with a 0.2 M
EDTA solution leads to the removal of the metal ions from the MOF pores and the regeneration of the
latter. 9 retains its metal adsorption capacity for three cycles of regeneration/reuse experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/18/4084/s1,
Figure S1: Representation of the 3D network formed through hydrogen bonding interactions in 2. Figure S2:
Representation of the molecular structure of the dinuclear complex 5. Figure S3: Representation of the molecular
structure of the dinuclear complex 7. Figure S4: Representation of the intramolecular hydrogen bonding
interactions in 9. Figure S5: Representation of the underlying 3,4,5,8-coordinated net in the standard representation
in 9. Figure S6: The underlying net in the cluster representation with the lvt topology with Point Symbol (42)(84) in
9. Figure S7: Comparison of the theoretical and experimental pxrd pattern for 9. Figure S8: Left: metal adsorption
capacity (mg g−1) versus time (h) plot for the encapsulation of FeCl3 by 9; right: simulation of the experimental
data to the pseudo-second order kinetic model. The solid lines represent the fitting of the data. The corresponding
fitting parameters are R2 = 0.9937, qe = 103.09 mg Fe3+/g 9, in very good agreement with the experimental data.
Figure S9: Comparison of the pxrd pattern of the initial 9 with that of the regenerated material. Figure S10: UV
studies of the 6-methyluracil adsorption by 9; (a) 0.05 mmol 9/0.1 mmol 6-methyluracil and (b) 0.1 mmol 9/0.1
mmol 6-methyluracil (in 10 mL of water). Tables S1–S9: Selected interatomic distances (Å) and angles for 1–9.
Table S10: Hydrogen bonding details for 1. Table S11: Intermolecular hydrogen bonding details for 4. Table S12:
Intermolecular hydrogen bonding details for 7.
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