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Abstract: AISI 5140 is a steel alloy used for manufacturing parts of medium speed and medium
load such as gears and shafts mainly used in automotive applications. Parts made from AISI
5140 steel require machining processes such as turning and milling to achieve the final part shape.
Limited research has been reported on the machining vibration and surface roughness during turning
of AISI 5140 in the open literature. Therefore, the main aim of this paper is to conduct a systematic
study to determine the optimum cutting conditions, analysis of vibration and surface roughness under
different cutting speeds, feed rates and cutting edge angles using response surface methodology
(RSM). Prediction models were developed and optimum turning parameters were obtained for
averaged surface roughness (Ra) and three components of vibration (axial, radial and tangential)
using RSM. The results demonstrated that the feed rate was the most affecting parameter in increasing
the surface roughness (69.4%) and axial vibration (65.8%) while cutting edge angle and cutting
speed were dominant on radial vibration (75.5%) and tangential vibration (64.7%), respectively.
In order to obtain minimum vibration for all components and surface roughness, the optimum
parameters were determined as Vc = 190 m/min, f = 0.06 mm/rev, κ = 60◦ with high reliability
(composite desirability = 90.5%). A good agreement between predicted and measured values was
obtained with the developed model to predict surface roughness and vibration during turning of
AISI 5140 within a 10% error range.

Keywords: vibration; surface roughness; turning; response surface methodology; analysis of variance

1. Introduction

AISI 5140 is a medium carbon steel which is widely used in the automotive industry. The alloy is
used in other applications such as marine engineering, furnaces, gas turbines, chemical processing
plants, and pressure vessels. Despite its wide range of applications, the high content of chromium
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in AISI 5140 generates high structured carbides making it difficult to machine. Alsaran et al. [1–3]
investigated the mechanical properties, structural characterization and tribological properties of nitride
AISI 5140 low-alloyed steel. Grzesik [4] explored the wear mechanisms of ceramic inserts during hard
turning of AISI 5140 steel. Other authors investigated the tool wear and chip morphology during
turning of AISI 5140 [5], tool wear during boring [6], surface roughness and cutting forces [7] and surface
roughness and tool wear [8]. To ascertain the machining performance of AISI 5140, Huang et al. [9]
studied the influence of lubrication on surface quality in grinding. Grzesik and Wanat [10] examined
the surface roughness during hard turning. On machining optimization of AISI 5140, Kahraman [11]
optimized the cutting parameters for surface roughness using a Taguchi method. Kuntoğlu et al. [12]
applied an optimization and analysis approach using a tool condition monitoring system in turning of
AISI 5140. Lastly, optimization and analysis of process parameters for flank wear, cutting forces and
vibration have been performed and it was found that these quality indicators were correlated with
each other and statistically reliable [13]. There are limited studies in the open literature and only a
handful of them investigated the machinability and optimization of AISI 5140 steel alloy. The paper
aims to fill this gap in the literature.

Surface roughness reflects the surface quality of a product in generally accepted terms [14]. The most
preferred characteristic to determine the quality of surface roughness is the mean roughness Ra [15].
Ra value is determined according to workpiece specifications which can be detailed by the producer
or the consumer [16]. The desired surface quality of a machined part can be achieved by finding the
optimum cutting conditions [17]. A good surface finish provides better mechanical properties for a
machine element related to the useful remaining tool life [18–22]. Surface roughness is a feature of the
outer form of the machined material and which can be controlled to obtain certain functional properties
such as friction, thermal conductivity and oil retention [23]. The surface roughness value is commonly
required to fall within a certain range based on the final application of the machined part [24].

In the turning process, the most affecting parameters on surface roughness are the feed and
the tool nose radius [25]. However, the complex structure of machining processes and the dynamic
interaction of the machine and cutting tool parameters increase the effect level of other parameters
depending on the structure of the process [26]. In a study by Abbas et al. [27] it was observed that the
effect of cutting speed on surface roughness was greater than that of the feed rate

In machining, vibration occurs due to a lack of rigidity in the machine tools and cutting tool clamping
or due to changing cutting conditions during the cutting process [28]. Vibration is an undesirable
phenomenon that negatively affects the cutting process [29]. In general terms, vibration can be described
as an oscillation around an equilibrium point which occurs in the form of disruption of the contact area
between the tool geometry originally determined for cutting and the workpiece [30]. During the relative
movement of the cutting tool and the workpiece, undesirable results such as the loss of the theoretically
determined tool geometry occur and thus the surface form of the workpiece is deformed [31].

Modeling and optimization are two significant tools used to perform robust analysis and
cost-effective approaches in high precision manufacturing [32,33]. The relationship between process
variables can be obtained via mathematical equations and the correlation between them can be
determined with modeling. Response surface methodology (RSM) uses multiple regression models
to carry out statistical analysis of a system. Sarıkaya and Güllü [34] investigated the effect of cutting
parameters and cooling conditions based on Taguchi, RSM and Analysis of Variance ANOVA during
turning of AISI 1050 steel. Chauhan [35] compared the success of modeling of artificial neural networks
(ANN) and RSM in turning of the hybrid composite material. Yadav et al. [36] proposed a hybrid
approach of Taguchi–RSM for improving the surface roughness in turning. Because of the availability
and advantage of these two approaches in modeling and optimization in complex processes, it was
preferred, and an important improvement was obtained. RSM was also implemented in past studies
during the turning of metal matrix composites and AISI 1045 steel [37,38]. Thomas et al. studied the
impact of feed rate, tool radius and vibration on surface roughness and found that only the feed rate and
tool radius had an impact on surface roughness [39]. Sajjady et al. [40] analyzed the effect of the cutting
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speed, feed rate and vibration process on surface roughness and found that feed rate was the dominant
factor (75.38%) followed by vibration process (5.7%). Makadia et al. [14] studied the impact of tool
nose radius and cutting parameters using RSM during turning of AISI 410 steel; the study showed that
the feed rate was the most influential factor on surface roughness. Bouacha et al. [41] investigated the
optimum conditions for surface roughness and cutting forces using RSM. In turning of Hadfield steel,
RSM was employed for modeling and analysis of machining parameters for surface roughness [42].
Parida and Maity [43] determined the optimal cutting conditions via RSM in turning of Monel 500 with
86.7% composite desirability. Abbas et al. [44] employed RSM optimization in turning of AISI 1045 steel
for investigation of surface roughness. On the investigation of surface roughness of AISI 5140 steel,
the effect of cutting parameters namely feed rate and depth of cut [8,10,11] and cutting speed [7,8,11]
were incorporated into the experimental plan. However, the influence of cutting edge angle was not
reported in the past studies which motivate the need to study its impact on surface roughness linearly
and interactively in the current study. From the reported studies, based on [14,34,35,41] feed rate
was a major factor in surface roughness; however, the papers [35,42–44] showed that tool tip and
cutting speed were the major factors affecting surface roughness. Contrary to the known theoretical
assumption that explains the effect of feed rate on surface roughness, due to the interactions between
input parameters and unexpected developments such the existence of different types of tool wear,
the dominant parameters show an alteration.

Prasad and Babu [28] investigated the effect of cutting parameters on vibration with ANOVA and
they reported that feed rate had a great influence on chatter vibration. Ozbek et al. [45] reported that
all axes of vibration amplitude increase with the increase of cutting speed during turning of AISI D2
steel. The contradiction between these two papers [28,45] arises from the complexity of vibration and
the complex triggering mechanism behind it. As a result, different cutting parameters can be effective
which change according to the determined experimental plan and ranges of parameters. Plaza et al. [46]
stated that among three vibration components, axial acceleration was the reliable source among others
for monitoring of surface roughness. Wang et al. [30] presented an approach using vibration signals
to predict surface roughness separating the frequency as high and low. High frequency vibration
on the tool tip dominantly affected surface roughness. He et al. [31] demonstrated that increasing
the amplitude of tool tip vibration enhances surface roughness. According to Abouelatta and Madl,
during turning [47], surface roughness can be estimated using cutting parameters and radial and axial
components of vibration. Risbood et al. [48] studied the effect of cutting parameters on the developed
cutting forces and vibrations and used that to predict surface roughness via artificial neural network
systems. Misaka et al. [49] developed a new method for predicting surface roughness using cutting
parameters and vibration signals via RSM. Upadhyay et al. [50] carried out a study to predict surface
roughness by varying the feed rate, depth of cut, tangential and radial vibration components using
ANN. Hesseina et al. [51] presented a study based on RSM to predict surface roughness utilizing radial
and tangential vibration as well as cutting parameters. The outline of the past studies investigating
the effects of cutting parameters on surface roughness and vibration components are listed in Table 1.
It should be noted that none of the above studies investigated the effect cutting parameters on vibration,
optimization and correlation between vibration and surface roughness for AISI 5140.
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Table 1. The most influential parameters in different studies on turning steel alloys.

Surface Roughness

Reference Material Feed Rate Cutting Speed Nose Radius Depth of Cut Cooling Condition Cutting Edge Angle Optimization/Statistical Study

[12] AISI 5140 1th 3th - - - 2th ANOVA
[14] AISI 410 1th 3th 2th 4th - - Response Surface Methodology
[35] Composites 1th 2th - - - 3th ANOVA
[36] AISI 1040 3th 1th - 2th - - Response Surface Methodology
[41] AISI 52100 1th 2th - 3th - - Response Surface Methodology
[42] Hadfield 4th 2th 1th 3th - - ANOVA, Response Surface Methodology
[34] AISI 1050 1th 3th - 4th 2th - ANOVA, Response Surface Methodology

Vibration Components

Reference Material Feed Rate Cutting Speed Nose Radius Depth of Cut Hardness Cutting Edge Angle Optimization/Statistical Study

[12] AISI 5140 1th 3th - - - 2th ANOVA
[13] AISI 5140 4th 2th - 3th - 1th ANOVA
[28] AISI 4140 2th 3th - 4th 1th - ANOVA
[45] AISI D2 - 1th - - - - -
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Based on the previous literature on turning AISI 5140 steel alloys, the current paper’s aim is
to study the effect of cutting parameters (cutting speed, feed rate and cutting edge angle) on the
machined surface roughness and vibration in three directions when turning AISI 5140 steel. In addition,
multi-criteria optimization was employed to establish a relationship between surface roughness and
vibration components. Quadratic regression models and multiple optimization of surface roughness
and the three components of vibration were achieved via RSM. Lastly, the three components of vibration
were compared according to experiments to understand the relationship between vibration and surface
roughness. The study is different from the past studies since it provides simultaneous optimization and
relationship between surface roughness and vibration in additional to analyzing them individually.

2. Materials and Methods

2.1. Workpiece Material and Cutting Tools

In this study, an AISI 5140 steel rod of Ø75 mm and 500 mm in length was chosen as workpiece
material which is a common size standard in industrial applications and hard-to-wear structures.
The chemical composition of the material is presented in Table 2. Experiments were carried out on
the lathe (De Lorenzo S547-8899, Milano, Italy) under dry cutting conditions. The depth of cut was
kept constant at 2 mm. Coated carbide cutting tools which are suitable for machining metallic alloys
were used in the study. The tools are commonly used in more than 80% of the studies since they were
reported to provide better surface roughness [52].

Table 2. The chemical composition of AISI 5140 carbon steel [12].

Element C Mn Si Cr Ni Mo V S Cu P

% 0.45 0.7 0.28 0.85 0.14 0.05 0.029 0.065 0.01 0.02

A new workpiece material was utilized in every experiment and four pass chips were removed
with an insert and each experiment was repeated three times. According to the manufacturer’s
handbook and machine tool operation range, cutting parameters were selected with three cutting
speeds, three feed rates and three cutting edge angles as shown in Table 3.

Table 3. Cutting parameters and factor levels [12].

Symbol Parameters Level 1 Level 2 Level 3

Vc Cutting Speed (m/min) 150 200 330
f Feed Rate (mm/rev) 0.06 0.12 0.24
κ Cutting edge angle (◦) 60 75 90

2.2. Experimental Study

The experimental setup includes the machine tool, measuring devices, sensors, data acquisition
units and a computer. The experimental setup is shown in Figure 1. For measuring the vibration,
an accelerometer which can sense the three components of acceleration was utilized. The accelerometer
(Kistler 8692C50, Winterthur, Switzerland) can be mounted on the machine parts using the magnetic
part at its base. In addition, it can be permanently fixed on the free surfaces with its special adhesive.
The accelerometer is attached to an amplifier (Kistler 5134B) for accommodation and compensation of
data before data transmitting. Vibration data were transmitted to the computer via the data acquisition
card (National Instruments USB-6003, Austin, TX, USA), the processing and recording of the signals
were performed via Signal Express software.
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Generally, three vibration components are measured from machine tool which can be defined as
tangential vibration (Vt), axial vibration (Va) and radial vibration (Vr) according to the direction of
vibration with respect to the cutting tool. Three components of vibration are demonstrated in Figure 2.
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The surface roughness measurement was carried out with perthometer (Mahr M1, Göttingen,
Germany). For each experiment, four specimens were machined using one tool tip under the same
cutting conditions to investigate surface roughness. At the end of two passes, the operation was
stopped, surface roughness was measured three times round the workpiece at equal distances for each
experiment. Each measurement was repeated three times to confirm the repeatability. Therefore, all the
data reported hereafter are the average value of the three measurements. The arithmetic mean value
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of the profile, Ra, was selected to reflect surface roughness, which is a widely used roughness metric
in production.

2.3. Response Surface Methodology

RSM allows the optimization of multiple parameters simultaneously and the effect of linear,
square and interaction of parameters can be determined [25]. The statistical analysis was carried out
using the ANOVA statistical technique which is a commonly used method to evaluate whether certain
machining parameters have an impact on the analyzed outputs [53]. Using multiple regressions,
the prediction of a quality characteristic is possible with high reliability [43]. There is a necessity
to design the RSM model which consists of at least three factors for each control parameter [54].
This approach originated from the purpose of estimating the control parameter values which are
not added to experimental design. The RSM model refers to the functional equation to correlate the
control parameter and quality characteristic. Generally, a treatment approach is operated to find out
the optimal solution which is described below:

Z = f ((Vc), (f ), (κ)) + Error (1)

Quadratic regression is developed where Z represents the response parameter namely surface
roughness, V, f and κ represent the cutting speed, feed rate and cutting edge angle, respectively.
This equation is transformed into a quadratic multiple regression model:

Z = C0 +
3∑

i=1

CiXi +
3∑

i=1

CiiX2
i +

3∑
i< j

Ci jXiX j (2)

where C0 is constant, Ci, Cii and Cij are linear, square and interaction coefficients, respectively.
X represents the evaluated control factors namely cutting speed (V), feed rate (f ) and cutting edge
angle (κ). The equation can be stated as:

Z = C0 + C1Vc + C2f + C3κ + C11Vc
2 + C22f 2 + C33 κ

2 + C12Vcf + C23f κ + C13κVc (3)

2.4. Analysis of Variance

ANOVA implies the significance of design parameters on the investigated response parameter
over diverse statistical value [17]. The importance of design or control parameters can be determined
and confirmed via these statistical parameters [55]. p-value means the probability of significance for
each control parameter and the highest value signifies the effectiveness of that parameter. The sum of
the squares of the quality characteristic is calculated below with the mean value and the difference
of the result of each experiment [36]. While each design parameter has a certain effect on this total,
the remaining result from the sum of these effects gives the error. By dividing the sum of the squares
belonging to the parameters to the sum of the sum of squares, the amount produced as a percentage of
that parameter is calculated (Percent Contribution (PC) %).

2.5. Quadratic Regression Models

Quadratic regression aims to find the best data which are proper for the equation of a parabola.
In other words, the relationship between two different variables can be stated with a parabola on
the graph. In this way, a correlation between two different data can be produced. This permits the
making of predictions about the handled data. The prediction power of a quadratic regression model
is signified with the determination coefficient (R2) [35]. The R2 value changes within the range of
0–100% and demonstrates high accuracy of prediction as it increases [44]. Because of the high costs
and challenges in performing of machining experiments, the generated model is valid under the
determined cutting conditions of turning of AISI 5140 steel.
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3. Results and Discussion

The experimental design contains 27 experiments which represent a full factorial design. The main
advantage of this approach is observing the effect of each design parameter completely on the quality
indicator. Table 4 comprises the design parameters such as cutting speed, feed rate and cutting edge
angle and related quality indicators namely surface roughness, and three components of vibration for
each experiment. Tables 5 and 6 represent the ANOVA results for the surface roughness and vibration
components, respectively. Lastly, it is shown that the design, optimization and confirmation results of
RSM are confirmed. The affecting parameters on surface roughness and vibration components are
indicated in Figures 3 and 4, normal probability plots for these results are shown in Figure 5. Figure 6
shows the interaction between surface roughness and vibration components for every experiment.
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Table 4. The experimental design and results.

Experiment Number

Design Parameters Quality Indicators

Feed Rate f
(mm/rev)

Cutting Speed Vc
(m/min)

Cutting Edge Angle κ
(◦)

Surface Roughness Ra
(µm)

Tangential Vibration
Vt (Hz)

Radial Vibration Vr
(Hz)

Axial Vibration Va
(Hz)

1 0.06 150 60 0.78 54.88 51.25 50.09
2 0.12 150 60 1.7 54.6 54.62 52.72
3 0.24 150 60 2.15 54.63 57.86 54.89
4 0.06 200 60 0.69 57.96 51.12 50.88
5 0.12 200 60 0.95 56.85 53.25 52
6 0.24 200 60 1.8 58.98 55.45 53.12
7 0.06 330 60 0.81 60.44 50.03 50.5
8 0.12 330 60 1.74 59.1 52.74 52.9
9 0.24 330 60 1.96 60.5 53.85 55.1
10 0.06 150 75 0.108 53.12 57.89 50.06
11 0.12 150 75 0.17 54.45 58.47 51.09
12 0.24 150 75 0.244 55.42 60.74 54.71
13 0.06 200 75 0.429 59.88 56.87 50.6
14 0.12 200 75 0.745 60.1 57.47 51.2
15 0.24 200 75 0.202 61.5 59.52 53.66
16 0.06 330 75 0.432 66.98 55.96 51.1
17 0.12 330 75 0.214 65.88 56.14 52.78
18 0.24 330 75 0.6 66.9 56.98 53.89
19 0.06 150 90 0.108 55.41 61.86 50.6
20 0.12 150 90 0.17 56.1 64.89 51.2
21 0.24 150 90 0.244 56.7 69.11 53.66
22 0.06 200 90 0.429 61.12 60.42 50
23 0.12 200 90 0.745 63.55 63.87 52.9
24 0.24 200 90 0.202 64.12 68.99 53.9
25 0.06 330 90 0.432 69.5 59.85 53.1
26 0.12 330 90 0.214 70.2 62.41 55.01
27 0.24 330 90 0.6 71.5 67.88 56.8
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Table 5. ANOVA results for surface roughness.

Cutting Parameters Degree of Freedom Sum of Squares Mean Square F Value p-Value Percent Contribution (%)

Surface Roughness Ra (µm)

Cutting Speed 1 0.5053 0.15356 5.28 0.034 5

Feed Rate 1 7.1810 7.28679 250.73 0.000 69.4

Cutting Edge Angle 1 0.2178 0.30487 10.49 0.005 2.1

Cutting Speed × Cutting Speed 1 1.3636 1.36355 46.92 0.000 13.2

Feed Rate × Feed Rate 1 0.3520 0.35203 12.11 0.003 3

Cut. Ed. Ang. × Cut. Ed. Ang. 1 0.0015 0.00145 0.05 0.826 0.01

Cutting Speed × Feed Rate 1 0.0006 0.00061 0.02 0.886 0.01

Cutting Speed × Cut. Ed. Ang. 1 0.2089 0.20886 7.19 0.016 2

Feed Rate × Cut. Ed. Ang. 1 0.0190 0.1903 0.65 0.430 0.1

Error 17 0.4941 0.02906 5

Total 26 10.3437 100

Table 6. ANOVA results for 3 components of vibration.

Cutting Parameters Degree of Freedom Sum of Squares Mean Square F Value p-Value Percent Contribution (%)

Tangential Vibration Vt (Hz)

Cutting Speed 1 474.602 497.769 608.01 0.000 64.7

Feed Rate 1 7.504 6.102 7.45 0.014 1

Cutting Edge Angle 1 140.337 170.937 208.79 0.000 19.1

Cutting Speed × Cutting Speed 1 34.157 34.157 41.72 0.000 4.6

Feed Rate × Feed Rate 1 0.319 0.319 0.39 0.541 0.001

Cut. Ed. Ang. × Cut. Ed. Ang. 1 0.100 0.100 0.12 0.731 0.001

Cutting Speed × Feed Rate 1 0.197 0.197 0.24 0.630 0.001

Cutting Speed × Cut. Ed. Ang. 1 60.596 60.596 74.02 0.000 8.2

Feed Rate × Cut. Ed. Ang. 1 1.709 1.709 2.09 0.167 0.2
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Table 6. Cont.

Cutting Parameters Degree of Freedom Sum of Squares Mean Square F Value p-Value Percent Contribution (%)

Error 17 13.918 13.918 0.819 1.8

Total 26 733.438 100

Radial Vibration Vr (Hz)

Cutting Speed 1 23.109 25.211 19.27 0.000 3.2

Feed Rate 1 113.401 105.825 80.88 0.000 15.7

Cutting Edge Angle 1 545.711 539.891 412.62 0.000 75.5

Cutting Speed × Cutting Speed 1 1.078 1.078 0.82 0.377 0.1

Feed Rate × Feed Rate 1 0.909 0.909 0.69 0.416 0.1

Cut. Ed. Ang. × Cut. Ed. Ang. 1 6.948 6.948 5.31 0.034 1

Cutting Speed × Feed Rate 1 1.317 1.317 1.01 0.330 0.2

Cutting Speed × Cut. Ed. Ang. 1 0.113 0.113 0.09 0.772 0.001

Feed Rate × Cut. Ed. Ang. 1 7.901 7.901 6.04 0.025 1.1

Error 17 22.244 22.244 1.038 3

Total 26 722.729 100

Axial Vibration Va (Hz)

Cutting Speed 1 10.4905 7.8527 17.88 0.001 11.7

Feed Rate 1 58.8353 57.2322 130.35 0.000 65.8

Cutting Edge Angle 1 1.3723 2.3810 5.42 0.032 1.5

Cutting Speed × Cutting Speed 1 1.1899 1.1899 2.71 0.118 1.3

Feed Rate × Feed Rate 1 1.1070 1.1070 2.52 0.131 1.2

Cut. Ed. Ang. × Cut. Ed. Ang. 1 2.3188 2.3188 5.28 0.035 2.6

Cutting Speed × Feed Rate 1 0.0979 0.0979 0.22 0.643 0.1

Cutting Speed × Cut. Ed. Ang. 1 6.3763 6.3763 14.52 0.001 7.1

Feed Rate × Cut. Ed. Ang. 1 0.0687 0.0687 0.16 0.697 0.001

Error 17 7.4642 7.4642 0.4391 8.3

Total 26 89.3209 100
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Figure 5. Normal probability plots for surface roughness and vibration.
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Figure 6. Interaction between surface roughness and vibration components.

3.1. The Effect of Cutting Parameters and Tool Geometry on Surface Roughness

In order to determine the most affecting parameter, ANOVA was carried out with an RSM
approach. The linear and interactive effects of the cutting parameters and cutting edge angle are
tabulated in Table 5. As is expected from the popular formula [56] which is given in (4), the change in
surface roughness is proportional to the square of the feed rate. The analysis result of the surface was
found to be reliable as a 95% confidence interval appears. Furthermore, the analysis demonstrates
clearly that the parameters of cutting speed as linear (5%) and as a square (13.2%) are the other
affecting parameters on surface roughness. It was reported that cutting speed had an impact on surface
roughness, altering the mechanical properties of workpiece and chip formation [57].

Ra = f 2/32 · r (4)

Figure 4a,b shows the impact of cutting speed, feed and cutting edge angle on surface roughness.
Considering the feed rate as the most influential factor, the change with two other parameters on surface
roughness was investigated. It is observed that the increase in feed rate reduces the surface roughness.
It is expected that the broader helicoidal groove which arises from a higher feed rate will eventually
raise the surface roughness [15]. On the other hand, increasing the cutting edge angle slightly increases
the surface roughness, which can be ignored. A higher cutting edge angle leads to the sudden entrance
of cutting tool into the workpiece which causes elevated cutting forces; the material becomes hard to
cut and eventually increases in surface roughness [33]. However, the surface roughness curve shows a
decreasing trend first and increases after that with enhancing cutting speed. Because the hardness
of the workpiece reduces with high cutting speed then surface roughness decreases, generating the
desired shaped chips [58] until a determined cutting speed value. After that point, accelerating tool
wear arising from high cutting speed escalates surface roughness again [15]. The highest value of
surface roughness is observed at the highest values of feed rate, cutting speed and cutting edge angle
used in the study.
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3.2. The Effect of Cutting Parameters and Tool Geometry on Vibration

According to the results, the percentage contributions of cutting speed, cutting edge angle
and feed rate were found to be 64.7%, 75.5% and 65.8% on tangential, radial and axial vibrations,
respectively. The next contributing parameter on vibration components was the cutting edge angle
(19.1%), followed by the feed rate (15.7%) and cutting speed (11.7%) which is demonstrated in Table 6.
It is assumed that vibration components on tangential and axial directions originated from the relative
motion between tool and workpiece which can be attributed to cutting force components. Since these
two vibration components are generated based on the direction of cutting speed and feed rate,
the dominant effect of these parameters is understandable. Cutting edge angle specifies the distribution
of cutting forces on different directions which have an impact on shear zones, contact conditions
between tool and workpiece, and eventually vibration [12]. It can be said that the interaction between
parameters has no significant effect on vibration components. p values showed that cutting speed
(0.000 < 0.05 for Vt and Vr, 0.001 < 0.05 for Va), feed rate (0.000 < 0.05 for Vr and Va, 0.014 < 0.05 for
Vt) and cutting edge angle (0.000 < 0.05 for Vt and Vr, 0.032 < 0.05 for Va) have significant effects on
vibration components, illuminating the complexity and dynamic structure of vibration in turning.

Based on ANOVA, the parameters effective on vibration components are presented in Figure 3.
It can be seen in Figure 3a that tangential vibration shows a rising trend with enhancing cutting speed
and the rate of increase strengthens with increasing cutting edge angle. Since the cutting speed and
tangential vibration occur in the same direction, increase in cutting speed improves acceleration due
to the accumulation of chrome and related hard carbides. Additionally, chrome ingredients cause
adhesive wear on the rake face of the cutting tool [5], which eventuates the rise of tangential vibration.
It can be also that higher feed rate values accelerate axial vibration for all cutting speeds, which is
demonstrated in Figure 3b. Similarly to the effect of cutting speed on tangential vibration, a high
content of chrome disorders the stability of the cutting tool and tends towards oscillation. On the
graph of radial vibration, it can be seen in Figure 3c that advancing cutting edge angle significantly
improves radial vibration and this impact increases with higher feed rate values. Cutting edge angle
settles the separation of cutting forces additional to feed rate, depth of cut and specific cutting force.
In this context, an increase in cutting edge angle enhances the axial cutting force. However, variation in
the feed rate dominates this direction and can alter the effect of cutting edge angle on studied outputs.
As a result, increasing the cutting edge angle demonstrates its effect on the radial direction and triggers
the vibration.

3.3. Quadratic Regression Models for Surface Roughness and Vibration

Predicted regression equations for surface roughness and three components of vibration were
calculated using design parameters in Equations (5)–(8). The Equations provide valuable information
about the turning process which defines the effectiveness of parameters individually and interactively.
RSM was utilized to generate the quadratic mathematical models and the maximum errors of 5%,
2%, 3% and 8% of surface roughness, tangential vibration, radial vibration and axial vibration.
The estimated values were found to be statistically close to the experimentally measured values.

Ra = 5.31201 − 0.0422831 · Vc + 15.4801 · f − 0.0285486 · κ + 0.0000757170 · Vc
2
− 34.2593 · f 2 +

0.0000691358 · κ2
− 0.000837317 · Vc · f + 0.0000946589 · Vc · κ + 0.0289683 · f · κ

(5)
Vt = 39.7323 + 0.122155 · Vc − 20.1914 · f − 0.131809 · κ − 0.000378965 · Vc

2 + 32.6132 · f 2
−

0.000572840 · κ2
− 0.0150549 · Vc · f + 0.00161231 · Vc · κ + 0.274471 · f · κ

(6)

Vr = 64.8713 − 0.0449595 · Vc + 8.92157 · f − 0.448740 · κ + 0.0000673219 · Vc
2
− 55.0412 · f 2 +

0.00478272 · κ2
− 0.0388988 · Vc · f + 0.0000696053 · Vc · κ + 0.590212 · f · κ

(7)

Va = 72.3570 − 0.0641861 · Vc + 45.0033 · f − 0.506884 · κ + 0.0000707312 · Vc
2
− 60.7510 · f 2 +

0.00276296 · κ2
− 0.0106063 · Vc · f + 0.000523016 · Vc · κ − 0.0550265 · f · κ

(8)
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Normal probability plots of residual values and prediction success for surface roughness and
vibration components are presented in Figure 5. The adequacy of the model was verified when
plotting the normal probability plots [41]. The deflection from a straight line refers to separation from
normality. Half of the data points occur on the left and the other half on the right side of the straight
line. The general view of the graph is specified with a line accepted to be approximately straight and
separating the screen into two parts based on the data points located on it. It is shown by the graph
that the data points pursue the straight line which demonstrates the proposed model is sufficient
to show the suitability. All of the four graphs referring to surface roughness and three-dimensional
vibrations demonstrate a similar structure. According to the graphs, the normal probability plot shows
a reasonably linear pattern.

Considering the developed regression models and their adequacy, the experimentally obtained
data such as cutting forces, vibration or acoustic emission in machining operations can be useful for
observing the condition of the cutting tool and cutting process. Figure 6 contains the data of surface
roughness and vibration components for each experiment. By taking into consideration the sensor
signals of acceleration and surface roughness measurement, data points were marked in order to
observe the similarity. There have been several attempts to predict surface roughness via vibration
signatures. Axial and radial vibration was used [47] and radial vibration was also utilized to estimate
the surface roughness [48]. In another work [46], axial vibration provided the best information for
estimating the surface roughness. It was difficult in this study to compare the vibration components by
reflecting upon the capability of surface roughness. According to the curves in Figure 6, axial vibration
demonstrates close behavior to surface roughness variation which can be attributed to the effect of
feed rate. The dominant effect of feed rate on both axial vibration and surface roughness provided
the information to find the similarity. For a whole experimental plan, surface roughness and axial
vibration curves pursue a similar decreasing or increasing path. It is also remarkable that the minimum
frequency ranged vibration component—the axial—indicates a proximate characteristic to surface
roughness. The radial vibration component on the other hand, has promising behavior for successfully
monitoring the surface roughness during the first nine experiments, namely turning at low cutting edge
angle values. However, tangential vibration has no beneficial notion regarding the surface roughness
during turning of AISI 5140 steel.

3.4. Response Surface Methodology Based Optimization

The general intention in an experimental study is to find out the optimal conditions for obtaining
the desired results in terms of the quality criteria [35]. RSM was utilized for the investigation of the
relationship between inputs and outputs to achieve the optimum results [12]. In this paper, the attempt
was to determine the optimum cutting speed, feed rate and cutting edge angle for minimum surface
roughness and vibration components. To achieve this, RSM was used since it is commonly employed
in machining studies and can give accurate results for single or multiple analyses [14]. Table 7 indicates
the RSM parameter design and related predicted responses along with their desirability. To achieve
minimum surface roughness and vibration, targets are selected as lower values from the experimental
design table. As a result, a multi-criteria optimization approach was selected to obtain the optimum
parameters. The obtained desirability concerning surface roughness (0.99), tangential vibration (0.77),
radial vibration (0.91), axial vibration (0.95) and composite (0.9) show the accuracy of the model,
however, needs to be verified.
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Table 7. Response surface methodology parameter design and predicted responses.

Parameter Goal Lower Target Upper Weight Import Predicted Value Desirability

Surface Roughness Min. 0.53 0.53 2.78 1 1 0.5415 0.99

Tangential Vibration Min. 53.12 53.12 71.5 1 1 57.25 0.77

Radial Vibration Min. 50.3 50.3 69.11 1 1 51.89 0.91

Axial Vibration Min. 50.06 50.06 56.80 1 1 50.38 0.95

Desirability - - - - - - - 0.90

Figure 7 indicates the optimum cutting conditions and related optimized response parameters.
High and low show the boundary conditions for cutting conditions and the optimum values are
marked in red. y indicates achieved optimum value while d implies the desirability for each parameter.
According to results, V = 190 m/min, f = 0.06 mm/rev and κ = 60◦ should be selected for optimization.
As it was stated before, a multi-criteria optimization approach was chosen to obtain minimum surface
roughness and vibration components. It was reported that low feed rate and high cutting speed
should be selected for minimum surface roughness [35]. Despite there being various studies regarding
finding desirable surface roughness based on optimum cutting parameters, it should be investigated
further by introducing additional input parameters into the model. For example, cutting edge angle
has been researched by very few studies in the past. Moreover, three components of vibration have
not been simultaneously optimized before. In this study, RSM based optimization was implemented
for multi-criteria optimization of surface roughness and vibration based on three input parameters
(cutting speed, feed and cutting edge angle).
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3.5. Confirmation Experiment

In Table 8 a comparison of the experimental and predicted results is shown for the surface
roughness and vibration components. To check the validity of the model, it is necessary to compare
the predicted values with experimental ones [17]. The obtained results are in good agreement
with the experimental values which can be obtained from the acceptable error rates within 1–10%.
This means that, within the tested range of input parameters, the model can be used to predict any
combination of cutting speed, feed and cutting edge angle to calculate the surface roughness and
vibration components with minimal error. Surface roughness measurement was carried out from
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the operator while vibration components were measured with a sensor which leads to the increased
robustness of the vibration results.

Table 8. Comparison of experimental and predicted results.

Experimental Result Predicted Value Experimental Value Accuracy Error

Surface Roughness 0.5415 µm 0.6 µm 90% 10%
Tangential Vibration 57.25 Hz 58.15 Hz 99% 1%

Radial Vibration 51.89 Hz 50.99 Hz 99% 1%
Axial Vibration 50.38 Hz 51.39 Hz 99% 1%

4. Conclusions

The current study investigates the impact of three machining parameters namely cutting speed,
feed rate and cutting edge angle on surface roughness and vibration components during the turning
of AISI 5140 steel. The vibration components were measured during the machining process while
surface roughness data were collected after the end of each turning process. ANOVA based statistical
analysis, graphical representation of affecting parameters, quadratic regression models and RSM based
optimization were performed for surface roughness and vibration. There have been a number of studies
in the open literature on the machinability of AISI 5140 steels to evaluate the machining parameters
and their effect on the quality of the machined part. However, the three components of machining
vibration were statistically analyzed for the first time in the open literature. In addition, the effect of
the cutting edge angle which is rarely reported in the open literature was investigated to evaluate its
impact on surface roughness and vibration components. Multi-criteria optimization, simultaneous
optimization of surface roughness and vibration components were carried out to systematically predict
the adequacy of the developed regression models and additional turning tests were carried out to
validate the accuracy of the models. According to these examinations, the following conclusions can
be made:

• Feed rate was found to be the parameter effective on surface roughness (69.4%) and axial vibration
(65.8%), meanwhile cutting edge angle (75.5%) and cutting speed (64.7%) were dominant factors
on radial vibration and tangential vibration, respectively.

• Among the three vibration components axial vibration was observed as the primary source of
information for surface roughness. According to RSM, surface roughness and axial vibration can
be optimized with remarkably high desirability of about 99% and 95%, respectively.

• The optimum results were found to be Vc = 190 m/min, f = 0.06 mm/rev and κ = 60◦ to obtain
minimum surface roughness and three components of vibration.

• RSM based quadratic regression models were obtained with 95%, 98%, 97% and 92% accuracy
of surface roughness, tangential vibration, radial vibration and axial vibration. These results
indicated the accuracy and reliability of the model which can be utilized for turning AISI 5140 steel.

• The predicted results regarding surface roughness and vibration were verified with an additional
confirmation experiment. The comparison showed that there is a good agreement between the
predicted and measured results with less than 10% error.

• The proposed methodology contains modeling and optimization for better machinability in the
complex nature of turning.

• As a result, statistically reliable and optimum cutting conditions and vibration leading to best
surface roughness were presented.
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Nomenclature

ANOVA Analysis of Variance
ANN Artificial Neural Network
AISI American Iron and Steel Institute
RSM Response Surface Methodology
Ra Arithmetic Mean Value of Profile (µm)
Vt Tangential Vibration (Hz)
Va Axial Vibration (Hz)
Vr Radial Vibration (Hz)
p Probability of Significance
F Variance Ratio
MS Mean of Squares
SS Sum of Squares
DF Degree of Freedom
Vc Cutting Speed (m/min)
κ Cutting edge angle (◦)
f Feed Rate (mm/rev)
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microstructure of composites produced by recycling metal chips. Int. J. Miner. Metall. Mater. 2018, 25,
1070–1079. [CrossRef]

20. Uzun, M.; Usca, U.A. Effect of Cr particulate reinforcements in different ratios on wear performance and
mechanical properties of Cu matrix composites. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 197. [CrossRef]
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