Study of Hydration and Microstructure of Mortar Containing Coral Sand Powder Blended with SCMs
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Heat Evolution
3.2. Hydration Products
3.3. Pore Size Distribution
3.4. Compressive Strength
3.5. Morphology (SEM)
4. Conclusions
- Slag and silica fume promote the onset of the reaction between coral sand powder and C3A. Fly ash inhibits the onset of the reaction between C3A and CaCO3. The coral sand powder has higher activity than limestone powder when participating in the chemical reaction producing Hc and Mc. The OPC-CSP-Slag system produces more Hc and Mc than OPC-CSP-FA and OPC-CSP-SF systems. The chemical effect among coral sand powder, SCMs, and Portland cement results in the appearance of a third hydration peak, facilitating the production of calcium carbonate aluminate and reducing porosity.
- CSP mortar has higher and finer cumulative pore volume than LSP mortar and OPC reference. OPC-CSP-SCMs mortar has smaller interconnected pores to allow chemical species percolation. Mortars blended with silica fume show the smallest critical pore size than blended with fly ash and slag since fine silica fume could better refine pore size. OPC-CSP-Slag mortar has finer pores than OPC-LSP-FA mortar. The fine porosity of CSP mortar is because of the porous character of coral sand powder as well as the filler and chemical effect identified by X-ray diffraction.
- The dilution effect of coral sand powder leads to the reduction of compressive strength of OPC-CSP and OPC-CSP-SCMs mortars. Mortars with 20% CSP present higher compressive strength than with 20% LSP at the ages of 1, 3, 7, and 28 days. The additions of silica fume and slag increase the compressive strength of blended mortars with 10% CSP. CSP mortar has compacted ITZ whereas the weak ITZ in LSP mortar is compacted. A compacted ITZ occurred in mortars containing coral sand powder blended with slag and silica fume. A weak ITZ was observed in mortars containing coral sand powder blended with fly ash. The synergic effect of coral sand powder and fly ash had no significant improvement in the hydration, compressive strength, or microstructure. The synergic effects of coral sand powder with silica fume and slag facilitate the hydration, compressive strength, and microstructure. Better performance could be obtained from the combination of coral sand powder with slag and silica fume in composite cement. The results are beneficial to the use of coral sand powder combined with SCMs in cement concrete and the sustainability of eco-friendly coastline constructions. CSP used as admixture in cement concrete is an economical way compared to quartz sand.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Ou, Z.; Peng, W.; Guo, T.; Deng, W.; Chen, Y. Literature Review of Coral Concrete. Arab. J. Sci. Eng. 2017, 43, 1529–1541. [Google Scholar] [CrossRef]
- Guo, D.; Su, C.; Peng, Z.; Li, Q.; Chen, W. Mechanical Properties and Microstructure of Concrete Prepared with Coral Reef Sand and Sea Water. J. Build. Mater. 2018, 21, 41–46. [Google Scholar]
- Huang, Y.; Li, X.; Wang, H.; Wang, Q.; Sun, H.; Li, D. Effect of mix component on the mechanical properties of coral concrete under axial compression. Constr. Build. Mater. 2019, 223, 736–754. [Google Scholar]
- Wang, A.; Lyu, B.; Zhang, Z.; Liu, K.; Xu, H.; Sun, D. The development of coral concretes and their upgrading technologies: A critical review. Constr. Build. Mater. 2018, 187, 1004–1019. [Google Scholar] [CrossRef]
- Yang, S.; Yang, C.; Huang, M.; Liu, Y.; Jiang, J.; Fan, G. Study on bond performance between FRP bars and seawater coral aggregate concrete. Constr. Build. Mater. 2018, 173, 272–288. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Tian, Y.; Chen, W.; Su, C. Mechanical properties and microstructure of Portland cement concrete prepared with coral reef sand. J. Wuhan Universit. Technol.-Mater. Sci. Ed. 2016, 31, 996–1001. [Google Scholar] [CrossRef]
- Tang, J.; Cheng, H.; Zhang, Q.; Li, Q. Development of properties and microstructure of concrete with coral reef sand under sulphate attack and drying-wetting cycles. Constr. Build. Mater. 2018, 165, 647–654. [Google Scholar]
- Wang, X.; Yu, R.; Shui, Z.; Song, Q.; Zhang, Z. Mix design and characteristics evaluation of an eco-friendly Ultra-High Performance Concrete incorporating recycled coral based materials. J. Clean. Prod. 2017, 165, 70–80. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Zhang, Y.; Cui, J.; Shao, J. Study on Long-Term Performance of Concrete Based on Seawater, Sea Sand and Coral Sand. Adv. Mater. Res. 2013, 706, 512–515. [Google Scholar]
- Chen, Z.; Sun, G.; Tang, X.; Liu, Y. Study on Applications of Concretes from Coral Reef Sand Mixed with Seawater for Patching-up in Reef Engineering. Coastal Eng. 2008, 27, 60–69. [Google Scholar]
- Da, B.; Yu, H.; Ma, H.; Tan, Y.; Mi, R.; Dou, X. Chloride diffusion study of coral concrete in a marine environment. Constr. Build. Mater. 2016, 123, 47–58. [Google Scholar] [CrossRef]
- Wang, X.; Shui, Z.; Yu, R.; Bao, M.; Wang, G. Effect of coral filler on the hydration and properties of calcium sulfoaluminate cement based materials. Constr. Build. Mater. 2017, 150, 459–466. [Google Scholar] [CrossRef]
- Wu, W.; Wang, R.; Zhu, C.; Meng, Q. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete. Constr. Build. Mater. 2018, 185, 69–78. [Google Scholar] [CrossRef]
- Lyu, B.; Wang, A.; Zhang, Z.; Liu, K.; Xu, H.; Shi, L.; Sun, D. Coral aggregate concrete: Numerical description of physical, chemical and morphological properties of coral aggregate. Cem. Concr. Compos. 2019, 100, 25–34. [Google Scholar] [CrossRef]
- Yuan, Z.; Yu, K.; Wang, Y.; Meng, Q.; Wang, R. Research Progress in the Engineering Geological Characteristics of Coral Reefs. Trop.l Geogr. 2016, 36, 87–93. [Google Scholar]
- Zhang, S. Experimental Study on the Fatigue Property and Microscopic Mechanism of Coral Concrete; Guangxi University: Nanning, China, 2012. [Google Scholar]
- Shi, H.; Yu, Z.; Ma, J.; Ni, C.; Shen, X. Properties of Portland cement paste blended with coral sand powder. Constr. Build. Mater. 2019, 203, 662–669. [Google Scholar] [CrossRef]
- Ramezanianpour, A.M.; Hooton, R.D. A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs. Cem. Concr. Compos. 2014, 51, 1–13. [Google Scholar] [CrossRef]
- Yılmaz, B.; Olgun, A. Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone. Cem. Concr. Compos. 2008, 30, 194–201. [Google Scholar] [CrossRef]
- Boubekeur, T.; Boulekbache, B.; Aoudjane, K.; Ezziane, K.; Kadri, E.-H. Prediction of the durability performance of ternary cement containing limestone powder and ground granulated blast furnace slag. Constr. Build. Mater. 2019, 209, 215–221. [Google Scholar] [CrossRef]
- De Weerdt, K.; Haha, M.B.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 2011, 41, 279–291. [Google Scholar] [CrossRef]
- Menendez, G.; Bonavetti, V.; Irassar, E.F. Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Compos. 2003, 25, 61–67. [Google Scholar] [CrossRef]
- Ghrici, M.; Kenai, S.; Said-Mansour, M. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos. 2007, 29, 542–549. [Google Scholar] [CrossRef]
- Wang, Y.; Shui, Z.; Gao, X.; Huang, Y.; Li, X.; Yang, R. Utilizing coral waste and metakaolin to produce eco-friendly marine mortar: Hydration, mechanical properties and durability. J. Clean. Prod. 2019, 219, 763–774. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H.; Ou, Z. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 2018, 181, 659–672. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of cement hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in understanding hydration of Portland cement. Cem. Concr. Res. 2015, 78, 38–56. [Google Scholar] [CrossRef]
- Schöler, A.; Lothenbach, B.; Winnefeld, F.; Zajac, M. Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem. Concr. Compos. 2015, 55, 374–382. [Google Scholar] [CrossRef]
- Weerdt, K.D.; Kjellsen, K.O.; Sellevold, E.; Justnes, H. Synergy between fly ash and limestone powder in ternary cements. Cem. Concr. Compos. 2011, 33, 30–38. [Google Scholar] [CrossRef]
- Lothenbach, B.; Saout, G.L.; Gallucci, E.; Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Kakali, G.; Tsivilis, T.; Aggeli, E.; Bati, M. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res. 2000, 30, 1073–1077. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Z.; Ni, C.; Shi, H.; Shen, X. Effects of limestone powder on the hydration and microstructure development of calcium sulphoaluminate cement under long-term curing. Constr. Build. Mater. 2019, 199, 688–695. [Google Scholar] [CrossRef]
- Pipilikaki, P.; Beazi-Katsioti, M. The assessment of porosity and pore size distribution of limestone Portland cement pastes. Constr. Build. Mater. 2009, 23, 1966–1970. [Google Scholar] [CrossRef]
- Tang, J.; Wei, S.; Li, W.; Ma, S.; Ji, P.; Shen, X. Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement. Constr. Build. Mater. 2019, 223, 177–184. [Google Scholar] [CrossRef]
- Elgalhud, A.A.; Dhir, R.K.; Ghataora, G. Limestone addition effects on concrete porosity. Cem. Concr. Compos. 2016, 72, 222–234. [Google Scholar] [CrossRef]
Chemical Composition | Portland Cement | Coral Sand Powder | Limestone Powder | Fly Ash | Silica Fume | Granulated Blast Furnace Slag |
---|---|---|---|---|---|---|
CaO | 59.80 | 50.18 | 55.71 | 8.28 | 0.41 | 44.69 |
SiO2 | 22.10 | 3.12 | 0.15 | 39.11 | 95.26 | 30.56 |
Al2O3 | 6.08 | 0.90 | 0.06 | 35.95 | 0.48 | 15.46 |
Fe2O3 | 3.82 | 0.85 | 0.07 | 11.77 | 0.13 | 0.57 |
SO3 | 2.62 | 0.47 | 0.05 | / | 0.49 | / |
MgO | 1.91 | 0.44 | 0.70 | 0.91 | 0.27 | 7.39 |
K2O | 0.49 | 0.10 | / | 0.69 | 0.39 | 0.41 |
TiO2 | 0.32 | 0.07 | 0.02 | 1.83 | / | 0.66 |
Na2O | 0.30 | 0.81 | / | 0.27 | 0.24 | 0.22 |
LOI (loss on ignition) | 2.56 | 43.06 | 43.24 | 1.19 | 2.33 | 0.04 |
Compositions | Portland Cement | Coral Sand Powder | Limestone Powder | Fly Ash | Silica Fume | Slag |
---|---|---|---|---|---|---|
100OPC | 100 | 0 | 0 | 0 | 0 | 0 |
80OPC-20CSP | 80 | 20 | 0 | 0 | 0 | 0 |
80OPC-20LSP | 80 | 0 | 20 | 0 | 0 | 0 |
80OPC-10CSP-10FA | 80 | 10 | 0 | 10 | 0 | 0 |
70OPC-10CSP-20FA | 70 | 10 | 0 | 20 | 0 | 0 |
70OPC-20CSP-10FA | 70 | 20 | 0 | 10 | 0 | 0 |
60OPC-20CSP-20FA | 60 | 20 | 0 | 20 | 0 | 0 |
70OPC-20LSP-10FA | 70 | 0 | 20 | 10 | 0 | 0 |
85OPC-10CSP-5SF | 85 | 10 | 0 | 0 | 5 | 0 |
80OPC-10CSP-10SF | 80 | 10 | 0 | 0 | 10 | 0 |
75OPC-20CSP-5SF | 75 | 20 | 0 | 0 | 5 | 0 |
70OPC-20CSP-10SF | 70 | 20 | 0 | 0 | 10 | 0 |
70OPC-20LSP-10SF | 70 | 0 | 20 | 0 | 10 | 0 |
80OPC-10CSP-10Slag | 80 | 10 | 0 | 0 | 0 | 10 |
70OPC-10CSP-20Slag | 70 | 10 | 0 | 0 | 0 | 20 |
70OPC-20CSP-10Slag | 70 | 20 | 0 | 0 | 0 | 10 |
60OPC-20CSP-20Slag | 60 | 20 | 0 | 0 | 0 | 20 |
70OPC-20LSP-10Slag | 70 | 0 | 20 | 0 | 0 | 10 |
Mortars | Time (d)/Compressive Strength (MPa) | |||||
---|---|---|---|---|---|---|
1 | 3 | 7 | 28 | 56 | 90 | |
80OPC-10CSP-10FA | 14.68 | 22.97 | 26.96 | 37.82 | 39.21 | 41.21 |
70OPC-10CSP-20FA | 12.52 | 18.81 | 24.69 | 35.02 | 37.19 | 40.19 |
70OPC-20CSP-10FA | 12.95 | 19.87 | 22.94 | 31.99 | 36.99 | 39.33 |
60OPC-20CSP-20FA | 9.39 | 14.88 | 21.11 | 26.43 | 33.47 | 37.62 |
85OPC-10CSP-5SF | 17.36 | 26.02 | 35.88 | 47.65 | 50.75 | 52.18 |
80OPC-10CSP-10SF | 16.06 | 25.65 | 34.17 | 48.25 | 50.51 | 52.70 |
75OPC-20CSP-5SF | 14.89 | 21.20 | 34.14 | 46.39 | 47.32 | 49.88 |
70OPC-20CSP-10SF | 13.22 | 21.40 | 33.53 | 44.11 | 46.56 | 47.41 |
80OPC-10CSP-10Slag | 14.17 | 24.70 | 30.63 | 46.06 | 49.23 | 52.18 |
70OPC-10CSP-20Slag | 10.87 | 25.47 | 31.65 | 49.01 | 51.68 | 52.70 |
70OPC-20CSP-10Slag | 11.90 | 22.26 | 27.57 | 43.53 | 46.89 | 49.88 |
60OPC-20CSP-20Slag | 10.22 | 20.32 | 27.14 | 39.53 | 41.55 | 47.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, Y.; Shen, X.; Zhong, Y.; Li, Y. Study of Hydration and Microstructure of Mortar Containing Coral Sand Powder Blended with SCMs. Materials 2020, 13, 4248. https://doi.org/10.3390/ma13194248
Li X, Ma Y, Shen X, Zhong Y, Li Y. Study of Hydration and Microstructure of Mortar Containing Coral Sand Powder Blended with SCMs. Materials. 2020; 13(19):4248. https://doi.org/10.3390/ma13194248
Chicago/Turabian StyleLi, Xingxing, Ying Ma, Xiaodong Shen, Ya Zhong, and Yuwei Li. 2020. "Study of Hydration and Microstructure of Mortar Containing Coral Sand Powder Blended with SCMs" Materials 13, no. 19: 4248. https://doi.org/10.3390/ma13194248
APA StyleLi, X., Ma, Y., Shen, X., Zhong, Y., & Li, Y. (2020). Study of Hydration and Microstructure of Mortar Containing Coral Sand Powder Blended with SCMs. Materials, 13(19), 4248. https://doi.org/10.3390/ma13194248