Surface Roughness Influence on Néel-, Crosstie, and Bloch-Type Charged Zigzag Magnetic Domain Walls in Nanostructured Fe Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Film Structure
3.2. Magneto-Optical Behavior
3.3. Magnetic Domain Wall Structure
- (1)
- At thickness lower than ≈30 nm, the charged walls had Néel-type cores and exhibited irregular shapes.
- (2)
- At thickness between ≈30 nm and 50 nm, the cores of the charged magnetic walls evolved to crosstie types and exhibited fairly straight forms.
- (3)
- At thickness ≈ 55 nm, Bloch lines with very weak crosstie walls developed in the charged walls, alternating dark and bright zigzag segments.
- (4)
- At thickness greater than 60 nm, Bloch-type core charged walls were visualized in the films. Long straight segments were observed in the zigzag walls of these films.
- (5)
- Increased length of the corresponding segments of each zigzag wall t = 11 nm, 55 nm, and 82 nm was also observed, as demonstrated in Figure 5.
3.4. The Surface Roughness
3.5. Discussion
- (1)
- Experimental values of energy density corresponding to nucleation magnetic fields μoMsHN.
- (2)
- Experimental observation of crosstie walls in the 33 nm thick film.
- (3)
- Observation of a cross-over from Néel walls (or crossties) to Bloch walls in the 55 nm thick film.
- (4)
- Observation of Bloch lines and very weak crosstie walls in the 55 nm thick film.
- (5)
- Observation of Bloch walls in the films thicker than 55 nm.
- (6)
- Saturation magnetization μ0Ms = 2.0 T [13].
- (7)
- Experimental θ values varying between ≈29° (for t = 11 nm) and 18° (for t = 82 nm).
- (8)
- We also assumed an energy density term proportional to the roughness-to-thickness ratio Rq/t that affected the whole wall, core, and tail. We considered this term according to our experimental Rq/t values indicating that this ratio markedly decreased as the thickness increased and accounted for the additional energy contribution necessary for nucleation of the charged wall, which was Néel, crosstie, or Bloch type depending on t [28,30].
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prinz, G.A. Magnetoelectronics applications. J. Magn. Magn. Mater. 1999, 200, 59–68. [Google Scholar] [CrossRef]
- Liu, J.P.; Fullerton, E.; Gutfleisch, O.; Sellmyer, D.J. Nanoscale Magnetic Materials and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Takada, M.; Gastelois, P.L.; Przybylski, M.; Kirschner, J. A complex magnetic structure of ultrathin Fe films on Rh (001) surfaces. J. Magn. Magn. Mater. 2013, 329, 95–100. [Google Scholar] [CrossRef]
- Sakshath, S.; Bhat, S.V.; Kumar, P.S.A.; Sander, D.; Kirschner, J. Enhancement of uniaxial magnetic anisotropy in Fe thin films grown on GaAs(001) with an MgO underlayer. J. Appl. Phys. 2011, 109, 07C114. [Google Scholar] [CrossRef] [Green Version]
- Liedke, M.O.; Körner, M.; Lenz, K.; Grossmann, F.; Facsko, S.; Fassbender, J. Magnetic anisotropy engineering: Single-crystalline Fe films on ion eroded ripple surfaces. Appl. Phys. Lett. 2012, 100, 242405. [Google Scholar] [CrossRef]
- Serizawaa, K.; Ohtakea, M.; Kawaia, T.; Futamotob, M.; Kirinoc, F.; Inabad, N. Influence of crystal orientation on the magnetostriction behavior of Fe films formed on MgO single-crystal substrates. J. Magn. Magn. Mater. 2019, 477, 420–426. [Google Scholar] [CrossRef]
- Ben Youssef, J.; Spenato, D.; Le Gall, H.; Ostoréro, J. Large exchange bias in interdiffused NiFe/Mn bilayers. J. Appl. Phys. 2002, 91, 7239. [Google Scholar] [CrossRef]
- Duluard, A.; Bellouard, C.; Lu, Y.; Hehn, M.; Lacour, D.; Montaigne, F.; Lengaigne, G.; Andrieu, S.; Bonell, F.; Tiusan, C. Enhanced magnetoresistance by monoatomic roughness in epitaxial Fe/MgO/Fe tunnel junctions. Phys. Rev. B 2015, 91, 174403. [Google Scholar] [CrossRef] [Green Version]
- Giannopoulos, G.; Salikhov, R.; Zingsem, B.; Markou, A.; Panagiotopoulos, I.; Psycharis, V.; Farle, M.; Niarchos, D. Large magnetic anisotropy in strained Fe/Co multilayers on AuCu and the effect of carbon doping. APL Mater. 2015, 3, 041103. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, B. Exchange coupling in magnetic multilayers in magnetic heterostructures. In Advances and Perspective in Spinstructures and Spintransport, Springer Tracts in Modern Physics; Springer: Berlin, Germany, 2008; Volume 227, p. 185. [Google Scholar]
- Chae, K.-S.; Park, J.-G. Dependency of tunneling magneto-resistance on Fe insertion-layer thickness in Co2Fe6B2/MgO-based magnetic tunneling junctions. J. Appl. Phys. 2015, 117, 153901. [Google Scholar] [CrossRef]
- Jo, J.H.; Shin, E.J.; Kim, H.-J.; Lim, S. Magnetic properties of epitaxial Fe/MgO structures on Si (100). J. Magn. Magn. Mater. 2017, 421, 440–447. [Google Scholar] [CrossRef]
- Favieres, C.; Vergara, J.; Madurga, V. Interface effects on magnetostriction in pulsed laser deposited Co/Fe/Co cylindrical soft magnetic multilayers. J. Phys. D: Appl. Phys. 2007, 40, 4101–4108. [Google Scholar] [CrossRef]
- Madurga, V.; Favieres, C.; Vergara, J. Magnetic and magnetoelastic properties of cobalt-iron amorphous-nanocrystalline pulsed laser deposited thin films. J. Non-Cryst. Solids 2007, 353, 941–943. [Google Scholar] [CrossRef]
- Vergara, J.; Favieres, C.; Madurga, V. Ultrahigh frequency magnetic susceptibility of Co and Fe cylindrical films deposited by pulsed laser ablation. J. Appl. Phys. 2007, 101, 33907. [Google Scholar] [CrossRef]
- Ferré, J. Dynamics of magnetization reversal: From continuous to patterned ferromagnetic films. In Spin Dynamics in Confined Magnetic Structures I. Topics in Applied Physics; Hillebrands, B., Ounadjela, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 83, p. 127. [Google Scholar]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic Domain-Wall Racetrack Memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef]
- Xu, F.; Wang, T.; Ma, T.; Wang, Y.; Zhu, S.; Li, F. Enhanced film thickness for Néel wall in soft magnetic film by introducing strong magnetocrystalline anisotropy. Sci. Rep. 2016, 6, 20140. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Júnior, A.F.; de Campos, M.F.; Martins, A.S. Domain wall structure in metals: A new approach to an old problem. J. Magn. Magn. Mater. 2017, 442, 236. [Google Scholar] [CrossRef]
- Talapatra, A.; Chelvane, J.A.; Mohanty, J. Observation of magnetic domains in Gd-Fe thin films with complementary microscopy techniques. J. Magn. Magn. Mater. 2019, 489, 165469. [Google Scholar] [CrossRef]
- Ranjbar, S.; Al-Mahdawi, M.; Oogane, M.; Ando, Y. Controlling domain configuration of the sensing layer for magnetic tunneling junctions by using exchange bias. AIP Adv. 2020, 10, 025119. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, A.; Ragusa, C.; Guastella, S.; Musumeci, S.; Rivolo, P.; Laviano, F. Visualization of stray-field distribution by charged domain-walls in rare-earth substituted iron garnets. J. Magn. Magn. Mater. 2020, 504, 166556. [Google Scholar] [CrossRef]
- Sakimura, H.; Suzuki, M.; Yamauchi, Y.; Gao, Y.; Harumoto, T.; Nakamura, Y.; Ando, K.; Shi, J.; Ying, G. Characteristic magnetic domain size in Fe with exchange-coupled antiferromagnetic NiO underlayer. Appl. Surf. Sci. 2020, 526, 146515. [Google Scholar] [CrossRef]
- Robertson, M.; Agostino, C.J.; Chen, G.; Kang, S.P.; Mascaraque, A.; Michel, E.G.; Won, C.; Wu, Y.Z.; Schmid, A.K.; Liu, K. In-plane Néel wall chirality and orientation of interfacial Dzyaloshinskii-Moriya vector in magnetic films. Phys. Rev. B 2020, 102, 024417. [Google Scholar] [CrossRef]
- Zubar, T.I.; Trukhanov, A.V.; Vinnik, D.; Astapovich, K.; Tishkevich, D.I.; Kaniukov, E.; Kozlovskiy, A.; Zdorovets, M.; Trukhanov, S. Features of the Growth Processes and Magnetic Domain Structure of NiFe Nano-objects. J. Phys. Chem. C 2019, 123, 26957–26964. [Google Scholar] [CrossRef]
- Alam, J.; Bran, C.; Chiriac, H.; Lupu, N.; Óvári, T.; Panina, L.; Rodionova, V.; Varga, R.; Vazquez, M.; Zhukov, A. Cylindrical micro and nanowires: Fabrication, properties and applications. J. Magn. Magn. Mater. 2020, 513, 167074. [Google Scholar] [CrossRef]
- Gastaldo, D.; Strelkov, N.; Buda-Prejbeanu, L.D.; Dieny, B.; Boulle, O.; Allia, P.; Tiberto, P.M. Impact of Dzyaloshinskii-Moriya interactions on the thermal stability factor of heavy metal/magnetic metal/oxide based nano-pillars. J. Appl. Phys. 2019, 126, 103905. [Google Scholar] [CrossRef] [Green Version]
- Hubert, A.; Schäfer, R. Magnetic Domains. In The Analysis of Magnetic Microstructures; Springer: Berlin, Germany, 1998. [Google Scholar]
- Finzi, L.A.; Hartman, J. Wall coupling in permalloy film pairs with large separations. IEEE Trans. Magn. 1968, 4, 662–668. [Google Scholar] [CrossRef]
- Huang, H.L.; Chen, T.H. Equilibrium configuration of the zigzag walls in recording media. J. Magn. Magn. Mater. 1994, 135, 89–96. [Google Scholar] [CrossRef]
- Hubert, A. Charged walls in thin magnetic films. IEEE Trans. Magn. 1979, 15, 1251–1260. [Google Scholar] [CrossRef]
- Cerruti, B.; Zapperi, S. Dynamic hysteresis from zigzag domain walls: Discrete model and Monte Carlo simulations. Phys. Rev. B 2007, 75, 064416. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R. Charged walls in amorphous magnetic films. IEEE Trans. Magn. 1980, 16, 902–904. [Google Scholar] [CrossRef]
- Madurga, V.; Vergara, J.; Favieres, C. Magnetic domain structures and nano-string morphology of laser off-normal deposited amorphous cobalt films with controlled magnetic anisotropy. J. Magn. Magn. Mater. 2004, 272, 1681–1683. [Google Scholar] [CrossRef]
- Favieres, C.; Vergara, J.; Madurga, V. Charged magnetic domain walls as observed in nanostructured thin films: Dependence on both film thickness and anisotropy. J. Phys.: Condens. Matter 2013, 25, 66002. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.Y.; Choi, B.-C.; Xu, Y.B.; Bland, J.A.C. Magnetization reversal dynamics in epitaxial Fe/GaAs (001) thin films. Phys. Rev. B 1999, 60, 10216–10221. [Google Scholar] [CrossRef]
- Uspenskaya, L.S.; Tikhomirov, O.A.; Bozhko, S.I.; Egorov, S.V.; Chugunov, A.A. Domain structure and magnetization of the permalloy/niobium bilayers. J. Appl. Phys. 2013, 113, 163907. [Google Scholar] [CrossRef]
- Moubah, R.; Magnus, F.; Östman, E.; Muhammad, Y.; Arnalds, U.B.; Ahlberg, M.; Hjörvarsson, B.; Andersson, G. Tailoring magnetism at the nanometer scale in SmCo5amorphous films. J. Phys. Condens. Matter 2013, 25, 416004. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.; Bedanta, S.; Seki, T.; Takanashi, K. Magnetic domain imaging in L10 ordered FePt thin films with in-plane uniaxial magnetic anisotropy. J. Appl. Phys. 2014, 116, 133904. [Google Scholar] [CrossRef]
- Mansell, R.; Fernández-Pacheco, A.; Petit, D.C.M.C.; Steinke, N.-J.; Lee, J.H.; Lavrijsen, R.; Cowburn, R.P. Zigzag Domain Wall Mediated Reversal in Antiferromagnetically Coupled Layers. IEEE Magn. Lett. 2016, 8, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mendil, J.; Trassin, M.; Bu, Q.; Schaab, J.; Baumgartner, M.; Murer, C.; Dao, P.T.; Vijayakumar, J.; Bracher, D.; Bouillet, C.; et al. Magnetic properties and domain structure of ultrathin yttrium iron garnet/Pt bilayers. Phys. Rev. Mater. 2019, 3, 034403. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Dai, X.F.; Wang, Y.G.; Duan, X.F.; Wu, G.H. In Situ Observation of Magnetic Domain Structure in Co50Ni20FeGa29 Alloy under the Applied Magnetic Field. Mater. Trans. 2007, 48, 2255–2257. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Vernier, N.; Agnus, G.; Eimer, S.; Zhai, Y. Highly anisotropic magnetic domain wall behavior in-plane magnetic films. arXiv 2005, arXiv:2005.03543. [Google Scholar]
- Eason, R. (Ed.) Pulsed Laser Deposition of Thin Films; John Willey & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Keitoku, S.; Ezumi, H. Preparation of Fe films by laser ablation. IEEE Transl. J. Magn. Jpn. 1992, 7, 858–862. [Google Scholar] [CrossRef]
- Neu, V.; Häfner, K.; Schultz, L. Dynamic coercivity and thermal stability of epitaxial exchange spring trilayers. J. Magn. Magn. Mater. 2010, 322, 1613–1616. [Google Scholar] [CrossRef]
- Zhang, J.; Skomski, R.; Yue, L.P.; Lu, Y.F.; Sellmyer, D.J. Structure and magnetism of V-doped SnO2thin films: Effect of the substrate. J. Phys.: Condens. Matter 2007, 19, 256204. [Google Scholar] [CrossRef] [Green Version]
- Madurga, V.; Favieres, C.; Vergara, J. Growth and sculpting of Co nano-strings on Si micro-cantilevers: Magneto-mechanical properties. Nanotechnology 2010, 21, 095702. [Google Scholar] [CrossRef] [PubMed]
- Moyer, J.; Lee, S.; Schiffer, P.; Martin, L.W. Magnetically disordered phase in epitaxial iron-deficientFe3O4thin films. Phys. Rev. B 2015, 91, 064413. [Google Scholar] [CrossRef] [Green Version]
- Madurga, V.; Vergara, J.; Favieres, C. Influence of nature of the substrate on the soft magnetic properties of pulsed laser ablated-deposited amorphous Co. J. Magn. Magn. Mater. 2003, 254, 140–142. [Google Scholar] [CrossRef]
- Favieres, C.; Madurga, V. Studies of the magnetoelastic inverse Wiedemann effect in pulsed laser deposited cylindrical cobalt films. J. Phys.: Condens. Matter 2004, 16, 4725–4741. [Google Scholar] [CrossRef]
- Favieres, C.; Madurga, V. Determination of the thickness of pulsed laser deposited cylindrical Co films by their magnetoelastic effects. J. Appl. Phys. 2004, 96, 1850–1856. [Google Scholar] [CrossRef]
- Bitter, F. Experiments on the Nature of Ferromagnetism. Phys. Rev. 1932, 41, 507–515. [Google Scholar] [CrossRef]
- Favieres, C.; Sánchez, M.; Aroca, C.; López, E.; Sanchez, P. CoP electrodeposited multilayer with varying magnetic anisotropy direction. J. Magn. Magn. Mater. 1995, 140, 591–592. [Google Scholar] [CrossRef]
- Heczko, O.; Jurek, K.; Ullakko, K. Magnetic properties and domain structure of magnetic shape memory Ni–Mn–Ga alloy. J. Magn. Magn. Mater. 2001, 226, 996–998. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.; Zhang, B.; Rong, L.; Li, Y. Magnetic domain structure and damping capacity of Fe-13Cr-2.5Mo alloy. Mater. Sci. Eng. B 2010, 171, 40–44. [Google Scholar] [CrossRef]
- De Abril, O.; Sánchez, M.D.C.; Aroca, C. The effect of the in-plane demagnetizing field on films with weak perpendicular magnetic anisotropy. J. Appl. Phys. 2006, 100, 63904. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; Wiley, IEEE Press: Piscataway, NJ, USA, 2009. [Google Scholar]
- Qiu, Z.; Bader, S.D. Surface magneto-optic Kerr effect (SMOKE). J. Magn. Magn. Mater. 1999, 200, 664–678. [Google Scholar] [CrossRef]
- Chen, C.J. Introduction to Scanning Tunneling Microscopy; Oxford University Press: Piscataway, NJ, USA, 2008. [Google Scholar]
- Horcas, I.; Ferná, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gomez-Herrero, J.; Baró, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 13705. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambrigde University Press: London, UK, 2009. [Google Scholar]
- Shtrikman, S.; Treves, D. Internal Structure of Bloch Walls. J. Appl. Phys. 1960, 31, 147. [Google Scholar] [CrossRef]
- Proksch, R.; Foss, S.; Dahlberg, E.D.; Prinz, G. Magnetic fine structure of domain walls in iron films observed with a magnetic force microscope. J. Appl. Phys. 1994, 75, 5776–5778. [Google Scholar] [CrossRef]
- Methfessel, S.; Middelhoek, S.; Thomas, H. Domain Walls in Thin Magnetic Ni-Fe Films. J. Appl. Phys. 1960, 31, S302–S304. [Google Scholar] [CrossRef]
- Freiser, M.J. On the Zigzag Form of Charged Domain Walls. IBM J. Res. Dev. 1979, 23, 330–338. [Google Scholar] [CrossRef]
- Middelhoek, S. Domain Walls in Thin Ni–Fe Films. J. Appl. Phys. 1963, 34, 1054–1059. [Google Scholar] [CrossRef]
- Prutton, M. Thin Ferromagnetic Films; Butterworth: Washington, DC, USA, 1964. [Google Scholar]
- Jen, S.; Wu, T.; Yu, C. Intrinsic coercivities of molecular beam epitaxy grown single-crystal Ni films on Ag buffer layer. Appl. Surf. Sci. 2005, 252, 1934–1940. [Google Scholar] [CrossRef]
- Lee, Y.; Koymen, A.R.; Haji-Sheikh, M.J. Discovery of cross-tie walls at saw-tooth magnetic domain boundaries in permalloy films. Appl. Phys. Lett. 1998, 72, 851–852. [Google Scholar] [CrossRef]
- Curland, N.; Speliotis, D.E. Transition Region in Recorded Magnetization Patterns. J. Appl. Phys. 1970, 41, 1099–1101. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favieres, C.; Vergara, J.; Madurga, V. Surface Roughness Influence on Néel-, Crosstie, and Bloch-Type Charged Zigzag Magnetic Domain Walls in Nanostructured Fe Films. Materials 2020, 13, 4249. https://doi.org/10.3390/ma13194249
Favieres C, Vergara J, Madurga V. Surface Roughness Influence on Néel-, Crosstie, and Bloch-Type Charged Zigzag Magnetic Domain Walls in Nanostructured Fe Films. Materials. 2020; 13(19):4249. https://doi.org/10.3390/ma13194249
Chicago/Turabian StyleFavieres, Cristina, José Vergara, and Vicente Madurga. 2020. "Surface Roughness Influence on Néel-, Crosstie, and Bloch-Type Charged Zigzag Magnetic Domain Walls in Nanostructured Fe Films" Materials 13, no. 19: 4249. https://doi.org/10.3390/ma13194249
APA StyleFavieres, C., Vergara, J., & Madurga, V. (2020). Surface Roughness Influence on Néel-, Crosstie, and Bloch-Type Charged Zigzag Magnetic Domain Walls in Nanostructured Fe Films. Materials, 13(19), 4249. https://doi.org/10.3390/ma13194249