Crystallographic Characterisation of Ultra-Thin, or Amorphous Transparent Conducting Oxides—The Case for Raman Spectroscopy
Abstract
:1. Introduction
2. Focal Shift Background Subtraction
3. Proof of Concept and Measuring the Instrumental Constant
4. Example Amorphous Zinc Tin Oxide
- As suspected, the 5:2 molarity of Zn and Sn precursors is not directly transferred into the stoichiometry of the grown oxide, found to be tin rich.
- The spray pyrolysis recipe requires further optimisation, as in magnetron samples the best conductivity in oxygen-rich growth conditions (using SnO targets) was found to be closer to . [44]
- Most importantly the background subtraction method, applied to only 50–100 nm thin amorphous films on glass, allows for the extraction of thin-film spectra good enough to qualitatively estimate the stoichiometry of the film. This will be invaluable in further optimisation of the spray process, as measurement times are significantly shorter for Raman spectroscopy compared to XPS.
5. Example Ultrathin Nanocrystalline Zinc Oxide
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Transparent conductors for solar energy and energy efficiency: a broad-brush picture. Int. J. Nanotechnol. 2009, 6, 785–798. [Google Scholar] [CrossRef]
- Beyer, W.; Hupkes, J.; Stiebig, H. Transparent conducting oxide films for thin film silicon photovoltaics. Thin Solid Films 2007, 516, 147–154. [Google Scholar] [CrossRef]
- Hosono, H. Recent progress in transparent oxide semiconductors: Materials and device application. Thin Solid Films 2007, 515, 6000–6014. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Azens, A.; Hjelm, A.; Kullman, L.; Niklasson, G.A.; Ronnow, D.; Stromme Mattsson, M.; Veszelei, M.; Vaivars, G. Recent advances in electrochromics for smart windows applications. Sol. Energy 1998, 63, 199–216. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef]
- Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35. [Google Scholar] [CrossRef]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 2006, 89, 2123. [Google Scholar] [CrossRef]
- Jeong, J.H.K.J.H.; Jeong, J.H.K.J.H.; Yang, H.W.; Park, J.S.J.S.; Mo, Y.G.Y.G.; Kim, H.D. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl. Phys. Lett. 2007, 91, 3505. [Google Scholar] [CrossRef]
- Hoel, C.A.; Mason, T.O.; Gaillard, J.F.; Poeppelmeier, K.R. Transparent conducting oxides in the ZnO-In2O3-SnO2 system. Chem. Mater. 2010, 22, 3569–3579. [Google Scholar] [CrossRef]
- Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide. Adv. Funct. Mater. 2016, 26, 384–392. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 2010, 11, 044305. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.B.; Hoffman, R.L.; Herman, G.S. High-performance flexible zinc tin oxide field-effect transistors. Appl. Phys. Lett. 2005, 87, 193503. [Google Scholar] [CrossRef]
- Rucavado, E.; Jeangros, Q.; Urban, D.F.; Holovský, J.; Remes, Z.; Duchamp, M.; Landucci, F.; Dunin-Borkowski, R.E.; Körner, W.; Elsässer, C.; et al. Enhancing the optoelectronic properties of amorphous zinc tin oxide by subgap defect passivation: A theoretical and experimental demonstration. Phys. Rev. B 2017, 95, 245204. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lan, W.; Wang, J.; Zhu, R.; Yang, Z.; Ding, D.; Tang, G.; Wang, K.; Su, Q.; Xie, E. Highly flexible, transparent, conductive and antibacterial films made of spin-coated silver nanowires and a protective ZnO layer. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 76, 88–94. [Google Scholar] [CrossRef]
- Göbelt, M.; Keding, R.; Schmitt, S.W.; Hoffmann, B.; Jäckle, S.; Latzel, M.; Radmilović, V.V.; Radmilović, V.R.; Spiecker, E.; Christiansen, S. Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. Nano Energy 2015, 16, 196–206. [Google Scholar] [CrossRef]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide materials for development of integrated gas sensors - A comprehensive review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar] [CrossRef]
- Tynell, T.; Karppinen, M. Atomic layer deposition of ZnO: A review. Semicond. Sci. Technol. 2014, 29, 043001. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.B.R.; Maeng, W.J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 2009, 517, 2563–2580. [Google Scholar] [CrossRef]
- Kamiya, T.; Narushima, S.; Mizoguchi, H.; Shimizu, K.; Ueda, K.; Ohta, H.; Hirano, M.; Hosono, H. Electrical properties and structure of p-type amorphous oxide semiconductor ZnO-Rh2O3. Adv. Funct. Mater. 2005, 15, 968–974. [Google Scholar] [CrossRef]
- Qin, P.L.; Fang, G.J.; He, Q.; Sun, N.H.; Fan, X.; Zheng, Q.; Chen, F.; Wan, J.W.; Zhao, X.Z. Nitrogen doped amorphous chromium oxide: Stability improvement and application for the hole-transporting layer of organic solar cells. Sol. Energ. Mat. Sol. Cells 2011, 95, 1005–1010. [Google Scholar] [CrossRef]
- Fleischer, K.; Caffrey, D.; Farrell, L.; Norton, E.; Mullarkey, D.; Arca, E.; Shvets, I.V. Raman spectra of p-type transparent semiconducting Cr2O3:Mg. Thin Solid Films 2015, 594, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, K.; Norton, E.; Mullarkey, D.; Caffrey, D.; Shvets, I.V. Quantifying the performance of P-type transparent conducting oxides by experimental methods. Materials 2017, 10, 1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, E.; Farrell, L.; Zhussupbekova, A.; Mullarkey, D.; Caffrey, D.; Papanastasiou, D.T.; Oser, D.; Bellet, D.; Shvets, I.V.; Fleischer, K. Bending stability of Cu0.4CrO2 - A transparent p-type conducting oxide for large area flexible electronics. AIP Adv. 2018, 8, 085013. [Google Scholar] [CrossRef] [Green Version]
- Lunca Popa, P.; Crêpellière, J.; Nukala, P.; Leturcq, R.; Lenoble, D. Invisible electronics: Metastable Cu-vacancies chain defects for highly conductive p-type transparent oxide. Appl. Mater. Today 2017. [Google Scholar] [CrossRef]
- Lunca-Popa, P.; Afonso, J.; Grysan, P.; Crêpellière, J.; Leturcq, R.; Lenoble, D. Tuning the electrical properties of the p-type transparent conducting oxide Cu1-xCr1+xO2 by controlled annealing. Sci. Rep. 2018, 8, 7216. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.K.; Rajalakshmi, M.; Ravindran, T.R.; Sivasubramanian, V. Raman spectroscopy of optical phonon confinement in nanostructured materials. J. Raman Spectrosc. 2007, 38, 604–617. [Google Scholar] [CrossRef]
- Roodenko, K.; Goldthorpe, I.A.; McIntyre, P.C.; Chabal, Y.J. Modified phonon confinement model for Raman spectroscopy of nanostructured materials. Phys. Rev. B 2010, 82, 115210. [Google Scholar] [CrossRef]
- John, N.; George, S. Raman Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 95–127. [Google Scholar] [CrossRef]
- Beeman, D.; Tsu, R.; Thorpe, M.F. Structural information from the Raman spectrum of amorphous silicon. Phys. Rev. B 1985, 32, 874–878. [Google Scholar] [CrossRef]
- Vink, R.L.; Barkema, G.T.; van Der Weg, W.F. Raman spectra and structure of amorphous Si. Phys. Rev. B 2001, 63, 115210. [Google Scholar] [CrossRef]
- Ferrari, A.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Esser, N. Analysis of semiconductor surface phonons by Raman spectroscopy. Appl. Phys. A Mater. Sci. Process. 1999, 69, 507–518. [Google Scholar] [CrossRef]
- Fleischer, K.; Chandola, S.; Esser, N.; Richter, W.; McGilp, J.F. Phonon and polarized reflectance spectra from Si(111) - (4 × 1)In: Evidence for a charge-density-wave driven phase transition. Phys. Rev. B 2003, 67, 235318. [Google Scholar] [CrossRef]
- Liebhaber, M.; Bass, U.; Bayersdorfer, P.; Geurts, J.; Speiser, E.; Räthel, J.; Baumann, A.; Chandola, S.; Esser, N. Surface phonons of the Si(111)-(7 × 7) reconstruction observed by Raman spectroscopy. Phys. Rev. B 2014, 89, 045313. [Google Scholar] [CrossRef]
- Lieber, C.A.; Mahadevan-Jansen, A. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 2003, 57, 1363–1367. [Google Scholar] [CrossRef]
- Schulze, H.G.; Foist, R.B.; Okuda, K.; Ivanov, A.; Turnera, R.F.B. A small-window moving average-based fully automated baseline estimation method for raman spectra. Appl. Spectrosc. 2012, 66, 757–764. [Google Scholar] [CrossRef]
- Schulze, H.G.; Foist, R.B.; Okuda, K.; Ivanov, A.; Turner, R.F. A model-free, fully automated baseline-removal method for raman spectra. Appl. Spectrosc. 2011, 65, 75–84. [Google Scholar] [CrossRef]
- Tomba, J.P.; Arzondo, L.M.; Pastor, J.M. Depth profiling by confocal Raman microspectroscopy: Semi-empirical modeling of the Raman response. Appl. Spectrosc. 2007, 61, 177–185. [Google Scholar] [CrossRef]
- Zhang, W.R.; Lowe, C.; Smith, R. Depth profiling of clear coil coating by confocal Raman microscopy. Prog. Org. Coat. 2009, 66, 141–148. [Google Scholar] [CrossRef]
- Everall, N.J. Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl. Spectrosc. 2000, 54, 773–782. [Google Scholar] [CrossRef]
- Verre, R.; Svedendahl, M.; Shvets, I.V.; Odebo Länk, N.; Maccaferri, N.; Käll, M.; Dmitriev, A.; Vavassori, P.; Fleischer, K. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. Nanoscale 2016, 8, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Zhussupbekova, A.; Kaisha, A.; Vijayaraghavan, R.K.; Fleischer, K.; Shvets, I.V.; Caffrey, D. Importance of Local Bond Order to Conduction in Amorphous, Transparent, Conducting Oxides: The Case of Amorphous ZnSnOy. ACS Appl. Mater. Interfaces 2019, 11, 44399. [Google Scholar] [CrossRef] [PubMed]
- Damen, T.C.; Porto, S.P.S.; Tell, B. Raman effect in zinc oxide. Phys. Rev. 1966, 142, 570–574. [Google Scholar] [CrossRef]
- Scott, J.F. Raman Spectrum of SnO2. J. Chem. Phys. 1970, 53, 852–853. [Google Scholar] [CrossRef]
- Eifert, B.; Becker, M.; Reindl, C.T.; Giar, M.; Zheng, L.; Polity, A.; He, Y.; Heiliger, C.; Klar, P.J. Raman studies of the intermediate tin-oxide phase. Phys. Rev. Mater. 2017, 1, 014602. [Google Scholar] [CrossRef]
- Gouadec, G.; Colomban, P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 2007, 53, 1–56, and references therein. [Google Scholar] [CrossRef] [Green Version]
- Rajalakshmi, M.; Arora, A.K.; Bendre, B.S.; Mahamuni, S. Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys. 2000, 87, 2445–2448. [Google Scholar] [CrossRef]
- Wróbel, J.; Kurzydłowski, K.J.; Hummer, K.; Kresse, G.; Piechota, J. Calculations of ZnO properties using the Heyd-Scuseria-Ernzerhof screened hybrid density functional. Phys. Rev. B 2009, 80. [Google Scholar] [CrossRef]
- Lan, T.; Li, C.W.; Fultz, B. Phonon anharmonicity of rutile SnO2 studied by Raman spectrometry and first principles calculations of the kinematics of phonon-phonon interactions. Phys. Rev. B 2012, 86, 134302. [Google Scholar] [CrossRef] [Green Version]
- Bora, T.; Al-Hinai, M.H.; Al-Hinai, A.T.; Dutta, J. Phase Transformation of Metastable ZnSnO3 Upon Thermal Decomposition by In-Situ Temperature-Dependent Raman Spectroscopy. J. Am. Ceram. Soc. 2015, 98, 4044–4049. [Google Scholar] [CrossRef]
- Mauit, O.; Caffrey, D.; Ainabayev, A.; Kaisha, A.; Toktarbaiuly, O.; Sugurbekov, Y.; Sugurbekova, G.; Shvets, I.V.; Fleischer, K. Growth of ZnO:Al by atomic layer deposition: Deconvoluting the contribution of hydrogen interstitials and crystallographic texture on the conductivity. Thin Solid Films 2019, 690, 137533. [Google Scholar] [CrossRef]
- Mora-Fonz, D.; Shluger, A.L. Making amorphous ZnO: Theoretical predictions of its structure and stability. Phys. Rev. B 2019, 99, 014202. [Google Scholar] [CrossRef] [Green Version]
- Moriga, T.; Hayashi, Y.; Kondo, K.; Nishimura, Y.; Murai, K.i.; Nakabayashi, I.; Fukumoto, H.; Tominaga, K. Transparent conducting amorphous Zn–Sn–O films deposited by simultaneous dc sputtering. J. Vac. Sci. Technol. A Vac. Surfaces Film. 2004, 22, 1705–1710. [Google Scholar] [CrossRef]
- Yue, S.; Lu, J.; Lu, R.; Li, S.; Li, X.; Zhang, J.; Chen, L.; Ye, Z. Ultrathin amorphous ZnGexSnO films for high performance ultra-thin-film transistors. Appl. Phys. Lett. 2018, 113, 013504. [Google Scholar] [CrossRef]
- Korepanov, V.I.; Chan, S.Y.; Hsu, H.C.; Hamaguchi, H.o. Phonon confinement and size effect in Raman spectra of ZnO nanoparticles. Heliyon 2019, 5, e01222. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, D.N.; Hortelano, V.; Martínez, O.; Martínez-Tomas, M.C.; Sallet, V.; Muñoz-Sanjosé, V.; Jiménez, J. Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J. Phys. D. Appl. Phys. 2013, 46, 235302. [Google Scholar] [CrossRef]
Method | x | (nm) | (S/cm) | T (%) | R (%) | (%) |
---|---|---|---|---|---|---|
Sputter (Sn, ZnO) | 0.4 | 90 | 180 | 77 | 23 | 100 |
Sputter (Sn, ZnO) | 0.3 | 89 | 160 | 77 | 22 | 99 |
Spray pyrolysis | 0.43 | 62 | 110 | 77 | 22 | 99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caffrey, D.; Zhussupbekova, A.; Vijayaraghavan, R.K.; Ainabayev, A.; Kaisha, A.; Sugurbekova, G.; Shvets, I.V.; Fleischer, K. Crystallographic Characterisation of Ultra-Thin, or Amorphous Transparent Conducting Oxides—The Case for Raman Spectroscopy. Materials 2020, 13, 267. https://doi.org/10.3390/ma13020267
Caffrey D, Zhussupbekova A, Vijayaraghavan RK, Ainabayev A, Kaisha A, Sugurbekova G, Shvets IV, Fleischer K. Crystallographic Characterisation of Ultra-Thin, or Amorphous Transparent Conducting Oxides—The Case for Raman Spectroscopy. Materials. 2020; 13(2):267. https://doi.org/10.3390/ma13020267
Chicago/Turabian StyleCaffrey, David, Ainur Zhussupbekova, Rajani K. Vijayaraghavan, Ardak Ainabayev, Aitkazy Kaisha, Gulnar Sugurbekova, Igor V. Shvets, and Karsten Fleischer. 2020. "Crystallographic Characterisation of Ultra-Thin, or Amorphous Transparent Conducting Oxides—The Case for Raman Spectroscopy" Materials 13, no. 2: 267. https://doi.org/10.3390/ma13020267
APA StyleCaffrey, D., Zhussupbekova, A., Vijayaraghavan, R. K., Ainabayev, A., Kaisha, A., Sugurbekova, G., Shvets, I. V., & Fleischer, K. (2020). Crystallographic Characterisation of Ultra-Thin, or Amorphous Transparent Conducting Oxides—The Case for Raman Spectroscopy. Materials, 13(2), 267. https://doi.org/10.3390/ma13020267