Under-Drilling versus Hybrid Osseodensification Technique: Differences in Implant Primary Stability and Bone Density of the Implant Bed Walls
Abstract
:1. Background
2. Materials and Methods
2.1. Sample Distribution
Δ2
k = 1
2.2. Experimental Procedures
2.2.1. Implant Bed Preparation
2.2.2. Implants
2.2.3. Implant Insertion
2.2.4. IPS Evaluation
2.2.5. Evaluation of Bone Density
2.3. Statistical Analysis
3. Results
3.1. Implant Primary Stability
3.2. Micro-CT Evaluation
4. Discussion
5. Conclusions
- -
- Preparing the implant bed using the UD technique with drills with a similar geometry to the implant being inserted provides superior implant primary stability (IPS) than using universal osseodensification drills with UD;
- -
- Preparing the implant bed using the OD technique with universal drills changes the bone microarchitecture and increases the bone density in the middle and apical areas of the implant bed;
- -
- Implant bed preparation with the UD technique using drills of the same system does not change the bone microarchitecture or the bone density;
- -
- The insertion of an implant with a wider diameter and the same geometry as the drill changes the bone microarchitecture and increases the bone density in the middle and apical regions of the implant bed.
Author Contributions
Funding
Conflicts of Interest
References
- Sakka, S.; Baroudi, K.; Nassani, M. Factors associated with early and late failure of dental implants. J. Investig. Clin. Dent. 2012, 3, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Ahmed, H.; Crespi, R.; Romanos, G. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv. Med. Appl. Sci. 2013, 5, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Meredith, N. Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 1998, 11, 491–501. [Google Scholar] [PubMed]
- Malchiodi, L.; Balzani, L.; Cucchi, A.; Ghensi, P.; Nocini, P. Primary and Secondary Stability of Implants in Postextraction and Healed Sites: A Randomized Controlled Clinical Trial. Int. J. Oral Maxillofac. Implants 2016, 31, 1435–1443. [Google Scholar] [CrossRef]
- Tettamanti, L.; Andrisani, C.; Bassi, M.; Vinci, R.; Silvestre-Rangil, J.; Tagliabue, A. Immediate loading implants: Review of the critical aspects. Oral Implantol. 2017, 10, 129–139. [Google Scholar] [CrossRef]
- Götz, W.; Gedrange, T.; Bourauel, C.; Hasan, I. Clinical, biomechanical and biological aspects of immediately loaded dental implants: A critical review of the literature. Biomed. Tech. 2010, 55, 311–315. [Google Scholar] [CrossRef]
- Duyck, J.; Vandamme, K.; Geris, L.; Van Oosterwyck, H.; De Cooman, M.; Vandersloten, J.; Puers, R.; Naert, I. The influence of micro-motion on the tissue differentiation around immediately loaded cylindrical turned titanium implants. Arch. Oral Biol. 2006, 51, 1–9. [Google Scholar] [CrossRef]
- Szmukler-Moncler, S.; Dubruille, J. Is osseointegration a requirement for success in implant dentistry? Clin. Mater. 1990, 5, 201–208. [Google Scholar] [CrossRef]
- Gerds, T.; Vogeler, M. Endpoints and survival analysis for successful osseointegration of dental implants. Stat. Methods Med. Res. 2005, 14, 579–590. [Google Scholar] [CrossRef]
- Albrektsson, T.; Wennerberg, A. On osseointegration in relation to implant surfaces. Clin. Implant Dent. Relat. Res. 2019, 21S, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Merheb, J.; Vercruyssen, M.; Coucke, W.; Quirynen, M. Relationship of implant stability and bone density derived from computerized tomography images. Clin. Implant Dent. Relat. Res. 2018, 20, 50–57. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Sennerby, L.; Meredith, N. Measurements comparing the initial stability of five designs of dental implants: A human cadaver study. Clin. Implant Dent. Relat. Res. 2000, 2, 85–92. [Google Scholar] [CrossRef]
- Falco, A.; Berardini, M.; Trisi, P. Correlation Between Implant Geometry, Implant Surface, Insertion Torque, and Primary Stability: In Vitro Biomechanical Analysis. Int. J. Oral Maxillofac. Implants 2018, 33, 824–830. [Google Scholar] [CrossRef]
- Díaz-Sánchez, R.; Delgado-Muñoz, J.; Hita-Iglesias, P.; Pullen, K.T.; Serrera-Figallo, M.Á.; Torres-Lagares, D. Improvement in the Initial Implant Stability Quotient Through Use of a Modified Surgical Technique. J. Oral Implantol. 2017, 43, 186–193. [Google Scholar] [CrossRef]
- Falisi, G.; Severino, M.; Rastelli, C.; Bernardi, S.; Caruso, S.; Galli, M.; Lamazza, L.; Di Paolo, C. The effects of surgical preparation techniques and implant macro-geometry on primary stability: An in vitro study. Med. Oral Patol. Oral Cir. Bucal 2017, 22, e201–e206. [Google Scholar] [CrossRef]
- Dereka, X.; Calciolari, E.; Donos, N.; Mardas, N. Osseointegration in osteoporotic-like condition: A systematic review of preclinical studies. J. Periodontal Res. 2018, 53, 933–940. [Google Scholar] [CrossRef]
- Kremers, H.; Lewallen, E.; van Wijnen, A.; Lewallen, D. Clinical Factors, Disease Parameters, and Molecular Therapies Affecting Osseointegration of Orthopedic Implants. Curr. Mol. Biol. Rep. 2016, 2, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Elias, C.; Meirelles, L. Improving osseointegration of dental implants. Expert Rev. Med. Devices 2010, 7, 241–256. [Google Scholar] [CrossRef]
- Lekholm, U.; Zarb, G. Patient selection and preparation. In Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry; Brånemark, P.I., Zarb, G.A., Alberktsson, T., Eds.; Quintessence: Chicago, IL, USA, 1985; pp. 199–209. [Google Scholar]
- Hao, Y.; Zhao, W.; Wang, Y.; Yu, J.; Zou, D. Assessments of jaw bone density at implant sites using 3D cone-beam computed tomography. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1398–1403. [Google Scholar]
- Hsu, J.; Huang, H.; Chang, C.; Tsai, M.; Hung, W.; Fuh, L. Relationship of three-dimensional bone-to-implant contact to primary implant stability and peri-implant bone strain in immediate loading: Microcomputed tomographic and in vitro analyses. Int. J. Oral Maxillofac. Implants 2013, 28, 367–374. [Google Scholar] [CrossRef]
- Strub, J.; Jurdzik, B.; Tuna, T. Prognosis of immediately loaded implants and their restorations: A systematic literature review. J. Oral Rehabil. 2012, 39, 704–717. [Google Scholar] [CrossRef]
- Albrektsson, T.; Branemark, P.; Hansson, H.; Lindstrom, J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop. Scand. 1981, 52, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Huwais, S.; Meyer, E. A novel osseous densification approach in implant osteotomy preparation to increase biomechanical primary stability, bone mineral density, and bone-to-implant contact. Int. J. Oral Maxillofac. Implant. 2017, 32, 27–36. [Google Scholar] [CrossRef]
- Pikos, M.; Miron, R. Osseodensification: An Overview of Scientific Rationale and Biological Background. Compend. Contin. Educ. Dent. 2019, 40, 217–222. [Google Scholar]
- Bilhan, H.; Geckili, O.; Mumcu, E.; Bozdag, E.; Sünbüloğlu, E.; Kutay, O. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone. J. Oral Rehabil. 2010, 37, 900–907. [Google Scholar] [CrossRef]
- Trisi, P.; Berardini, M.; Falco, A.; Podaliri Vulpiani, M. New Osseodensification Implant Site Preparation Method to Increase Bone Density in Low-Density Bone: In Vivo Evaluation in Sheep. Implant Dent. 2016, 25, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Pai, U.; Rodrigues, S.; Talreja, K.; Mundathaje, M. Osseodensification—A novel approach in implant dentistry. J. Indian Prosthodont Soc. 2018, 18, 196–200. [Google Scholar] [CrossRef]
- Beer, A.; Gahleitner, A.; Holm, A.; Birkfellner, W.; Homolka, P. Adapted preparation technique for screw-type implants: Explorative in vitro pilot study in a porcine bone model. Clin. Oral Implants Res. 2007, 18, 103–107. [Google Scholar] [CrossRef]
- Degidi, M.; Daprile, G.; Piattelli, A. Influence of under preparation on primary stability of implants inserted in poor quality bone sites: An in vitro study. J. Oral Maxillofac. Surg. 2015, 73, 1084–1088. [Google Scholar] [CrossRef]
- Frisardi, G.; Barone, S.; Razionale, A.; Paoli, A.; Frisardi, F.; Tullio, A.; Lumbau, A.; Chessa, G. Biomechanics of the press-fit phenomenon in dental implantology: An image-based finite element analysis. Head Face Med. 2012, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Bashutski, J.; D’Silva, N.; Wang, H. Implant compression necrosis: Current understanding and case report. J. Periodontol. 2009, 80, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Martinez, H.; Davarpanah, M.; Missika, P.; Celletti, R.; Lazzara, R. Optimal implant stabilization in low density bone. Clin. Oral Implants Res. 2001, 12, 423–432. [Google Scholar] [CrossRef]
- Norton, M. The influence of insertion torque on the survival of immediately placed and restored single-tooth implants. Int. J. Oral Maxillofac. Implants 2011, 26, 1333–1343. [Google Scholar]
- Calvo-Guirado, J.; Delgado-Peña, J.; Maté-Sánchez, J.; Mareque Bueno, J.; Delgado-Ruiz, R.; Romanos, G. Novel hybrid drilling protocol: Evaluation for the implant healing—Thermal changes, crestal bone loss, and bone-to-implant contact. Clin. Oral Implants Res. 2015, 26, 753–760. [Google Scholar] [CrossRef]
- Ha, J.; Osher, S.; Nishimura, I. Mathematical filtering minimizes metallic halation of titanium implants in MicroCT images. J. Calif. Dent. Assoc. 2013, 41, 41–45. [Google Scholar]
- Rantalainen, T.; Nikander, R.; Heinonen, A.; Daly, R.M.; Sievanen, H. An open source approach for regional cortical bone mineral density analysis. J. Musculoskelet. Neuronal Interact. 2011, 11, 243–248. [Google Scholar]
- Oliscovicz, N.; Shimano, A.; Marcantonio Junior, E.; Lepri, C.; Dos Reis, A. Analysis of primary stability of dental implants inserted in different substrates using the pullout test and insertion torque. Int. J. Dent. 2013, 2013, 194987. [Google Scholar] [CrossRef] [Green Version]
- El-Brawany, M.; Nassiri, D.; Terhaar, G.; Shaw, A.; Rivens, I.; Lozhken, K. Measurement of thermal and ultrasonic properties of some biological tissues. J. Med. Eng. Technol. 2009, 33, 249–256. [Google Scholar] [CrossRef]
- Shalabi, M.; Wolke, J.; Jansen, J. The effects of implant surface roughness and surgical technique on implant fixation in an in vitro model. Clin. Oral Implants Res. 2006, 17, 172–178. [Google Scholar] [CrossRef]
- González-Martín, O.; Lee, E.A.; Veltri, M. CBCT fractal dimension changes at the apex of immediate implants placed using undersized drilling. Clin. Oral Implants Res. 2012, 23, 954–957. [Google Scholar] [CrossRef]
- Marin, C.; Bonfante, E.; Granato, R.; Neiva, R.; Gil, L.F.; Marão, H.F.; Suzuki, M.; Coelho, P.G. The Effect of Osteotomy Dimension on Implant Insertion Torque, Healing Mode, and Osseointegration Indicators: A Study in Dogs. Implant Dent. 2016, 25, 739–743. [Google Scholar] [CrossRef] [Green Version]
- Pantani, F.; Botticelli, D.; Garcia, I.R., Jr.; Salata, L.; Borges, G.; Lang, N. Influence of lateral pressure to the implant bed on osseointegration: An experimental study in dogs. Clin. Oral Implants Res. 2010, 21, 1264–1270. [Google Scholar] [CrossRef]
- Lahens, B.; Neiva, R.; Tovar, N.; Alifarag, A.M.; Jimbo, R.; Bonfante, E.A.; Bowers, M.M.; Cuppini, M.; Freitas, H.; Witek, L.; et al. Biomechanical and histologic basis of osseodensification drilling for endosteal implant placement in low density bone. An experimental study in sheep. J. Mech. Behav. Biomed. Mater. 2016, 63, 56–65. [Google Scholar] [CrossRef]
- Oliveira, P.; Bergamo, E.; Neiva, R.; Bonfante, E.A.; Witek, L.; Tovar, N.; Coelho, P.G. Osseodensification outperforms conventional implant subtractive instrumentation: A study in sheep. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 300–307. [Google Scholar] [CrossRef]
- Tian, J.; Neiva, R.; Coelho, P.; Witek, L.; Tovar, N.M.; Lo, I.C.; Gil, L.F.; Torroni, A. Alveolar Ridge Expansion: Comparison of Osseodensification and Conventional Osteotome Techniques. J. Craniofac. Surg. 2018. [Google Scholar] [CrossRef]
- Esposito, M.; Grusovin, M.; Chew, Y.; Coulthard, P.; Worthington, H. One-stage versus two-stage implant placement. A Cochrane systematic review of randomised controlled clinical trials. Eur. J. Oral Implantol. 2009, 2, 91–99. [Google Scholar]
- Hakim, S.; Glanz, J.; Ofer, M.; Steller, D.; Sieg, P. Correlation of cone beam CT-derived bone density parameters with primary implant stability assessed by peak insertion torque and periotest in the maxilla. J. Cranio Maxillofac. Surg. 2019, 47, 461–467. [Google Scholar] [CrossRef]
- Romanos, G.E.; Bastardi, D.J.; Kakar, A.; Moore, R.; Delgado-Ruiz, R.A.; Javed, F. In vitro comparison of resonance frequency analysis devices to evaluate implant stability of narrow diameter implants at varying drilling speeds in dense artificial bone blocks. Clin. Implant Dent. Relat. Res. 2019. [Google Scholar] [CrossRef]
- Salatti, D.; Pelegrine, A.; Gehrke, S.; Teixeira, M.; Moshaverinia, A.; Moy, P. Is there a need for standardization of tightening force used to connect the transducer for resonance frequency analysis in determining implant stability? Int. J. Oral Maxillofac. Implants 2019, 34, 886–890. [Google Scholar] [CrossRef]
- Slete, F.; Olin, P.; Prasad, H. Histomorphometric Comparison of 3 Osteotomy Techniques. Implant Dent. 2018, 27, 424–428. [Google Scholar] [CrossRef]
- Tretto, P.; Fabris, V.; Cericato, G.; Sarkis-Onofre, R.; Bacchi, A. Does the instrument used for the implant site preparation influence the bone-implant interface? A systematic review of clinical and animal studies. Int. J. Oral Maxillofac. Surg. 2019, 48, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witek, L.; Neiva, R.; Alifarag, A.; Shahraki, F.; Sayah, G.; Tovar, N.; Lopez, C.D.; Gil, L.; Coelho, P.G. Absence of Healing Impairment in Osteotomies Prepared via Osseodensification Drilling. Int. J. Periodontics Restor. Dent. 2019, 39, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Rühli, F.; Kuhn, G.; Evison, R.; Müller, R.; Schultz, M. Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. Am. J. Phys. Anthropol. 2007, 133, 1099–1111. [Google Scholar] [CrossRef]
- Britz, H.; Jokihaara, J.; Leppänen, O.; Järvinen, T.; Cooper, D. 3D visualization and quantification of rat cortical bone porosity using a desktop micro-CT system: A case study in the tibia. J. Microsc. 2010, 240, 32–37. [Google Scholar] [CrossRef]
- Al-Sabbagh, M.; Eldomiaty, W.; Khabbaz, Y. Can Osseointegration Be Achieved Without Primary Stability? Dent. Clin. N. Am. 2019, 63, 461–473. [Google Scholar] [CrossRef]
IT (Insertion Torque) (Ncm) | Sample Size | Mean | Median | Sum of Ranks |
Test A | 20 | 25.246 | 25.717 | 480 |
UD + OD (Versah) | - | - | - | - |
Test B | 20 | 32.611 * | 33.042 | 652 |
UD (Zimmer) | - | - | - | - |
H | 10.250 | H (corrected) | ||
Degrees of Freedom (DoF) | 1 | N | ||
p-value | 0.0038 * | |||
PTV (Periotest value) | Sample Size | Mean | Median | Sum of Ranks |
Test A UD + OD (Versah) | 20 | −2.4025 | −2.675 | 516 |
Test B UD (Zimmer) | 20 | −4.69833 * | −4.65 | 304 |
H | 8.22146 | H (corrected) | ||
DoF | 1 | N | ||
p-value | 0.00414 * | |||
ISQ (Implant Stability Quotient) | Sample Size | Mean | Median | Sum of Ranks |
Test A UD + OD (Versah) | 20 | 63.05 | 68.5 | 280.5 |
Test B UD (Zimmer) | 20 | 78.55 * | 82 | 539.5 |
H | 12.27091 | H (corrected) | ||
DoF | 1 | N | ||
p-value | 0.0046 * |
Implant Bed Walls Transversal Density Measurements | Test Aa Mean ± SD (n = 10) | Test Bb Mean ± SD (n = 10) | Controlc Mean ± SD (n = 10) | p-Value |
Coronal | 221 ± 8 | 214 ± 7 | 208 ± 6 | (a vs. b p = 0.052) |
(a vs. c p = 0.051) | ||||
(b vs. c p = 0.06) | ||||
Middle | 218 ± 10b,c | 186 ± 11 c | 160 ± 12 | (a vs. b p = 0.042 *) |
(a vs. c p = 0.024 *) | ||||
(b vs. c p = 0.032 *) | ||||
Apical | 232 ± 9b,c | 215 ± 8 c | 189 ± 10 | (a vs. b p = 0.049 *) |
(a vs. c p = 0.033 *) | ||||
(b vs. c p = 0.047 *) | ||||
Implant Bed Walls Sagittal Bone Density Measurements | Test Aa Mean ± SD (n = 10) | Test Bb Mean ± SD (n = 10) | Controlc Mean ± SD (n = 10) | p-Value |
Coronal | 231 ± 5 | 229 ± 3 | 226 ± 4 | (a vs. b p = 0.058) |
(a vs. c p = 0.06) | ||||
(b vs. c p = 0.063) | ||||
Middle | 204 ± 9b,c | 194 ± 1 | 186 ± 3 | (a vs. b p = 0.046 *) |
(a vs. c p = 0.036 *) | ||||
(b vs. c p = 0.05 *) | ||||
Apical | 221 ± 3b,c | 209 ± 2 c | 199 ± 5 | (a vs. b p = 0.048 *) |
(a vs. c p = 0.031 *) | ||||
(b vs. c p = 0.046 *) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Ruiz, R.; Gold, J.; Somohano Marquez, T.; Romanos, G. Under-Drilling versus Hybrid Osseodensification Technique: Differences in Implant Primary Stability and Bone Density of the Implant Bed Walls. Materials 2020, 13, 390. https://doi.org/10.3390/ma13020390
Delgado-Ruiz R, Gold J, Somohano Marquez T, Romanos G. Under-Drilling versus Hybrid Osseodensification Technique: Differences in Implant Primary Stability and Bone Density of the Implant Bed Walls. Materials. 2020; 13(2):390. https://doi.org/10.3390/ma13020390
Chicago/Turabian StyleDelgado-Ruiz, Rafael, Joshua Gold, Tanya Somohano Marquez, and Georgios Romanos. 2020. "Under-Drilling versus Hybrid Osseodensification Technique: Differences in Implant Primary Stability and Bone Density of the Implant Bed Walls" Materials 13, no. 2: 390. https://doi.org/10.3390/ma13020390
APA StyleDelgado-Ruiz, R., Gold, J., Somohano Marquez, T., & Romanos, G. (2020). Under-Drilling versus Hybrid Osseodensification Technique: Differences in Implant Primary Stability and Bone Density of the Implant Bed Walls. Materials, 13(2), 390. https://doi.org/10.3390/ma13020390