Alloying and Processing Effects on the Microstructure, Mechanical Properties, and Degradation Behavior of Extruded Magnesium Alloys Containing Calcium, Cerium, or Silver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Casting and Extrusion
2.2. Characterization
2.3. Degradation and Cytocompatibility Tests
3. Results
3.1. Extrusion Experiments
3.2. Characterization of Mg-Zn-Ca (Zr) Alloys: ZX-Series
3.3. Characterization of Mg-Zn-Ce Alloys: ZE-Series
3.4. Characterization of Mg-Ag-Ca (Zr) Alloys: QX-Series
3.5. Degradation and Cytocompatibility Tests
4. Discussion
4.1. Processing Effects and Microstructure Development during Extrusion
4.2. Influence of the Alloy Composition on the Microstructure Development
4.3. Alloying Impact on the Mechanical Behavior
4.4. Alloy Specific Degradation Behavior and Cytocompatibility
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Friedrich, H.; Schumann, S. Research for a “new age of magnesium” in the automotive industry. J. Mater. Proce. Technol. 2001, 117, 276–281. [Google Scholar] [CrossRef]
- Luthringer, B.J.; Feyerabend, F.; Willumeit-Romer, R. Magnesium-based implants: A mini-review. Magnes. Res. 2014, 27, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Sáenz, R.; Rivera-muñoz, E.; Brostow, W.; Castaño, V. Ceramic biomaterials: An introductory overview. J. Mater. Educ. 1999, 21, 297–306. [Google Scholar]
- Kraus, T.; Fischerauer, S.F.; Hänzi, A.C.; Uggowitzer, P.J.; Löffler, J.F.; Weinberg, A.M. Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater. 2012, 8, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.J.; Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557–3563. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.; Griffiths, J.R.; Cáceres, C.H. Hall-Petch parameters in tension and compression in cast Mg–2Zn alloys. J. Alloys Compd. 2004, 378, 188–191. [Google Scholar] [CrossRef]
- Cáceres, C.H.; Blake, A. The Strength of Concentrated Mg–Zn Solid Solutions. Phys. Status Solidi 2002, 194, 147–158. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A. Corrosion Mechanisms of Magnesium Alloys. Adv. Eng. Mater. 1999, 1, 11–33. [Google Scholar] [CrossRef]
- Hillis, J.E. The Effects of Heavy Metal Contamination on Magnesium Corrosion Performance. SAE Int. 1983, 92, 553–559. [Google Scholar]
- Hou, R.; Victoria-Hernandez, J.; Jiang, P.; Willumeit-Römer, R.; Luthringer-Feyerabend, B.; Yi, S.; Letzig, D.; Feyerabend, F. In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomater. 2019, 97, 608–622. [Google Scholar] [CrossRef]
- Emley, E.F. Prinicples of Magnesium Technology; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Harmuth, J.; Wiese, B.; Bohlen, J.; Ebel, T.; Willumeit-Römer, R. Tailoring of Material Properties of Mg-Gd Alloys for Biomedical Applications. In Proceedings of the 11th International Conference on Magnesium Alloys and Their Applications, Old Windsor, UK, 24–27 July 2018; Brunel University Press, Brunel University London: Old Windsor, UK, 2018. [Google Scholar]
- Ahmad Agha, N.; Willumeit-Romer, R.; Laipple, D.; Luthringer, B.; Feyerabend, F. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells. PLoS ONE 2016, 11, e0157874. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, J.; Wang, K.; Neufurth, M.; Schroder, H.C.; Wang, S.; Muller, W.E.G. The morphogenetically active polymer, inorganic polyphosphate complexed with GdCl3, as an inducer of hydroxyapatite formation in vitro. Biochem. Pharmacol. 2016, 102, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Myrissa, A.; Agha, N.A.; Lu, Y.; Martinelli, E.; Eichler, J.; Szakacs, G.; Kleinhans, C.; Willumeit-Romer, R.; Schafer, U.; Weinberg, A.M. In vitro and in vivo comparison of binary Mg alloys and pure Mg. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Zeller-Plumhoff, B.; Malich, C.; Krüger, D.; Campbell, G.; Wiese, B.; Galli, S.; Wennerberg, A.; Willumeit-Römer, R.; Wieland, D.C.F. Analysis of the bone ultrastructure around biodegradable Mg–xGd implants using small angle X-ray scattering and X-ray diffraction. Acta Biomater. 2020, 101, 637–645. [Google Scholar] [CrossRef]
- Mishra, R.K.; Gupta, A.K.; Rao, P.R.; Sachdev, A.K.; Kumar, A.M.; Luo, A.A. Influence of cerium on the texture and ductility of magnesium extrusions. Scr. Mater. 2008, 59, 562–565. [Google Scholar] [CrossRef]
- Nakamura, Y.; Tsumura, Y.; Tonogai, Y.; Shibata, T.; Ito, Y. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam. Appl. Toxicol. 1997, 37, 106–116. [Google Scholar] [CrossRef]
- Marukawa, E.; Tamai, M.; Takahashi, Y.; Hatakeyama, I.; Sato, M.; Higuchi, Y.; Kakidachi, H.; Taniguchi, H.; Sakamoto, T.; Honda, J.; et al. Comparison of magnesium alloys and poly-l-lactide screws as degradable implants in a canine fracture model. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1282–1289. [Google Scholar] [CrossRef]
- Waizy, H.; Seitz, J.-M.; Reifenrath, J.; Weizbauer, A.; Bach, F.-W.; Meyer-Lindenberg, A.; Denkena, B.; Windhagen, H. Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 2013, 48, 39–50. [Google Scholar] [CrossRef]
- Tie, D.; Feyerabend, F.; Müller, W.D.; Schade, R.; Liefeith, K.; Kainer, K.U.; Willumeit, R. Antibacterial biodegradable Mg-Ag alloys. Eur. Cells Mater. 2013, 25, 284–298, discussion 298. [Google Scholar] [CrossRef]
- Liu, Z.; Feyerabend, F.; Bohlen, J.; Willumeit-Römer, R.; Letzig, D. Mechanical properties and degradation behavior of binary magnesium-silver alloy sheets. J. Phys. Chem. Solids 2019, 133, 142–150. [Google Scholar] [CrossRef]
- Tie, D.; Feyerabend, F.; Hort, N.; Hoeche, D.; Kainer, K.U.; Willumeit, R.; Mueller, W.D. In vitro mechanical and corrosion properties of biodegradable Mg–Ag alloys. Mater. Corros. 2014, 65, 569–576. [Google Scholar] [CrossRef]
- Stanford, N. The effect of calcium on the texture, microstructure and mechanical properties of extruded Mg–Mn–Ca alloys. Mater. Sci. Eng. A 2010, 528, 314–322. [Google Scholar] [CrossRef]
- Illkova, K.; Dobroň, P.; Chmelík, F.; Kainer, K.U.; Balík, J.; Yi, S.; Letzig, D.; Bohlen, J. Effect of aluminium and calcium on the microstructure, texture, plastic deformation and related acoustic emission of extruded magnesium–manganese alloys. J. Alloys Compd. 2014, 617, 253–264. [Google Scholar] [CrossRef]
- Victoria-Hernández, J.; Yi, S.; Klaumünzer, D.; Letzig, D. Comparison of the Mechanical Properties and Forming Behavior of Two Texture-Weakened Mg-Sheet Alloys Produced by Twin Roll Casting. Front. Mater. 2019, 6, 288. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.L.; Stanford, C.M.; Keller, J.C. Calcium and phosphate supplementation promotes bone cell mineralization: Implications for hydroxyapatite (HA)-enhanced bone formation. J. Biomed. Mater. Res. 2000, 52, 270–278. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Bettles, C.; Barnett, M. Advances in Wrought Magnesium Alloys; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Bohlen, J.; Nürnberg, M.R.; Senn, J.W.; Letzig, D.; Agnew, S.R. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 2007, 55, 2101–2112. [Google Scholar] [CrossRef] [Green Version]
- Bohlen, J.; Wendt, J.; Nienaber, M.; Kainer, K.U.; Stutz, L.; Letzig, D. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys. Mater. Charact. 2015, 101, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Kree, V.; Bohlen, J.; Letzig, D.; Kainer, K.U. The Metallographical Examination of Magnesium Alloys. Pract. Metallogr. 2004, 41, 233–246. [Google Scholar]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010, 160, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Dobroň, P.; Drozdenko, D.; Olejňák, J.; Hegedüs, M.; Horváth, K.; Veselý, J.; Bohlen, J.; Letzig, D. Compressive yield stress improvement using thermomechanical treatment of extruded Mg-Zn-Ca alloy. Mater. Sci. Eng. A 2018, 730, 401–409. [Google Scholar] [CrossRef]
- ASTM G31-72. Standard Practice for Laboratory Immersion Corrosion Testing of Metals; ASTM International: West Conshohocken, PA, USA, 2004; Volume G31–G72. [Google Scholar]
- Baksh, D.; Yao, R.; Tuan, R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007, 25, 1384–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarugaser, R.; Lickorish, D.; Baksh, D.; Hosseini, M.M.; Davies, J.E. Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells 2005, 23, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Stanford, N.; Barnett, M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater.Sci. Eng. A 2008, 496, 399–408. [Google Scholar] [CrossRef]
- Stanford, N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification—A comparative study. Mater. Sci. Eng. A 2010, 527, 2669–2677. [Google Scholar] [CrossRef]
- Bohlen, J.; Yi, S.; Letzig, D.; Kainer, K.U. Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Mater. Sci. Eng. A 2010, 527, 7092–7098. [Google Scholar] [CrossRef]
- Stanford, N. The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 2—Recrystallisation and texture development. Mater. Sci. Eng. A 2013, 565, 469–475. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of Strain Rate Upon Plastic Flow of Steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Atwell, D.L.; Barnett, M.R. Extrusion Limits of Magnesium Alloys. Metall. Mater. Trans. A 2007, 38, 3032–3041. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cui, Z.; Li, C. Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Comput. Mater. Sci. 2008, 41, 375–382. [Google Scholar] [CrossRef]
- Bauser, M.; Sauer, G.; Siegert, K. Extrusion, 2th ed.; ASM International: Materials Park, OH, USA, 2006. [Google Scholar]
- Zhang, B.P.; Geng, L.; Huang, L.J.; Zhang, X.X.; Dong, C.C. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scr. Mater. 2010, 63, 1024–1027. [Google Scholar] [CrossRef]
- Tong, L.B.; Zheng, M.Y.; Cheng, L.R.; Zhang, D.P.; Kamado, S.; Meng, J.; Zhang, H.J. Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy. Mater. Charact. 2015, 104, 66–72. [Google Scholar] [CrossRef]
- Dillamore, I.L.; Roberts, W.T. Preferred orientation in wrought and annealed metals. Metall. Rev. 1965, 10, 271–380. [Google Scholar]
- Harmuth, J.; Wiese, B.; Bohlen, J.; Ebel, T.; Willumeit-Römer, R. Wide Range Mechanical Customization of Mg-Gd Alloys With Low Degradation Rates by Extrusion. Front. Mater. 2019, 6, 201. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Brokmeier, H.-G.; Letzig, D. Microstructural evolution during the annealing of an extruded AZ31 magnesium alloy. J. Alloys Compd. 2010, 506, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Robson, J.D. Effect of Rare-Earth Additions on the Texture of Wrought Magnesium Alloys: The Role of Grain Boundary Segregation. Metall. Mater. Trans. A 2014, 45, 3205–3212. [Google Scholar] [CrossRef] [Green Version]
- Meza-García, E.; Bohlen, J.; Yi, S.; Letzig, D.; Kräusel, V.; Landgrebe, D.; Kainer, K.U. Influence of Alloying Elements and Extrusion Process Parameter on the Recrystallization Process of Mg-Zn alloys. Mater. Today Proc. 2015, 2, S19–S25. [Google Scholar] [CrossRef]
- Partridge, P.G. The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 1967, 12, 169–194. [Google Scholar]
Alloy Label | Zn | Ce | Ca | Ag | Zr | Fe | Cu | Ni |
---|---|---|---|---|---|---|---|---|
ZX00 | 0.49 | – | 0.35 | – | – | 0.003 | 0.002 | 0.002 |
ZXK000 | 0.52 | – | 0.24 | – | 0.06 | 0.003 | 0.002 | 0.002 |
ZE20 | 2.10 | 0.27 | – | – | – | 0.002 | 0.003 | <0.002 |
ZE21 | 1.96 | 0.72 | – | – | – | 0.003 | 0.002 | <0.002 |
ZE21+ | 1.97 | 1.15 | – | – | – | 0.003 | 0.002 | <0.002 |
QX20 | – | – | 0.41 | 2.00 | – | 0.034 | 0.001 | 0.002 |
QXK100 | – | – | 0.42 | 1.02 | 0.31 | 0.004 | 0.001 | 0.002 |
QXK200 | – | – | 0.41 | 1.94 | 0.27 | 0.004 | 0.001 | 0.001 |
Alloy | Steady State Force (MN) | Extrusion Temperature at the Die (°C) | ||||||
---|---|---|---|---|---|---|---|---|
Extrusion at 250 °C 1 mm/s | Extrusion at 250 °C 5 mm/s | Extrusion at 300 °C 1 mm/s | Extrusion at 300 °C 5 mm/s * | Extrusion at 250 °C 1 mm/s | Extrusion at 250 °C 5 mm/s | Extrusion at 300 °C 1 mm/s | Extrusion at 300 °C 5 mm/s * | |
ZX00 | unstable | 5.2 | 3.6 | 3.3 | unstable | 425 | 400 | 447 |
ZXK000 | unstable | 4.8 | 3.6 | 3.3 | unstable | 430 | n/a | n/a |
ZE20 | 3.5 | 3.5 | 3.0 | 3.0 | 355 | 418 | 368 | 422 |
ZE21 | 3.7 | 3.6 | 3.2 | 3.1 | 364 | 427 | 368 | 423 |
ZE21+ | 3.8 | 3.6 | 3.2 | 3.1 | 366 | 432 | 377 | 429 |
QX20 | unstable | 4.0 | 3.8 | 3.5 * | unstable | 430 | 388 | 424 * |
QXK100 | unstable | 4.0 | 3.7 | 3.5 * | unstable | 433 | 393 | 428 * |
QXK200 | unstable | 4.0 | 3.7 | 3.5 * | unstable | 430 | 392 | 427 * |
Alloy | Condition | TYS (MPa) | UTS (MPa) | Uniform Strain (%) | Fracture Strain (Tension) (%) | CYS (MPa) | UCS (MPa) | Fracture Strain (Comp.) (%) |
---|---|---|---|---|---|---|---|---|
ZX00 | 5 mm/s, 250 °C | 81 (2) | 201 (1) | 23.0 (0.4) | 35.3 (0.9) | 70 (1) | 327 (7) | 23.4 (2.0) |
1 mm/s, 300 °C | 101 (1) | 209 (1) | 19.7 (0.5) | 32.8 (1.2) | 91 (1) | 323 (2) | 17.7 (1.4) | |
5 mm/s, 300 °C | 98 (2) | 205 (1) | 19.7 (0.6) | 29.1 (0.5) | 73 (1) | 311 (3) | 18.5 (0.7) | |
ZXK000 | 5 mm/s, 250 °C | 91 (1) | 207 (1) | 21.1 (0.3) | 35.5 (1.4) | 83 (1) | 317 (3) | 18.3 (1.6) |
1 mm/s, 300 °C | 108 (1) | 212 (1) | 19.0 (0.6) | 32.2 (0.9) | 96 (1) | 323 (2) | 16.4 (0.7) | |
5 mm/s, 300 °C | 101 (2) | 209 (1) | 18.3 (0.3) | 29.5 (0.3) | 78 (1) | 312 (2) | 16.6 (1.5) |
Alloy | Condition | TYS (MPa) | UTS (MPa) | Uniform Strain (%) | Fracture Strain (Tension) (%) | CYS (MPa) | UCS (MPa) | Fracture Strain (Comp.) (%) |
---|---|---|---|---|---|---|---|---|
ZE20 | 1 mm/s, 250 °C | 180 (1) | 254 (1) | 13.0 (0.4) | 26.4 (1.8) | 127 (1) | 392 (7) | 12.0 (1.0) |
5 mm/s, 250 °C | 153 (2) | 235 (1) | 12.0 (0.2) | 25.0 (0.8) | 92 (1) | 350 (2) | 11.7 (1.0) | |
1 mm/s, 300 °C | 173 (1) | 248 (1) | 11.5 (0.3) | 24.4 (0.6) | 109 (1) | 380 (5) | 10.9 (0.3) | |
5 mm/s, 300 °C | 155 (1) | 234 (1) | 11.1 (0.2) | 25.2 (1.5) | 86 (2) | 355 (2) | 11.3 (0.3) | |
ZE21 | 1 mm/s, 250 °C | 213 (5) | 264 (3) | 13.2 (0.2) | 29.1 (3.1) | 147 (1) | 411 (4) | 10.6 (0.8) |
5 mm/s, 250 °C | 163 (1) | 239 (1) | 12.3 (0.1) | 27.1 (2.3) | 111 (2) | 361 (6) | 11.3 (0.9) | |
1 mm/s, 300 °C | 198 (2) | 257 (1) | 11.9 (0.2) | 27.6 (1.3) | 109 (1) | 337 (3) | 10.3 (0.4) | |
5 mm/s, 300 °C | 165 (1) | 239 (1) | 11.3 (0.2) | 27.2 (0.8) | 88 (1) | 302 (1) | 10.2 (0.3) | |
ZE21+ | 1 mm/s, 250 °C | 232 (3) | 272 (2) | 12.2 (0.3) | 26.0 (1.6) | 166 (3) | 420 (9) | 9.9 (0.6) |
5 mm/s, 250 °C | 167 (1) | 238 (1) | 12.3 (0.2) | 26.8 (1.5) | 120 (2) | 367 (4) | 10.9 (0.5) | |
1 mm/s, 300 °C | 218 (2) | 265 (1) | 10.9 (0.3) | 24.9 (1.2) | 113 (1) | 347 (3) | 9.7 (0.3) | |
5 mm/s, 300 °C | 171 (1) | 239 (1) | 10.7 (0.2) | 27.0 (2.0) | 93 (2) | 302 (4) | 10.0 (0.4) |
Alloy | Condition | TYS (MPa) | UTS (MPa) | Uniform Strain (%) | Fracture Strain (Tension) (%) | CYS (MPa) | UCS (MPa) | Fracture Strain (Comp.) (%) |
---|---|---|---|---|---|---|---|---|
QX20 | 5 mm/s, 250 °C | 96 (3) | 220 (1) | 24.2 (0.5) | 33.1 (1.1) | 86 (2) | 337 (9) | 20.4 (1.3) |
1 mm/s, 300 °C | 117 (1) | 227 (1) | 21.9 (0.5) | 33.9 (0.9) | 88 (1) | 289 (4) | 15.6 (0.5) | |
3 mm/s, 300 °C | 114 (1) | 226 (1) | 21.1 (0.5) | 29.8 (1.1) | 79 (1) | 291 (5) | 17.0 (1.5) | |
QXK100 | 5 mm/s, 250 °C | 121 (3) | 218 (1) | 19.5 (1.0) | 27.1 (6.5) | 109 (1) | 313 (2) | 15.2 (0.4) |
1 mm/s, 300 °C | 162 (2) | 233 (1) | 15.9 (0.3) | 30.2 (1.1) | 109 (3) | 291 (3) | 11.5 (0.5) | |
3 mm/s, 300 °C | 140 (2) | 224 (1) | 17.1 (0.4) | 27.6 (2.4) | 97 (1) | 279 (2) | 12.1 (1.0) | |
QXK200 | 5 mm/s, 250 °C | 113 (4) | 228 (1) | 22.4 (0.3) | 27.4 (4.7) | 108 (3) | 322 (6) | 14.8 (1.2) |
1 mm/s, 300 °C | 156 (1) | 242 (1) | 18.3 (0.2) | 31.5 (1.8) | 113 (2) | 295 (5) | 12.0 (0.3) | |
3 mm/s, 300 °C | 139 (1) | 234 (1) | 18.8 (0.2) | 28.2 (1.9) | 100 (1) | 279 (6) | 11.8 (0.7) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohlen, J.; Meyer, S.; Wiese, B.; Luthringer-Feyerabend, B.J.C.; Willumeit-Römer, R.; Letzig, D. Alloying and Processing Effects on the Microstructure, Mechanical Properties, and Degradation Behavior of Extruded Magnesium Alloys Containing Calcium, Cerium, or Silver. Materials 2020, 13, 391. https://doi.org/10.3390/ma13020391
Bohlen J, Meyer S, Wiese B, Luthringer-Feyerabend BJC, Willumeit-Römer R, Letzig D. Alloying and Processing Effects on the Microstructure, Mechanical Properties, and Degradation Behavior of Extruded Magnesium Alloys Containing Calcium, Cerium, or Silver. Materials. 2020; 13(2):391. https://doi.org/10.3390/ma13020391
Chicago/Turabian StyleBohlen, Jan, Sebastian Meyer, Björn Wiese, Bérengère J. C. Luthringer-Feyerabend, Regine Willumeit-Römer, and Dietmar Letzig. 2020. "Alloying and Processing Effects on the Microstructure, Mechanical Properties, and Degradation Behavior of Extruded Magnesium Alloys Containing Calcium, Cerium, or Silver" Materials 13, no. 2: 391. https://doi.org/10.3390/ma13020391
APA StyleBohlen, J., Meyer, S., Wiese, B., Luthringer-Feyerabend, B. J. C., Willumeit-Römer, R., & Letzig, D. (2020). Alloying and Processing Effects on the Microstructure, Mechanical Properties, and Degradation Behavior of Extruded Magnesium Alloys Containing Calcium, Cerium, or Silver. Materials, 13(2), 391. https://doi.org/10.3390/ma13020391