

Article

On the Microstructure and Properties of Nb-18Si-6Mo-5Al-5Cr-2.5W-1Hf Nb-Silicide Based Alloys with Ge, Sn and Ti Additions (at.%)

Jiang Zhao ^{1,2}, Claire Utton ¹ and Panos Tsakiropoulos ^{1,*}

- ¹ Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; zhaojiang6325@hotmail.com (J.Z.); c.utton@sheffield.ac.uk (C.U.)
- ² College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Three Gorges University, Yichang 443002, China
- * Correspondence: p.tsakiropoulos@sheffield.ac.uk

Received: 23 September 2020; Accepted: 6 October 2020; Published: 13 October 2020

	Nb	Ti	Si	Мо	W	Sn	Ge	Hf	Al	Gr
			-		Ascast	-				-
	39.4 ± 0.3	124 ± 0.3	182 ± 07	6.0 ± 0.3	25 ± 0.1	53 ± 03	52 ± 02	1.1 ± 0.1	4.9 ± 0.3	5.0 ± 0.3
Topa	39.1-39.7	122-127	175-19.1	5.7-6.4	24-27	4.8-5.6	49-55	09-13	4.6-5.2	4.7–5.4
D 11 -	39.8 ± 0.4	12.1 ± 0.2	187 ± 0.3	6.0 ± 0.4	23 ± 02	53 ± 03	5.4 ± 0.1	1.0 ± 0.1	4.6 ± 0.3	48 ± 0.3
Bulka	39.3-40.3	11.9-12.5	18.1–19.0	5.7-6.6	2.1-2.6	4.9-5.6	5.3-5.5	0.9–1.1	42-5.0	4.5-5.1
Dellara	382 ± 0.3	12.9 ± 0.1	16.6 ± 0.41	65 ± 0.3	19 ± 02	6.6 ± 0.2	5.0 ± 0.3	1.1 ± 0.1	5.5 ± 0.2	57 ± 0.3
BOttom ^a	37.9-38.6	12.8-13.1	6.1–17.2	6.2-6.8	1.8-2.3	6.5–7.0	45-5.4	1.0-1.2	5.2-5.7	5.5-62
	45.1 ± 0.2	9.6 ± 0.2	282 ± 05	45 ± 0.2	17 ± 0.1	12 ± 0.1	5.7 ± 0.2	0.7 ± 0.1	1.9 ± 0.2	1.4 ± 0.1
IND55B	44.8-45.2	9.4-10.0	27.5-28.5	42-48	1.6-1.9	12-14	5.5-5.9	0.6-0.9	1.7-2.0	12–15
THNC	40.7 ± 1.5	128 ± 1.1	208 ± 1.1	4.7 ± 0.1	13 ± 02	5.0 ± 1.0	5.9 ± 0.3	15 ± 02	4.6 ± 0.4	27 ± 0.5
11-non IND53B	38.3-42.3	11.7-14.6	189-21.6	45-49	0.9–1.5	42-6.8	5.5-6.2	13-18	42-53	23-35
	421 ± 0.3	107 ± 02	25 ± 0.3	142 ± 0.3	83 ± 03	9.1 ± 0.1	1.6 ± 0.2		6.6 ± 0.2	4.9 ± 0.1
ADHNDA	41.7-42.4	10.4-10.9	22-3.0	13.8-14.5	8.0-8.3	9.0-9.3	1.4–1.9	-	65-7.0	4.8-5.0
Tirida A 15	29.8 ± 2.3	$15.1~\pm1.0$	1.1 ± 0.6	144 ± 12	4.6 ± 0.4	125 ± 1.4	09 ± 0.1	0.2 ± 0.1	9.4 ± 0.7	12.0 ± 1.2
IndiAl3	29.0-32.6	14.1–16.3	0.4–1.9	128-149	43-5.4	112-145	0.6-1.0	0.0-0.4	8.7–10.4	10.7–13.8
TM-SmY	23.9	27	1.8	4.6	0.6	25.7	1.6	21	8	5
INBIEA	22.8	27.4	2.6	4.6	0.5	23.8	2.1	22	8.1	5.9
C14 CmNh	22.3 ± 0.6	6.1 ± 0.3	77 ± 0.9	4.9 ± 0.1	3.4 ± 0.3	1.1 ± 0.3	13 ± 02	20 ± 0.3	9.4 ± 1.2	41.8 ± 1
CI FC IAND	21.6-23.2	5.6-6.5	6.9-9.0	4.7-5.0	3.0-3.7	07–1.4	1.1–1.5	1.6-2.3	7.3–10.4	40.4-43.1
				H	leat treated					
Average	39.9 ± 0.3	123 ± 02	182 ± 0.3	5.8 ± 0.3	22 ± 0.1	54 ± 03	5.4 ± 0.3	12 ± 0.1	48 ± 02	48 ± 02
composition ^a	39.4-40.2	11.9-12.5	179-185	5.6-6.3	21-23	5.0-5.4	5.1–5.8	1.0-1.4	46-49	4.6-5.0
NhWh	267 ± 02	5.4 ± 0.1	0	21.8 ± 0.3	29.4 ± 0.2	0.8 ± 0.1	0.1	0.6	32 ± 0.1	12.0 ± 0.1
(1 10,1 1)	26.5-27.0	5.2-5.5	0	21.3-22.2	29.2-29.6	07-09			3.1–3.5	11.8-12.2
Nhsi	39.8 ± 0.2	134 ± 02	208 ± 02	43 ± 0.3	0.6 ± 0.2	5.3 ± 0.1	57 ± 0.1	1.3 ± 0.1	4.8 ± 0.1	4.0 ± 0.1
1 100015	39.6-40.1	132-135	20.6-21.0	40-47	0.4-0.8	5.2-5.5	5.5-5.8	1.2–1.4	4.6-5.0	3.9-4.1
Tirrich Nh-Sie	34.7 ± 0.4	153 ± 0.3	24.1 ± 0.5	37 ± 0.3	_	1.6 ± 0.2	6.8 ± 0.1	43 ± 02	5.6 ± 0.1	3.9 ± 0.2
Internation	34.2-35.1	14.9-15.7	23.4-24.6	3.3-4.0		0.4–1.8	6.6-6.9	40-45	5.5-5.7	3.8-42
A15.Nbx	393 ± 0.1	10.6 ± 0.2	20 ± 02	14.3 ± 0.2	5.6 ± 0.1	10.3 ± 0.1	12 ± 0.1	0.1	7.1 ± 0.1	95 ± 03
1 110-1 1100/1	39.2-39.5	10.4-11.0	1.7–2.2	14.1–14.3	5.4-5.7	102-105	1.0-1.4		7.0-7.0	9.0-9.8
C14.CmNh	25.9 ± 0.4	4.0 ± 0.1	102 ± 03	4.0 ± 0.3	35 ± 03	0.3	1.0 ± 0.2	1.3 ± 0.1	44 ± 02	45.4 ± 0.7
	25.4-26.2	3.8-4.1	9.8-10.5	3.7-4.2	33-37		0.9-1.2	12-14	42-47	44.7-46.1

Table S1. EDS analysis data (at.%) of the alloy JZ4.

Nh-Si	39.8 ± 0.2	13.4 ± 0.2	20.8 ± 0.2	43 ± 03	0.6 ± 0.2	5.3 ± 0.1	5.7 ± 0.1	1.3 ± 0.1	4.8 ± 0.1	4.0 ± 0.1
INDEDIS	39.6-40.1	132-135	20.6-21.0	4.0-4.7	0.4-0.8	52-55	5.5-5.8	1.2-1.4	4.6-5.0	3.9-4.1
Ti wich Nils-Cir	34.7 ± 0.4	153 ± 03	24.1 ± 0.5	37 ± 0.3		1.6 ± 0.2	6.8 ± 0.1	43 ± 02	5.6 ± 0.1	39 ± 02
THICHINDSB	34.2-35.1	14.9–15.7	23.4-24.6	3.3-4.0	-	0.4–1.8	6.6-6.9	40-45	55-5.7	3.8-4.2
	39.3 ± 0.1	10.6 ± 0.2	20 ± 02	14.3 ± 0.2	5.6 ± 0.1	10.3 ± 0.1	1.2 ± 0.1	0.1	7.1 ± 0.1	95 ± 0.3
ADHNDA	392-39.5	10.4-11.0	1.7-2.2	14.1–14.3	5.4-5.7	102-105	1.0-1.4		7.0–7.0	9.0-9.8
C14 CmNIb	25.9 ± 0.4	4.0 ± 0.1	102 ± 0.3	4.0 ± 0.3	35 ± 0.3	0.3	1.0 ± 0.2	1.3 ± 0.1	4.4 ± 0.2	45.4 ± 0.7
C14-C121ND	25.4-26.2	3.8-4.1	9.8-10.5	3.7-4.2	33-37		0.9–1.2	12-1.4	42-47	44.7-46.1

a = large area analysis.

Table S2. EDS analysis data (at.%) for the alloy JZ5.

	Nb	Ti	Si	Мо	W	Sn	Ge	Hf	Al	Gr
					Ascast					
T. A	31.7 ± 0.6	20.6 ± 0.6	19.4 ± 1.0	63 ± 02	13 ± 02	5.4 ± 0.3	52 ± 0.1	0.9 ± 0.1	45 ± 0.3	4.7 ± 0.3
Iop	31.232.4	20.0-21.5	18.4-20.9	6.0-6.6	1.0-1.5	5.0-5.8	5.1–5.3	0.8–1.0	4.2-5.0	42-49
								00 1 01		
Bulka	32.8 ± 1.4	19.9 ± 0.6	198 ± 19	63 ± 0.5	13 ± 03	53 ± 1.0	5.3 ± 0.1	0.8 ± 0.1	4.1 ± 0.5	44 ± 0.5
Duix	31.1–33.9	19.3–20.7	172–21.7	6.0–7.1	1.0-1.6	45-64	52-55	0.7–0.9	3.6-4.7	3.9-5.1
D ::	31.5 ± 0.7	20.6 ± 0.5	18.3 ± 0.9	63 ± 0.1	0.8 ± 0.1	65 ± 0.4	5.1 ± 0.4	0.9 ± 0.1	48 ± 0.4	52 ± 0.7
Bottom ^a	30.3-32.2	202-212	173-192	6.1-6.4	0.7-0.9	6.0-6.9	4.7–5.4	0.8–1.0	4.4-5.2	4.7-6.4
NIL C'	379 ± 05	169 ± 05	28.1 ± 0.6	49 ± 02	1.0 ± 0.1	12 ± 02	62 ± 02	0.8 ± 0.1	1.6 ± 0.2	1.4 ± 0.1
INDEDIB	3.73-38.6	163-17.4	27.5-28.8	4.5-5.1	1.0-1.1	0.9–1.5	5.7-6.3	0.7-0.9	1.4-1.8	13-14
Ti wide Nla-Cia	31.1 ± 0.6	21.9 ± 0.6	183 ± 03	53 ± 02	13 ± 0.1	62 ± 02	6.6 ± 0.1	13 ± 02	5.0 ± 0.1	3.0 ± 0.2
IHIGUNDEB	30.231.6	21.2-22.6	17.8-18.6	5.0-5.5	12-1.4	6.1–6.5	6.5-6.8	1.1–1.5	4.9-5.1	28-32
	30.1 ± 0.7	19.4 ± 0.3	21 ± 0.4	162 ± 0.4	48 ± 02	103 ± 05	21 ± 0.4	0.5	7.1 ± 0.2	7.4 ± 0.5
AISINDBA	292-312	19.1–19.9	1.8-2.7	15.9-16.8	15.9–16.8	9.5–10.7	1.8-2.7		69-7.5	7.0-8.1
	19.1 ± 2.6	22.7 ± 1.4	0.8 ± 0.3	155 ± 0.4	39 ± 05	11.6 ± 0.8	14 ± 03	0.4	105 ± 1.0	14.1 ± 0.9
IHICI AIS	163-22.4	21.2-24.5	0.4–1.1	15.0-15.9	3.4-4.5	10.6-12.3	1.0-1.8		93-11.7	13.1–15.5
	13.7	34.8	3.6	3.4	-	24.8	29	12	82	7.4
IIVISTIZX	11.4	37.5	3	3.4	_	24.6	2.7	15	8.4	75

C14 CmN lb	185 ± 03	105 ± 02	75 ± 0.7	5.0 ± 0.4	23 ± 02	0.9 ± 0.4	1.4 ± 0.2	1.4 ± 0.1	93 ± 13	43.2 ± 0.4
C14-C12ND	18.3–19.1	10.3-10.7	67-83	4.6-5.6	21-26	05–1.6	12-1.8	1.4–1.6	7.8–10.6	42.8-43.8
				H	leat treated					
Average	31.4 ± 0.3	205 ± 02	188 ± 0.4	62 ± 0.1	12 ± 0.1	57 ± 02	5.6 ± 0.2	1.0 ± 0.2	47 ± 02	49 ± 02
compositiona	31.1–31.8	20.4-20.8	18.4–19.3	6.0-6.4	1.0-1.3	5.4-5.9	5.4-5.9	0.8–1.3	4.6-5.0	4.7-5.1
	21.2 ± 0.4	113 ± 03	0	234 ± 03	18.0 ± 0.3	12 ± 0.1	1.6 ± 0.6	03	53 ± 0.3	177 ± 03
(IND,VV)₅	20.9-21.7	10.8-11.6	0	229-239	17.7–18.3	1.0–1.4	0.8–2.3		5.1–5.8	17.2–18.0
NII-Ci-	31.4 ± 0.2	21.1 ± 0.4	203 ± 0.5	5.0 ± 0.1	05	57 ± 03	62 ± 0.3	1.1 ± 0.1	4.6 ± 0.1	4.1 ± 0.2
INDEDB	31.2-31.6	20.6-21.7	195-209	49-52		5.3-6.1	5.9-6.8	1.1–1.2	45-48	3.8-4.2
TE CLARE	27.4 ± 0.3	237 ± 0.4	24.1 ± 0.3	3.8 ± 0.3		1.4 ± 0.1	72 ± 0.1	32 ± 0.1	52 ± 0.1	4.0 ± 0.2
THICK INDEDIS	26.9–27.7	23.1-24.2	23.6-24.4	3.6-4.4	-	13-15	7.1–7.3	3.1–3.4	5.1–5.3	3.7-4.2
	29.9 ± 0.4	17.4 ± 0.3	24 ± 02	163 ± 0.3	4.7 ± 0.1	92 ± 0.1	1.8 ± 0.1	0.2	73 ± 0.1	108 ± 0.6
ADHNDBA	29.3-30.4	169–175	20-2.6	15.9–16.6	45-48	92-93	1.7–2.0		72–7.4	10.2–11.7

a = Large area analysis.

Table S3. EDS analysis data (at.%) of phases in the alloy JZ4 after oxidation at 800 °C for 100 h.

Phase	0	Nb	Ti	Si	Мо	W	Sn	Ge	Hf	Al	Cr
Oxide scale											
Mixed Si-rich oxide	708 ± 14	13.4 ± 0.8	32 ± 0.1	7.7 ± 0.8	13 ± 03	0.5	0.4	0.8 ± 0.5	0.3	0.9 ± 0.2	0.8 ± 0.1
	69.0-72.4	12.1–14.1	3.0-3.3	6.6-8.8	0.8–1.6			0.3–1.4		0.7–1.0	0.7–1.0
Bulk											
NbSis	_	45.0 ± 0.8	9.6 ± 0.1	28.1 ± 0.4	44 ± 0.3	1.4 ± 0.2	1.1 ± 0.1	6.4 ± 0.6	1.0 ± 0.1	19 ± 03	12 ± 02
		44.2-45.9	95-98	27.5-28.5	3.9-4.6	1.1–1.6	0.9–1.2	62–7.0	0.8–1.1	15-23	0.9–1.4
Ti-rich NbSi3	-	39.9 ± 2.2	14.2 ± 1.6	20.1 ± 0.5	4.4 ± 0.1	1.0 ± 0.3	5.1 ± 0.9	5.9 ± 0.6	1.6 ± 0.2	49 ± 02	2.9 ± 0.6
		38.2-43.6	11.5-15.4	19.4-20.7	42-46	0.7–1.5	3.7-6.1	5.6-6.9	13-19	47-5.1	2.0-3.6
TMSnzX	-	23.8	279	3.4	3.7	-	24.9	21	2.8	73	4.1
A15-Nb3X	_	41.9 ± 15	11.6 ± 0.8	2.6 ± 0.4	142 ± 0.3	67 ± 0.4	8.6 ± 0.5	21 ± 02	0.5 ± 0.2	6.5 ± 0.4	54 ± 0.8
		39.7-43.0	105-12.6	21-3.0	13.9–14.6	62–73	8.0-9.1	19-23	0.4-0.8	5.9-6.8	45-6.6

C14-Cr2Nb	-	222 ± 0.3	7.4 ± 0.4	8.1 ± 0.6	48 ± 02	26 ± 02	0.6 ± 0.1	17 ± 02	2.9 ± 0.1	82 ± 1.0	41.6 ± 0.8
		21.6-22.5	7.0-8.1	73-89	4.7–5.1	22-2.8	0.5-0.8	15-21	2.8-3.1	72-9.8	40.4-42.4
		1 64 500	1 • 1 /		• .1 1		. 1		1001		
	Tat	ole S4. EDS a	nalysis data	(at.%) of pha	ases in the all	loy JZ5 after	c oxidation a	at 800 °C for	100 h.		
Phase	0	Nb	Ti	Si	Мо	W	Sn	Ge	Hf	Al	Gr
Oxide scale											
Mixed Si-rich oxide	723 ± 1.0	105 ± 1.1	5.1 ± 0.3	7.1 ± 1.0	13 ± 02	03	05	15 ± 05	02	0.6	07
	71.4-74.0	87–11.4	4.8-5.7	52–7.7	1.0-1.4			1.1–2.3			
Bulk											
NbSis	_	39.8 ± 0.2	15.7 ± 0.2	29.4 ± 0.5	4.8 ± 0.2	1.0 ± 0.1	1.0 ± 0.1	53 ± 02	0.7 ± 0.1	1.2 ± 0.2	1.0 ± 0.1
		39.4-40.0	15.5-15.9	29.3-29.8	4.6-5.2	0.9–1.1	0.7–1.1	5.1–5.6	0.6-0.8	1.1–1.4	09–1.1
Ti-rich NbSis	_	33.7 ± 0.8	20.4 ± 0.4	197 ± 02	5.6 ± 0.3	0.9 ± 0.1	57 ± 03	55 ± 02	1.1 ± 0.1	4.8 ± 0.2	25 ± 0.4
		325-343	20.1-21.0	195–199	53-6.1	0.7–1.0	53-62	53-5.7	0.8–1.2	4.6-5.1	23-3.1
TMSn2X	_	125	37.1	42	3.6	_	25.1	28	1.6	8.1	5
A15-Nb ₈ X	-	322 ± 0.3	183 ± 03	27 ± 02	16.6 ± 0.2	5.4 ± 0.1	9.4 ± 0.1	20 ± 0.4	0.3 ± 0.1	6.6 ± 0.1	64 ± 02
		31.6-32.5	179–18.8	25-29	165-169	53-55	93-95	1.6-2.5	0.1-0.4	65-68	62-67
C14-Cr2Nb	_	20.0 ± 0.3	109 ± 0.4	83 ± 0.4	52 ± 02	25 ± 02	0.7 ± 0.1	13 ± 02	1.6 ± 0.1	8.4 ± 0.7	412 ± 0.4
		19.4-20.2	10.4-11.4	8.0-8.9	5.0-5.5	23-27	0.6-0.9	1.1–1.6	15-18	7.7–9.4	405-415

Table S5. EDS analysis data (at.%) of phases in the alloy JZ4 after oxidation at 1200 °C for 100 h.

	Phase	0	Nb	Ti	Si	Мо	W	Sn	Ge	Hf	Al	Cr
Oxidescale	Nb-rich oxide	74.2 ± 0.4	197 ± 0.5	29 ± 0.1	0.7	02	1.0 ± 0.1	_	-	0.3	0.7	02
		73.5-74.6	19.0-20.5	28-3.1			1.0-1.1					
	Ti-richoxide	71.7 ± 0.3	9.6 ± 0.5	85 ± 0.6	1.0 ± 0.7	12 ± 1.0	_	_	0.3	0.5	3.4 ± 0.1	3.7 ± 0.6
		71.0-71.9	89-102	7.6-9.1	03-21	0.4-2.8					3.3–3.6	28-42
Diffusion zone	NbSi3	_	44.0 ± 0.5	103 ± 0.1	24.7 ± 0.5	49 ± 02	13 ± 03	2.6 ± 0.1	63 ± 02	1.0 ± 0.2	33 ± 0.5	1.6 ± 0.2
			43.3-44.5	102-10.5	24.1-25.4	4.7-5.1	0.8–1.6	25-28	6.1-6.4	0.7–1.1	27–37	1.4-2.0
	Nbs(Si,Ge)3	_	425 ± 22	9.0 ± 1.0	132 ± 1.0	73 ± 0.7	03	9.7 ± 3.1	115 ± 20	03	27 ± 0.3	3.4 ± 0.2
			392-45.3	7.7–10.3	11.9-14.7	6.4-8.1		72–14.6	8.8-13.5		25-32	3.13.6

	Nbs(Si,Ge)3	-	429 ± 26	85 ± 0.9	11.8 ± 5.0	79 ± 1.6	15 ± 0.7	-	23.8 ± 4.8	0.8 ± 0.3	0.5 ± 0.1	24 ± 0.6
			39.4-45.0	77–97	72–17.4	62-97	0.5-2.0		18.4-28.0	0.4–1.1	0.4-0.6	15-3.0
	A15-NbsX	_	41.7 ± 1.1	4.1 ± 0.1	15 ± 0.1	21.9 ± 1.1	25 ± 0.2	20.0 ± 0.7	2.1 ± 0.5	-	1.1 ± 0.3	53 ± 03
			40.2-43.2	4.0-4.2	1.4–1.7	20.5-23.2	22-28	19.1–20.9	1.4-2.9		07–1.4	48-57
	(Nb,W)s	-	165 ± 23	1.7 ± 0.7	0	293 ± 27	43.3 ± 3.6	0.8 ± 0.4	2.6 ± 0.4	02	09 ± 03	48 ± 0.4
			14.0-19.8	0.8-2.8		26.7-32.6	38.9-47.8	0.4-1.3	2.1–3.1		0.6–1.4	45-5.4
Bulk	NbSi3	-	444 ± 02	103 ± 02	24.9 ± 0.9	49 ± 03	1.6 ± 0.1	2.1 ± 0.1	62 ± 0.5	1.0 ± 0.2	3.0 ± 0.2	1.6 ± 0.1
			44.2-44.7	10.0–10.7	24.6-25.0	43-50	15-18	20-23	5.4-6.4	0.8–1.2	27–32	1.4–1.7
	Ti-rich NbSi3	-	36.1 ± 2.0	19.4 ± 2.1	13.9 ± 2.3	3.6 ± 0.5	0.4	115 ± 23	5.0 ± 0.4	2.0 ± 0.3	55 ± 03	26 ± 03
			33.0-39.2	15.7–21.6	11.6-17.7	28-4.1		79–135	45-57	1.6-2.3	5.3–5.9	2.0-2.9
	A15-Nbx	-	40.8 ± 0.7	102 ± 0.3	22 ± 0.3	15.3 ± 0.6	7.7 ± 0.2	8.8 ± 0.4	18 ± 0.4	03	73 ± 03	5.7 ± 0.2
			39.8-41.4	9.9–10.4	18-26	14.3-15.8	7.5-8.0	84-95	12-22		7.0–7.7	5.5-6.0
	(Nb,W)s	-	23.9 ± 0.8	5.1 ± 0.3	0	24.0 ± 0.5	335 ± 13	0.6	1.6 ± 0.7	03	1.7 ± 0.2	92±13
			23.0-24.6	4.6-5.4		23.5-24.6	31.6-35.1		0.7–2.1		1.4–1.9	7.4-10.9
	C14-Cr2Nb	-	26.8 ± 0.7	47 ± 02	105 ± 0.3	3.9 ± 0.2	3.1 ± 0.5	05	14 ± 02	1.8 ± 0.2	5.1 ± 0.2	42.1 ± 0.6
			25.9–27.9	45-50	10.2-11.0	3.6-4.1	25-40		1.2–1.6	15-21	4.9-5.3	41.3-43.0

Table S6. EDS analysis data (at.%) of phases in the alloy JZ5 after oxidation at 1200 °C for 100 h.

	Phase	0	Nb	Ti	Si	Мо	W	Sn	Ge	Hf	Al	Gr
Oxide scale	Nb-rich oxide	747 ± 1.1	17.6 ± 1.9	48 ± 05	0.9 ± 0.7	_	0.4	_	_	0.3	1.0 ± 0.4	02
		73.4-76.1	15.4-18.9	40-52	0-1.4						05–1.4	
	Ti-richoxide	725 ± 0.7	8.0 ± 1.1	119 ± 17	0.7	-	_	02	_	0.4	3.9 ± 0.5	23 ± 0.4
		71.5-73.6	6.7–9.6	10.4-14.6							33-45	1.9–2.8
Diffusion zone	NbSi3	-	408 ± 02	17.4 ± 0.3	29.4 ± 0.4	52 ± 02	1.1 ± 1.3	1.3 ± 0.1	1.0 ± 0.3	07	15 ± 02	1.4 ± 0.2
			40.4-41.0	17.1–17.9	28.9-30.0	5.0-5.5	1.1–1.3	12–15	07–1.4		13-1.8	1.2–1.7
	Nb=(Si,Sn)3	-	31.6 ± 1.4	203 ± 18	132 ± 1.9	5.8 ± 0.3	02	169 ± 1.5	44 ± 0.5	0.8 ± 0.2	23 ± 0.6	45 ± 02
			303-335	17:4-21.7	11.1–16.0	5.6-6.3		15.0-19.0	3.8-5.3	0.6–1.0	122.8	4.1-4.7
	Nb:(Si,Ge)3	-	46.6 ± 1.5	33 ± 09	175 ± 4.6	103 ± 17	17 ± 0.3	03	167 ± 4.1	0.3	0.9 ± 0.5	24 ± 0.6
			44.4-47.8	25-45	10.8-23.3	8.6-12.6	1.4-2.3		11.2-22.7		0.4–1.5	1.8-3.3
	A15-Nb3X	-	309 ± 1.6	9.9 ± 0.6	1.1 ± 0.2	25.2 ± 0.8	3.9 ± 0.7	192 ± 0.7	1.3 ± 0.1	_	1.4 ± 0.6	7.1 ± 0.4

			28.3-32.6	9.3–10.7	0.9–1.3	24.226.3	3.0-4.9	18.4-20.2	1.1–1.4		0.8-2.4	6.8–7.7
	(Nb,W)ss	_	127 ± 12	3.6 ± 0.6	_	31.5 ± 0.8	39.1 ± 1.3	1.0 ± 0.7	22 ± 0.4	03	1.6 ± 0.6	8.1 ± 0.9
			115-145	28-44		30.9-32.8	38.0-41.0	0.1–1.9	19–27		09–2.6	7.5-9.4
Bulk	NbSis	_	39.0 ± 0.8	162 ± 05	28.1 ± 0.6	52 ± 02	0.8 ± 0.1	13 ± 02	5.6 ± 0.4	0.8 ± 0.1	1.6 ± 0.2	1.4 ± 0.1
	_		37.9-40.0	15.6-16.9	27.4-28.8	5.0-5.4	0.7-0.9	1.1–1.6	5.1–5.9	0.7-0.8	15-20	1.3-1.6
	Ti-rich NbSis	_	282 ± 26	267 ± 3.1	139 ± 26	4.2 ± 0.8	02	118 ± 29	5.0 ± 0.5	12 ± 0.1	5.9 ± 0.3	29 ± 0.8
	_		25.6-32.3	25.8-29.9	10.8-17.7	3.4–5.3		77–14.8	43-57	1.0–1.4	5.4-6.2	2.1–3.7
	A15-Nbx	_	27.1 ± 0.9	18.6 ± 0.9	14 ± 03	19.9 ± 0.8	42 ± 0.5	10.6 ± 0.3	14 ± 03	02	8.9 ± 0.3	7.6 ± 1.1
	_		25.9-28.1	17.7–19.8	1.1–1.9	18.8-20.9	3.6-4.9	103-112	12-1.8		85-92	6.4-9.0
	(Nb,W)ss	_	195 ± 0.8	9.7 ± 0.5	_	279 ± 0.7	30.0 ± 2.0	1.6 ± 0.6	20 ± 0.4	0.4	2.2 ± 0.4	68 ± 05
			18.4-20.6	92-102		27.1-28.8	27.7-31.6	1.1–2.3	15-26		18-28	63-73
	C14-Cr2Nb	_	229 ± 0.4	7.8 ± 0.3	87 ± 03	4.6 ± 0.1	33 ± 0.1	0.4	1.0 ± 0.1	13 ± 0.1	7.0 ± 0.5	43.0 ± 0.4
			225-23.4	72-8.1	85-92	4.5-4.6	3.1–3.5		0.9–1.1	12–15	6.1–7.3	42.4-43.2

Figure S1. X–ray diffractograms of the (a) as cast and (b) heat treated alloy JZ4.

Figure S2. X-ray diffractograms of the (a) as cast and (b) heat treated alloy JZ5.